Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title coordination polymer, poly[diaqua­(1,10-phen­an­throline)(μ3-pyrazole-3,5-dicarboxyl­ato)tricopper(II)], [Cu3(C5HN2O4)2(C12H8N2)2(H2O)2]n, was hydro­thermally synthesized and structurally characterized. It consists of linear trinuclear copper(II) clusters of [Cu3(pdc)2(phen)2(H2O)2] units (H3pdc = pyrazole-3,5-dicarboxylic acid and phen = 1,10-phenanthroline), in which two pdc3− ligands chelate three CuII ions with the central CuII ion on an inversion center. An infinite two-dimensional sheet structure is constructed by connecting adjacent linear trinuclear copper(II) units through coordination bonds between the central CuII atom and an O atom of the carboxyl­ate group coordinated to the terminal CuII atom from the pdc3− ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034927/hj3043sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034927/hj3043Isup2.hkl
Contains datablock I

CCDC reference: 657613

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.075
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 N3 -CU1 -N1 -N2 -166.80 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N3 -CU1 -N1 -C2 9.10 0.90 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 N2 -CU2 -N2 -N1 15.00 0.00 3.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 N2 -CU2 -N2 -C4 5.00 0.00 3.656 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 N1 -CU1 -N3 -C6 -55.70 0.90 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 N1 -CU1 -N3 -C17 129.70 0.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 39 O3 -CU2 -O3 -C5 2.00 0.00 3.656 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.836(10) ...... 3.00 su-Ra O5 -H5A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.836(10) ...... 3.00 su-Ra O5 -H5A 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.95(3), Rep 1.953(10) ...... 3.00 su-Ra H5A -O1 1.555 4.566
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.23 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.06 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Polynuclear copper(II) complexes are attracting attention because of their interesting magnetic properties and their relevance to the active centers of a number of metalloproteins (Kahn, 2000; Vigato & Tamburini, 2004; Mrozinski, 2005). Although the greatest effort and success have been in the study of dinuclear copper(II) complexes, there has been little work on copper(II) complexes with more than two copper ions, particularly on linear trinuclear compounds (Gutierrez, et al., 2000; Song, et al., 2005). In this work, we have chosen a multifunctional ligand pyrazole-3,5-dicarboxylic acid (H3pdc), since it has potential coordination sites involving both nitrogen atoms of the pyrazole ring and oxygen atoms of the carboxylate groups. Therefore, it can coordinate with metal ions in multidentate ways to form a series of complexes with novel structures and interesting properties (Pan, et al., 2000). With the hydrothermal method, H3pdc ligand reacted with copper(II) ions and employed phen as an auxiliary ligand to tune the final structure. Here we report the synthesis and crystal structure of a novel two-dimensional coordination polymer [Cu3(pdc)2(phen)2(H2O)2]n, (I).

Single crystal X-ray diffraction analysis reveals that complex (I) consists of trinuclear copper(II) unit, [Cu3(pdc)2(phen)2(H2O)2] (Figure 1). The planar trinuclear unit contains a six-coordinate and two five-coordinate CuII ions chelated by two pdc3- ligands, in which the three copper(II) ions are arranged in a strict linear fashion [Cu1—Cu2—Cu1A= 180 °] with Cu2 on the inversion center and the Cu1···Cu2 distance is 4.318 (1) Å. The terminal copper(II) ions (Cu1 and Cu1A) have a distorted square pyramidal geometry coordinated by one N atom [Cu1—N1=1.9422 (17) Å] and one O atom [Cu1—O1=1.9939 (16) Å] of pdc3- ligand, two N atoms [Cu1—N3=1.9870 (17) Å and Cu1—N4=2.0396 (18) Å] of a phen molecule and one O atom [Cu1—O5=2.2354 (18) Å] of a water molecule. The N—Cu1—N and N—Cu1—O bond angles fall in the ranges 81.77 (7)–174.61 (7) ° and 82.22 (7)–144.28 (7) °, respectively. The center Cu2 ion presents a distorted octahedral geometry formed from the O3 [Cu2—O3=1.9554 (14) Å], O3A [Cu2—O3A = 1.9554 (14) Å], N2 [Cu2—N2 = 1.9690 (17) Å], N2A [Cu2—N2A = 1.9690 (17) Å], O2B [Cu2—O2B = 2.781 (17) Å] and O2C [Cu2—O2C = 2.781 (17) Å] of pdc3- ligands. The very long axial Cu—O bonds from the semi-coordinated pdc3- ligands (O2B and O2C) indicate center Cu2 ion have a distorted octahedral environment due to Jahn-Teller effect. Therefore, the equatorial coordination plane is an N2O2 donor set [for Cu2: N2, N2A, O3, O3A]. The Cu—O bond lengths of the central Cu2 atom [1.9554 (14) Å] are shorter than those of the equatorial Cu—O bonds of the terminal Cu1 atoms [1.9939 (16) and 2.2354 (18) Å], which is attributed to the two different coordination geometries (octahedral and square pyramidal, respectively). As can be seen from Figure 1, the pdc3- ligand bite angle at the two different CuII ions (Cu1 and Cu2) is similar, 82.22 (7) ° and 83.07 °, respectively. This implies that H3pdc is a fairly rigid ligand and retains its integrity on metal chelation. However, the carboxylate groups are twisted out of the plane of the pyrazole ring as a results of the coordination of O1 and O3 to their respective CuII ions. In complex (I), all the Cu—O and Cu—N bond lengths are similar to those found in the previously linear trinuclear copper(II) complexes (Gutierrez, et al., 2002; Song, et al., 2003). As shown in Figure 2, an infinite two-dimensional sheet structure is constructed by connecting adjacent linear triunclear copper(II) units through coordination bonds between the central copper(II) atom (Cu2) and the oxygen atom (O2) of carboxylate group coordinated to the terminal copper(II) atom (Cu1) from the pdc3- ligand.

Related literature top

For related literature, see: Gutierrez et al. (2000, 2002); Kahn (2000); Mrozinski (2005); Pan, Huang & Li (2000); Pan, Huang, Li et al. (2000); Song et al. (2003, 2005); Vigato & Tamburini (2004).

Experimental top

H3pdc was purchased from Aldrich and was used without further purification. Complex (I) was synthesized under hydrothermal conditions. A mixture of CuCO3.Cu(OH)2 (0.0066 g, 0.03 mmol), phen (0.0040 g, 0.02 mmol), H3pdc (0.0174 g, 0.10 mmol) and water (10 ml) was stirred for 30 min in air, then sealed in a 25 ml Telfon-lined stainless steel constainer, which was heated to 433 K for 72 h. After cooling to to room temperature at a rate of 1 K every 10 min. Blue crystals of (I) were obtained in ca 45% yield. The complex is insoluble in common organic solvents and water. Elmental analysis for C34H22Cu3N8O10 calculated: C 45.72, H 2.48, N 12.54%; found: C 45.70, H 2.59, N12.68%.

Refinement top

The water H atoms were located in a difference Fourier map and refined with restrained O—H bond lengths [0.85 (1) Å] and fixed isotropic displancement parameters (0.080 Å2). The H atoms were placed at calculated positions (C—H = 0.93–0.96 Å, N—H = 0.89–0.90 Å) and refined as riding with Uiso(H) = 1.2 Ueq(carrier).

Structure description top

Polynuclear copper(II) complexes are attracting attention because of their interesting magnetic properties and their relevance to the active centers of a number of metalloproteins (Kahn, 2000; Vigato & Tamburini, 2004; Mrozinski, 2005). Although the greatest effort and success have been in the study of dinuclear copper(II) complexes, there has been little work on copper(II) complexes with more than two copper ions, particularly on linear trinuclear compounds (Gutierrez, et al., 2000; Song, et al., 2005). In this work, we have chosen a multifunctional ligand pyrazole-3,5-dicarboxylic acid (H3pdc), since it has potential coordination sites involving both nitrogen atoms of the pyrazole ring and oxygen atoms of the carboxylate groups. Therefore, it can coordinate with metal ions in multidentate ways to form a series of complexes with novel structures and interesting properties (Pan, et al., 2000). With the hydrothermal method, H3pdc ligand reacted with copper(II) ions and employed phen as an auxiliary ligand to tune the final structure. Here we report the synthesis and crystal structure of a novel two-dimensional coordination polymer [Cu3(pdc)2(phen)2(H2O)2]n, (I).

Single crystal X-ray diffraction analysis reveals that complex (I) consists of trinuclear copper(II) unit, [Cu3(pdc)2(phen)2(H2O)2] (Figure 1). The planar trinuclear unit contains a six-coordinate and two five-coordinate CuII ions chelated by two pdc3- ligands, in which the three copper(II) ions are arranged in a strict linear fashion [Cu1—Cu2—Cu1A= 180 °] with Cu2 on the inversion center and the Cu1···Cu2 distance is 4.318 (1) Å. The terminal copper(II) ions (Cu1 and Cu1A) have a distorted square pyramidal geometry coordinated by one N atom [Cu1—N1=1.9422 (17) Å] and one O atom [Cu1—O1=1.9939 (16) Å] of pdc3- ligand, two N atoms [Cu1—N3=1.9870 (17) Å and Cu1—N4=2.0396 (18) Å] of a phen molecule and one O atom [Cu1—O5=2.2354 (18) Å] of a water molecule. The N—Cu1—N and N—Cu1—O bond angles fall in the ranges 81.77 (7)–174.61 (7) ° and 82.22 (7)–144.28 (7) °, respectively. The center Cu2 ion presents a distorted octahedral geometry formed from the O3 [Cu2—O3=1.9554 (14) Å], O3A [Cu2—O3A = 1.9554 (14) Å], N2 [Cu2—N2 = 1.9690 (17) Å], N2A [Cu2—N2A = 1.9690 (17) Å], O2B [Cu2—O2B = 2.781 (17) Å] and O2C [Cu2—O2C = 2.781 (17) Å] of pdc3- ligands. The very long axial Cu—O bonds from the semi-coordinated pdc3- ligands (O2B and O2C) indicate center Cu2 ion have a distorted octahedral environment due to Jahn-Teller effect. Therefore, the equatorial coordination plane is an N2O2 donor set [for Cu2: N2, N2A, O3, O3A]. The Cu—O bond lengths of the central Cu2 atom [1.9554 (14) Å] are shorter than those of the equatorial Cu—O bonds of the terminal Cu1 atoms [1.9939 (16) and 2.2354 (18) Å], which is attributed to the two different coordination geometries (octahedral and square pyramidal, respectively). As can be seen from Figure 1, the pdc3- ligand bite angle at the two different CuII ions (Cu1 and Cu2) is similar, 82.22 (7) ° and 83.07 °, respectively. This implies that H3pdc is a fairly rigid ligand and retains its integrity on metal chelation. However, the carboxylate groups are twisted out of the plane of the pyrazole ring as a results of the coordination of O1 and O3 to their respective CuII ions. In complex (I), all the Cu—O and Cu—N bond lengths are similar to those found in the previously linear trinuclear copper(II) complexes (Gutierrez, et al., 2002; Song, et al., 2003). As shown in Figure 2, an infinite two-dimensional sheet structure is constructed by connecting adjacent linear triunclear copper(II) units through coordination bonds between the central copper(II) atom (Cu2) and the oxygen atom (O2) of carboxylate group coordinated to the terminal copper(II) atom (Cu1) from the pdc3- ligand.

For related literature, see: Gutierrez et al. (2000, 2002); Kahn (2000); Mrozinski (2005); Pan, Huang & Li (2000); Pan, Huang, Li et al. (2000); Song et al. (2003, 2005); Vigato & Tamburini (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The linear trinuclear copper(II) unit of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Atoms labelled with the suffixes A—C are at the symmetry positions (-x + 1, -y, -z + 1), (x, -y + 1/2, z + 1/2) and (-x + 1, y - 1/2, -z + 1/2), respectively.
[Figure 2] Fig. 2. View of a two-dimensional sheets constructed by linear trinuclear copper(II) clusters units in (I). Hydrogen atoms and carbon atoms of phen have been omitted for clarity.
poly[diaqua(1,10-phenanthroline)(µ3-pyrazole-3,5- dicarboxylato)tricopper(II)], top
Crystal data top
[Cu3(C5HN2O4)2(C12H8N2)2(H2O)2]F(000) = 898
Mr = 893.22Dx = 1.886 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6709 (13) ÅCell parameters from 3518 reflections
b = 15.7250 (16) Åθ = 2.6–27.4°
c = 7.9628 (8) ŵ = 2.09 mm1
β = 97.620 (1)°T = 296 K
V = 1572.6 (3) Å3Block, blue
Z = 20.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3817 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 28.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1610
Tmin = 0.705, Tmax = 0.788k = 1920
9788 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.033P)2 + 0.6259P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu3(C5HN2O4)2(C12H8N2)2(H2O)2]V = 1572.6 (3) Å3
Mr = 893.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.6709 (13) ŵ = 2.09 mm1
b = 15.7250 (16) ÅT = 296 K
c = 7.9628 (8) Å0.18 × 0.16 × 0.12 mm
β = 97.620 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3022 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.788Rint = 0.022
9788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3817 reflectionsΔρmin = 0.36 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28454 (2)0.168599 (16)0.19425 (3)0.02894 (9)
Cu20.50000.00000.50000.03363 (11)
N10.42958 (14)0.16741 (11)0.3095 (2)0.0273 (4)
N20.50013 (13)0.11089 (11)0.3852 (2)0.0271 (4)
N30.13893 (14)0.18077 (11)0.0690 (2)0.0290 (4)
N40.28236 (14)0.06081 (11)0.0514 (2)0.0276 (4)
O10.31016 (12)0.29372 (10)0.1950 (2)0.0359 (4)
O20.44176 (14)0.38926 (10)0.2441 (2)0.0410 (4)
O30.65009 (12)0.02691 (10)0.5697 (2)0.0348 (4)
O40.76794 (13)0.13185 (11)0.5688 (2)0.0444 (4)
O50.21785 (13)0.11277 (11)0.4160 (2)0.0354 (4)
C10.40786 (18)0.31623 (13)0.2446 (3)0.0301 (5)
C20.47807 (17)0.24388 (13)0.3089 (3)0.0269 (4)
C30.58241 (17)0.23682 (13)0.3844 (3)0.0298 (5)
H30.63410.27910.39900.036*
C40.59219 (16)0.15300 (13)0.4328 (3)0.0258 (4)
C50.67875 (17)0.10245 (14)0.5313 (3)0.0299 (5)
C60.06794 (18)0.24134 (15)0.0850 (3)0.0367 (5)
H60.08830.28760.15460.044*
C70.03601 (19)0.23830 (17)0.0018 (3)0.0405 (6)
H70.08400.28140.01770.049*
C80.06678 (18)0.17152 (16)0.1034 (3)0.0377 (6)
H80.13580.16900.15980.045*
C90.00700 (17)0.10639 (14)0.1259 (3)0.0310 (5)
C100.0152 (2)0.03495 (16)0.2368 (3)0.0407 (6)
H100.08200.02960.30020.049*
C110.0596 (2)0.02445 (16)0.2502 (3)0.0412 (6)
H110.04330.07010.32320.049*
C120.16378 (19)0.01951 (14)0.1555 (3)0.0330 (5)
C130.2453 (2)0.07966 (15)0.1605 (3)0.0383 (5)
H130.23350.12760.22880.046*
C140.3416 (2)0.06765 (15)0.0652 (3)0.0374 (5)
H140.39650.10640.07100.045*
C150.35758 (18)0.00311 (14)0.0413 (3)0.0331 (5)
H150.42320.01000.10740.040*
C160.18722 (16)0.04984 (13)0.0473 (3)0.0271 (4)
C170.10915 (17)0.11403 (13)0.0348 (3)0.0270 (4)
H5A0.247 (3)0.1404 (19)0.499 (3)0.080*
H5B0.251 (2)0.0664 (12)0.426 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02010 (14)0.02947 (15)0.03436 (15)0.00124 (10)0.00714 (10)0.00091 (11)
Cu20.01976 (19)0.0324 (2)0.0448 (2)0.00645 (15)0.01020 (16)0.01441 (17)
N10.0206 (8)0.0277 (9)0.0312 (9)0.0006 (7)0.0050 (7)0.0040 (7)
N20.0184 (8)0.0277 (9)0.0327 (9)0.0031 (7)0.0059 (7)0.0040 (7)
N30.0213 (9)0.0332 (10)0.0312 (9)0.0045 (7)0.0021 (7)0.0010 (8)
N40.0231 (9)0.0310 (9)0.0274 (9)0.0028 (7)0.0013 (7)0.0007 (7)
O10.0312 (8)0.0303 (8)0.0426 (9)0.0029 (7)0.0092 (7)0.0026 (7)
O20.0467 (10)0.0260 (8)0.0480 (10)0.0029 (7)0.0028 (8)0.0027 (7)
O30.0215 (8)0.0331 (8)0.0462 (9)0.0034 (6)0.0090 (7)0.0091 (7)
O40.0252 (8)0.0458 (10)0.0568 (11)0.0117 (7)0.0149 (8)0.0106 (8)
O50.0299 (9)0.0385 (9)0.0360 (9)0.0016 (7)0.0020 (7)0.0001 (7)
C10.0311 (12)0.0293 (11)0.0283 (11)0.0023 (9)0.0013 (9)0.0002 (9)
C20.0256 (11)0.0258 (10)0.0281 (10)0.0027 (8)0.0013 (9)0.0003 (8)
C30.0240 (11)0.0276 (11)0.0360 (12)0.0059 (9)0.0019 (9)0.0018 (9)
C40.0195 (10)0.0292 (10)0.0271 (10)0.0036 (8)0.0022 (8)0.0026 (8)
C50.0224 (10)0.0344 (11)0.0310 (11)0.0024 (9)0.0035 (9)0.0004 (9)
C60.0297 (12)0.0401 (13)0.0385 (13)0.0073 (10)0.0019 (10)0.0055 (10)
C70.0277 (12)0.0503 (15)0.0424 (14)0.0148 (11)0.0010 (10)0.0020 (11)
C80.0223 (11)0.0526 (15)0.0361 (12)0.0040 (10)0.0036 (9)0.0092 (11)
C90.0243 (11)0.0390 (12)0.0278 (11)0.0037 (9)0.0035 (9)0.0057 (9)
C100.0340 (13)0.0473 (14)0.0370 (13)0.0093 (11)0.0096 (10)0.0015 (11)
C110.0446 (15)0.0394 (13)0.0366 (13)0.0091 (11)0.0061 (11)0.0059 (10)
C120.0359 (13)0.0322 (11)0.0299 (11)0.0042 (10)0.0007 (10)0.0004 (9)
C130.0474 (15)0.0316 (12)0.0370 (13)0.0010 (11)0.0100 (11)0.0063 (10)
C140.0376 (13)0.0328 (12)0.0437 (14)0.0068 (10)0.0125 (11)0.0035 (10)
C150.0262 (11)0.0370 (12)0.0355 (12)0.0054 (9)0.0019 (9)0.0042 (10)
C160.0239 (10)0.0296 (11)0.0269 (10)0.0004 (9)0.0006 (8)0.0034 (8)
C170.0236 (10)0.0317 (11)0.0245 (10)0.0001 (9)0.0016 (8)0.0021 (8)
Geometric parameters (Å, º) top
Cu1—N11.9422 (17)C3—C41.374 (3)
Cu1—N31.9870 (17)C3—H30.9300
Cu1—O11.9939 (16)C4—C51.491 (3)
Cu1—N42.0396 (18)C6—C71.395 (3)
Cu1—O52.2354 (18)C6—H60.9300
Cu2—O3i1.9554 (14)C7—C81.367 (3)
Cu2—O31.9554 (14)C7—H70.9300
Cu2—N2i1.9690 (17)C8—C91.414 (3)
Cu2—N21.9690 (17)C8—H80.9300
N1—N21.345 (2)C9—C171.402 (3)
N1—C21.351 (3)C9—C101.434 (3)
N2—C41.351 (2)C10—C111.345 (4)
N3—C61.328 (3)C10—H100.9300
N3—C171.358 (3)C11—C121.432 (3)
N4—C151.326 (3)C11—H110.9300
N4—C161.360 (3)C12—C161.397 (3)
O1—C11.298 (3)C12—C131.405 (3)
O2—C11.226 (3)C13—C141.362 (3)
O3—C51.290 (3)C13—H130.9300
O4—C51.221 (3)C14—C151.398 (3)
O5—H5A0.836 (10)C14—H140.9300
O5—H5B0.836 (10)C15—H150.9300
C1—C21.492 (3)C16—C171.426 (3)
C2—C31.382 (3)
N1—Cu1—N3174.61 (7)N2—C4—C3110.42 (18)
N1—Cu1—O182.22 (7)N2—C4—C5115.72 (18)
N3—Cu1—O192.66 (7)C3—C4—C5133.78 (19)
N1—Cu1—N4101.39 (7)O4—C5—O3124.8 (2)
N3—Cu1—N481.77 (7)O4—C5—C4121.3 (2)
O1—Cu1—N4144.28 (7)O3—C5—C4113.88 (18)
N1—Cu1—O593.23 (7)N3—C6—C7122.6 (2)
N3—Cu1—O590.65 (7)N3—C6—H6118.7
O1—Cu1—O5117.62 (7)C7—C6—H6118.7
N4—Cu1—O597.79 (7)C8—C7—C6119.5 (2)
O3i—Cu2—O3180.00 (10)C8—C7—H7120.3
O3i—Cu2—N2i83.07 (6)C6—C7—H7120.3
O3—Cu2—N2i96.93 (6)C7—C8—C9119.6 (2)
O3i—Cu2—N296.93 (6)C7—C8—H8120.2
O3—Cu2—N283.07 (6)C9—C8—H8120.2
N2i—Cu2—N2180.00 (5)C17—C9—C8116.9 (2)
N2—N1—C2108.30 (16)C17—C9—C10118.6 (2)
N2—N1—Cu1138.51 (14)C8—C9—C10124.5 (2)
C2—N1—Cu1113.09 (13)C11—C10—C9120.7 (2)
N1—N2—C4107.44 (16)C11—C10—H10119.7
N1—N2—Cu2138.74 (14)C9—C10—H10119.7
C4—N2—Cu2110.95 (13)C10—C11—C12122.0 (2)
C6—N3—C17118.42 (19)C10—C11—H11119.0
C6—N3—Cu1128.05 (15)C12—C11—H11119.0
C17—N3—Cu1113.32 (14)C16—C12—C13116.5 (2)
C15—N4—C16117.87 (19)C16—C12—C11118.2 (2)
C15—N4—Cu1130.22 (15)C13—C12—C11125.3 (2)
C16—N4—Cu1111.91 (14)C14—C13—C12119.9 (2)
C1—O1—Cu1114.73 (13)C14—C13—H13120.1
C5—O3—Cu2115.19 (13)C12—C13—H13120.1
Cu1—O5—H5A104 (2)C13—C14—C15119.7 (2)
Cu1—O5—H5B101 (2)C13—C14—H14120.1
H5A—O5—H5B102 (3)C15—C14—H14120.1
O2—C1—O1125.1 (2)N4—C15—C14122.3 (2)
O2—C1—C2121.5 (2)N4—C15—H15118.9
O1—C1—C2113.43 (18)C14—C15—H15118.9
N1—C2—C3109.65 (18)N4—C16—C12123.7 (2)
N1—C2—C1115.41 (18)N4—C16—C17116.11 (18)
C3—C2—C1134.65 (19)C12—C16—C17120.18 (19)
C4—C3—C2104.16 (18)N3—C17—C9123.0 (2)
C4—C3—H3127.9N3—C17—C16116.74 (18)
C2—C3—H3127.9C9—C17—C16120.30 (19)
N3—Cu1—N1—N2166.8 (7)N1—C2—C3—C41.4 (3)
O1—Cu1—N1—N2174.8 (2)C1—C2—C3—C4172.0 (2)
N4—Cu1—N1—N241.3 (2)N1—N2—C4—C31.4 (2)
O5—Cu1—N1—N257.3 (2)Cu2—N2—C4—C3166.02 (15)
N3—Cu1—N1—C29.1 (9)N1—N2—C4—C5175.59 (18)
O1—Cu1—N1—C29.32 (15)Cu2—N2—C4—C511.0 (2)
N4—Cu1—N1—C2134.61 (16)C2—C3—C4—N21.7 (3)
O5—Cu1—N1—C2126.77 (16)C2—C3—C4—C5174.6 (2)
C2—N1—N2—C40.5 (2)Cu2—O3—C5—O4177.53 (19)
Cu1—N1—N2—C4176.58 (17)Cu2—O3—C5—C43.0 (2)
C2—N1—N2—Cu2158.44 (18)N2—C4—C5—O4173.9 (2)
Cu1—N1—N2—Cu225.5 (4)C3—C4—C5—O410.0 (4)
O3i—Cu2—N2—N112.8 (2)N2—C4—C5—O35.6 (3)
O3—Cu2—N2—N1167.2 (2)C3—C4—C5—O3170.6 (2)
N2i—Cu2—N2—N1152 (79)C17—N3—C6—C71.0 (4)
O3i—Cu2—N2—C4170.19 (15)Cu1—N3—C6—C7173.30 (18)
O3—Cu2—N2—C49.81 (15)N3—C6—C7—C81.2 (4)
N2i—Cu2—N2—C451 (80)C6—C7—C8—C90.2 (4)
N1—Cu1—N3—C655.7 (9)C7—C8—C9—C170.9 (3)
O1—Cu1—N3—C637.4 (2)C7—C8—C9—C10177.9 (2)
N4—Cu1—N3—C6178.0 (2)C17—C9—C10—C111.5 (4)
O5—Cu1—N3—C680.3 (2)C8—C9—C10—C11179.7 (2)
N1—Cu1—N3—C17129.7 (8)C9—C10—C11—C120.1 (4)
O1—Cu1—N3—C17148.01 (16)C10—C11—C12—C160.4 (4)
N4—Cu1—N3—C173.48 (15)C10—C11—C12—C13178.9 (2)
O5—Cu1—N3—C1794.30 (16)C16—C12—C13—C141.2 (3)
N1—Cu1—N4—C151.8 (2)C11—C12—C13—C14179.5 (2)
N3—Cu1—N4—C15177.3 (2)C12—C13—C14—C152.1 (4)
O1—Cu1—N4—C1594.3 (2)C16—N4—C15—C140.5 (3)
O5—Cu1—N4—C1593.2 (2)Cu1—N4—C15—C14179.99 (17)
N1—Cu1—N4—C16177.79 (14)C13—C14—C15—N41.3 (4)
N3—Cu1—N4—C162.23 (14)C15—N4—C16—C121.4 (3)
O1—Cu1—N4—C1685.29 (18)Cu1—N4—C16—C12179.00 (17)
O5—Cu1—N4—C1687.30 (14)C15—N4—C16—C17178.96 (19)
N1—Cu1—O1—C18.85 (16)Cu1—N4—C16—C170.7 (2)
N3—Cu1—O1—C1169.44 (16)C13—C12—C16—N40.6 (3)
N4—Cu1—O1—C189.86 (18)C11—C12—C16—N4178.8 (2)
O5—Cu1—O1—C198.43 (16)C13—C12—C16—C17179.8 (2)
O3i—Cu2—O3—C520 (100)C11—C12—C16—C170.9 (3)
N2i—Cu2—O3—C5172.82 (16)C6—N3—C17—C90.2 (3)
N2—Cu2—O3—C57.18 (16)Cu1—N3—C17—C9175.31 (17)
Cu1—O1—C1—O2175.08 (19)C6—N3—C17—C16179.3 (2)
Cu1—O1—C1—C26.4 (2)Cu1—N3—C17—C164.2 (2)
N2—N1—C2—C30.5 (3)C8—C9—C17—N31.1 (3)
Cu1—N1—C2—C3176.61 (15)C10—C9—C17—N3177.8 (2)
N2—N1—C2—C1174.19 (18)C8—C9—C17—C16178.4 (2)
Cu1—N1—C2—C18.6 (2)C10—C9—C17—C162.8 (3)
O2—C1—C2—N1177.1 (2)N4—C16—C17—N32.3 (3)
O1—C1—C2—N11.4 (3)C12—C16—C17—N3178.0 (2)
O2—C1—C2—C34.1 (4)N4—C16—C17—C9177.17 (19)
O1—C1—C2—C3174.5 (2)C12—C16—C17—C92.5 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O3i0.84 (1)1.93 (1)2.754 (2)168 (4)
O5—H5A···O1ii0.84 (1)1.95 (1)2.789 (2)178 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu3(C5HN2O4)2(C12H8N2)2(H2O)2]
Mr893.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6709 (13), 15.7250 (16), 7.9628 (8)
β (°) 97.620 (1)
V3)1572.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.705, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
9788, 3817, 3022
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04
No. of reflections3817
No. of parameters256
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1995), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O3i0.836 (10)1.932 (13)2.754 (2)168 (4)
O5—H5A···O1ii0.836 (10)1.953 (10)2.789 (2)178 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds