Download citation
Download citation
link to html
The title compound, [RuCl2(C25H29N5)(C18H15P)], a transfer hydrogenation catalyst, is supported by an N,N′,N′′-tridentate pyridine-bridged ligand and triphenyl­phosphine. The RuII centre is six-coordinated in a distorted octa­hedral arrangement, with the two Cl atoms located in the axial positions, and the pyridine (py) N atom, the two imino N atoms and the triphenyl­phosphine P atom located in the equatorial plane. The two equatorial Ru—Nimino distances (mean 2.093 Å) are substantially longer than the equatorial Ru—Npy bond [1.954 (4) Å]. It is observed that the NiminoM—Npy bond angle for the five-membered chelate rings of 2,6-bis(imino)pyridine-based complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra- and inter­molecular C—H...Cl hydrogen bonds, as well as by intra­molecular π–π stacking inter­actions between the aromatic rings belonging to the triphenyl­phosphine ligand and the dimethyl­amino­phenyl fragment. The inter­molecular hydrogen bonds form an R22(12) ring and a zigzag chain of fused centrosymmetric rings running parallel to the [100] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107021610/hj3041sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107021610/hj3041IIsup2.hkl
Contains datablock II

CCDC reference: 652496

Comment top

Pydim [2,6-bis(imino)pyridine-based] complexes of the form of (I) display a range of catalytic activity. For example, iron and cobalt complexes have been used in alkene polymerization reactions (Small et al., 1998; Tellmann et al., 2005; Bryliakov et al., 2004; Ionkin et al., 2006). Ruthenium complexes have been studied for potential applications such as optical sensors and chemical catalysis (Bianchini & Lee, 2000; Ertekin et al., 2003; Çetinkaya et al., 1999; Dayan & Çetinkaya, 2007). More recently, RuII complexes have been used for transfer hydrogenation reactions of ketones (Dayan & Çetinkaya, 2007).

While RuII–pydim complexes have been examined extensively, reports of the structural properties of these compounds are rare in the literature (Ertekin et al., 2003; Özdemir et al., 2007). The necessity of auxiliary ligand L in our [RuCl2(N,N',N)-L] system (Çetinkaya et al., 1999) prompted us to investigate the influence of PPh3. Therefore, a single-crystal X-ray structure analysis has been carried out on the title complex, (II).

The molecular structure of complex (II) and the atom-labelling scheme are shown in Fig. 1. Selected geometric parameters are summarized in Table 1. The mononuclear molecule contains an (N1,N1'E,N1,N1'E)-N1,N1'-[1,1'-(pyridine-2,6-diyl)bis (ethan-1-yl-1-ylidene)]bis(N4,N4-dimethylbenzene-1,4-diamine) ligand with an RuII metal centre, one triphenylphosphine ligand and two Cl ligands. The pydim ligand, with its two imine groups in ortho positions with respect to the pyridine N atom, behaves as a symmetrical N,N',N-tridentate chelate. The RuII ion is six-coordinated by two imino N atoms, one pyridine N atom, one triphenylphosphine P atom and two Cl atoms (Fig. 1). The five-membered chelate Ru1/N1/C1/C16/N4 and Ru1/N1/C5/C6/N2 rings are planar, and the maximum deviations from their planes are 0.028 (4) and -0.040 (3) Å, respectively, for atoms C1 and N1. These two chelate rings make a small dihedral angle of 2.74 (3)° with one another, indicating that they are nearly coplanar.

The local structure around the RuII ion is that of an octahedron, of which the equatorial plane is formed by three N atoms from the pydim ligand (N1, N2 and N4) and the P atom of the triphenylphosphine ligand (P1). The axial positions in the octahedron are occupied by two Cl atoms (Cl1 and Cl2). As can be seen from the trans angles, which range from 154.96 (19) to 175.78 (15)°, and the cis angles, which range from 77.60 (18) to 102.62 (14)°, the coordination octahedron around the RuII ion can be visualized as being distorted, with the major distortion arising via the N2—Ru1—N4 angle [154.96 (19)°]. This angle is considerably smaller than the ideal angle of 180°. The N1—Ru—P1 angle, involving the pyridine N and triphenylphosphine P atoms, is normal at 175.78 (15)°. The Ru—N2 and Ru—N4 bond lengths are comparable to the reported values for [RuCl2(pybox-dihydro)(C2H4)] [pybox is bis(hydrooxazolyl)pyridine; Nishiyama et al., 1995]. However, the M—Npy bond [1.954 (4) Å] is somewhat shorter than the M—Nimino bonds, with the formal double bond character of the imino linkages N2C6 and N4C16 having been retained [CN = 1.310 (6) and 1.320 (6) Å, respectively]. When the ruthenium–phosphine distance is compared with the six-coordinate complexes reported in the literature [2.337 (3), 2.3451 (12) and 2.2384 (2) Å; Abbenhuis et al., 1998]. it is seen that the ruthenium–phosphine distance in the solid-state structure of (II) is lengthened significantly to 2.3890 (14) Å, pointing to a weaker Ru—P interaction. This observation is attributed to steric effects of the groups bonded to imino N atoms.

Previously, we have reported the closely related compound, (III), [RuCl2(pydim)CH3CN] (Ar = 4-MeOC6H4; Çetinkaya et al., 1999). The geometries of the N,N',N ligands in (II) and (III) are very similar. However, the comparison between these structures reveals differences caused by the transition from L = MeCN to L = PPh3. The Ru—Npy distance in (II) is significantly longer than the corresponding value in (III) [1.906 (7) Å]. This reflects the steric congestion around the ruthenium center and also the greater trans influence of PPh3; it appears that the stronger π-acceptor ability of PPh3, in comparison with MeCN, allows it to compete more effectively with the trans pyridyl unit for Ru electron density, and therefore the Ru—Npy bond becomes weakened and extended in complex (II) when compared with (III) (Coe & Glenwright, 2000). The planes of the benzene rings substituted on the bis(imino)pyridine ligand backbone are inclined to the plane of the backbone at 55.11 (20) and 77.87 (19)° for the C8–C13 and C18–C23 rings, respectively, while the dihedral angle between the two benzene planes is 67.90 (17)°. The geometries at the imino N-atom centers are all trigonal planar, the sums of the three bond angles around these centers being 359.8 and 359.9°, and none of the atoms is more than ca 0.03 Å out of its associated RuC2 plane.

There are several structures reported in the literature containing various transition metal complexes of pydim-based ligands (Britovsek et al., 1999; Dias et al., 2000; Nakayama et al., 2005; Humphries et al., 2005). Inspection of the the M—N bond distances in (II) and in these examples indicates that the two M—Nimino bonds are ca 0.1–0.2 Å longer than the corresponding M—Npy bond within each metal-tridentate chelate unit. Furthermore, it is observed that the NiminoM—Npy bond angle for the five-membered chelate rings of pydim complexes is inversely related to the magnitude of the M—Npy bond, as expected. As the M—Npy distance increases from 1.833 (3) Å for [CoMe(pydim)] (Ar = 2,6-iPr2C6H3; Humphries et al., 2005) to 1.911 (3) Å for [RhMe(pydim)](OTf)2 (Ar = 2,6-iPr2C6H3; Dias et al., 2000) to 1.954 (4) Å for (II) to 2.001 (3) Å for [CrCl3(pydim)] (Ar = C6F5; Nakayama et al., 2005) to 2.110 (6) Å for [FeCl2(pydim)] (Ar = 2,4,6-Me3C6H2; Britovsek et al., 1999), the corresponding inner `bite' angle decreases continually from 81.17 (average) to 79.8 (average) to 77.62 (average) to 76.6 (average) to 72.8° (average), respectively.

Examination of the structure with PLATON (Spek, 2003) reveals that there is an intramolecular ππ stacking interaction between the C18–C23 and C38–C43 rings, with a distance of 3.636 (10) Å between the ring centroids and a perpendicular distance of 3.353 (12) Å between the rings. In the molecular structure of (II), three intramolecular interactions are observed between the phenyl H atoms and Cl atoms (Table 2), which lead to the formation of six-membered rings with graph-set descriptor S(6) (Bernstein et al., 1995). In the crystal structure of (II), pyridine atom C2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom Cl2 in the molecule at (1 - x, -y, 1 - z), so forming a centrosymmetric R22(12) ring centred at (1/2, 0, 1/2). Similarly, pyridine atom C4 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (2 - x, -y, 1 - z), so forming a second centrosymmetric R22(12) ring motif centred at (1, 0, 1/2). Propagation by inversion and translation of these two interactions generates a zigzag chain of fused rings running parallel to the [100] direction (Fig. 2). The full geometry of the intra- and intermolecular interactions is given in Table 2.

Related literature top

For related literature, see: Abbenhuis et al. (1998); Bernstein et al. (1995); Bianchini & Lee (2000); Britovsek et al. (1999); Bryliakov et al. (2004); Dayan & Çetinkaya (2007); Dias et al. (2000); Ertekin et al. (2003); Humphries et al. (2005); Ionkin et al. (2006); Nakayama et al. (2005); Nishiyama et al. (1995); Sheldrick (1997); Small et al. (1998); Spek (2003); Tellmann et al. (2005); Özdemir et al. (2007); Çetinkaya et al. (1999).

Experimental top

The ttitle complex was synthesized by the literature method (Çetinkaya et al., 1999) and X-ray quality crystals were grown from CH2Cl2/Et2O (20 ml, 1:3 v/v).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the C—H bond lengths at 0.96 and 0.93 Å for CH3 and aromatic CH groups, respectively. The Uiso(H) values were constrained as 1.2Ueq (1.5Ueq for methyl groups) of the pivot atom. Riding methyl H atoms on atoms C7 and C17 were allowed to rotate freely during refinement using the AFIX 137 command of SHELXL97 (Sheldrick, 1997). Other methyl H atoms were placed in geometrically idealized positions using the SHELXL97 HFIX 33 command and constrained to ride on their parent atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : A view of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. : Part of the crystal structure of (II), showing the formation of a zigzag chain of fused centrosymmetric R22(12) rings along [100]. For clarity, only H atoms involved in hydrogen bonding have been included.
(2,6-Bis{1-[4- (dimethylamino)phenylimino]ethyl}pyridine)dichlorido(triphenylphosphine- κP)ruthenium(II) top
Crystal data top
[RuCl2(C25H29N5)(C18H15P)]F(000) = 1720
Mr = 833.77Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20831 reflections
a = 10.2192 (5) Åθ = 1.5–27.2°
b = 18.3059 (13) ŵ = 0.62 mm1
c = 20.9425 (12) ÅT = 296 K
β = 94.089 (4)°Thin rod, black
V = 3907.8 (4) Å30.72 × 0.28 × 0.04 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
6869 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3478 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.121
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.5°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2121
Tmin = 0.893, Tmax = 0.978l = 2424
24010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0123P)2]
where P = (Fo2 + 2Fc2)/3
6869 reflections(Δ/σ)max = 0.001
471 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[RuCl2(C25H29N5)(C18H15P)]V = 3907.8 (4) Å3
Mr = 833.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2192 (5) ŵ = 0.62 mm1
b = 18.3059 (13) ÅT = 296 K
c = 20.9425 (12) Å0.72 × 0.28 × 0.04 mm
β = 94.089 (4)°
Data collection top
Stoe IPDS II
diffractometer
6869 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3478 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.978Rint = 0.121
24010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.91Δρmax = 0.37 e Å3
6869 reflectionsΔρmin = 0.44 e Å3
471 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.73385 (5)0.17466 (2)0.52318 (2)0.04223 (13)
Cl10.91543 (15)0.15718 (7)0.60165 (7)0.0577 (4)
Cl20.54902 (14)0.17907 (9)0.44560 (7)0.0590 (4)
P10.72432 (16)0.30149 (7)0.54931 (7)0.0479 (4)
N10.7526 (5)0.0703 (2)0.5065 (2)0.0474 (12)
N20.8555 (4)0.1739 (3)0.44538 (19)0.0499 (11)
N30.9965 (7)0.4116 (3)0.2930 (3)0.0880 (19)
N40.6135 (4)0.1283 (2)0.5873 (2)0.0496 (12)
N50.2724 (6)0.2669 (3)0.7507 (3)0.0798 (17)
C10.6920 (6)0.0215 (3)0.5425 (3)0.0539 (16)
C20.7129 (7)0.0532 (3)0.5342 (3)0.0656 (19)
H20.66920.08740.55770.079*
C30.7983 (7)0.0753 (3)0.4908 (4)0.072 (2)
H30.81550.12480.48620.086*
C40.8588 (6)0.0257 (3)0.4543 (3)0.0619 (18)
H40.91580.04120.42440.074*
C50.8345 (6)0.0480 (3)0.4623 (3)0.0491 (16)
C60.8885 (6)0.1082 (3)0.4274 (3)0.0524 (17)
C70.9619 (7)0.0900 (3)0.3701 (3)0.073 (2)
H7A0.97190.13320.34510.109*
H7B0.91400.05390.34470.109*
H7C1.04680.07100.38390.109*
C80.8943 (6)0.2359 (3)0.4087 (3)0.0492 (15)
C91.0234 (7)0.2519 (3)0.3998 (3)0.073 (2)
H91.08940.22290.41940.088*
C101.0571 (7)0.3100 (4)0.3623 (3)0.076 (2)
H101.14530.32000.35800.091*
C110.9622 (8)0.3540 (3)0.3308 (3)0.0652 (19)
C120.8331 (7)0.3382 (3)0.3414 (3)0.0671 (18)
H120.76680.36740.32240.081*
C130.7995 (7)0.2800 (3)0.3796 (3)0.0611 (17)
H130.71160.27080.38550.073*
C141.1272 (8)0.4188 (5)0.2723 (4)0.133 (4)
H14A1.13210.46180.24630.199*
H14B1.14800.37660.24780.199*
H14C1.18860.42290.30900.199*
C150.8968 (9)0.4574 (4)0.2619 (3)0.107 (3)
H15A0.93740.49440.23740.160*
H15B0.84700.48020.29360.160*
H15C0.83960.42830.23390.160*
C160.6090 (6)0.0563 (3)0.5867 (3)0.0557 (17)
C170.5257 (7)0.0107 (3)0.6272 (3)0.076 (2)
H17A0.45620.04010.64200.114*
H17B0.57860.00800.66330.114*
H17C0.48900.02930.60230.114*
C180.5273 (6)0.1646 (3)0.6293 (3)0.0474 (14)
C190.5626 (6)0.1733 (4)0.6930 (3)0.0626 (16)
H190.64350.15610.70980.075*
C200.4801 (7)0.2071 (3)0.7323 (3)0.0694 (19)
H200.50720.21270.77540.083*
C210.3576 (7)0.2332 (3)0.7106 (3)0.0601 (17)
C220.3221 (6)0.2239 (3)0.6453 (3)0.0646 (17)
H220.24080.24020.62830.077*
C230.4077 (6)0.1904 (3)0.6058 (3)0.0595 (16)
H230.38310.18530.56240.071*
C240.3250 (7)0.2966 (4)0.8102 (3)0.112 (3)
H24A0.25520.31710.83280.168*
H24B0.38750.33410.80220.168*
H24C0.36750.25860.83560.168*
C250.1526 (8)0.2972 (4)0.7230 (3)0.115 (3)
H25A0.10380.31790.75610.173*
H25B0.10160.25950.70130.173*
H25C0.17190.33470.69300.173*
C260.8792 (6)0.3534 (3)0.5522 (3)0.0521 (16)
C270.9964 (6)0.3186 (4)0.5411 (3)0.0652 (16)
H270.99650.26960.52960.078*
C281.1142 (7)0.3579 (5)0.5473 (3)0.087 (2)
H281.19240.33460.53940.105*
C291.1161 (9)0.4285 (5)0.5645 (4)0.098 (3)
H291.19530.45370.56940.118*
C301.0005 (9)0.4635 (4)0.5749 (4)0.092 (3)
H301.00170.51290.58520.111*
C310.8848 (7)0.4271 (3)0.5704 (3)0.077 (2)
H310.80820.45120.57950.092*
C320.6145 (6)0.3566 (3)0.4966 (3)0.0522 (16)
C330.6588 (7)0.4098 (3)0.4561 (3)0.0673 (19)
H330.74750.42170.45890.081*
C340.5746 (8)0.4461 (4)0.4114 (4)0.086 (2)
H340.60700.47920.38280.103*
C350.4423 (8)0.4317 (4)0.4106 (4)0.089 (2)
H350.38470.45670.38200.107*
C360.3946 (7)0.3824 (4)0.4503 (3)0.078 (2)
H360.30480.37400.44960.094*
C370.4801 (7)0.3438 (3)0.4924 (3)0.0669 (18)
H370.44640.30840.51850.080*
C380.6808 (6)0.3292 (3)0.6299 (3)0.0528 (14)
C390.5802 (7)0.3757 (3)0.6430 (3)0.072 (2)
H390.52130.39160.61000.087*
C400.5664 (8)0.3990 (4)0.7058 (4)0.089 (2)
H400.49850.43050.71440.106*
C410.6508 (9)0.3760 (4)0.7540 (4)0.085 (2)
H410.64070.39190.79550.103*
C420.7520 (7)0.3291 (4)0.7424 (3)0.0797 (19)
H420.80910.31300.77610.096*
C430.7679 (7)0.3064 (3)0.6812 (3)0.0704 (19)
H430.83720.27550.67330.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0439 (3)0.0359 (2)0.0478 (3)0.0009 (3)0.0091 (2)0.0019 (3)
Cl10.0578 (11)0.0528 (9)0.0620 (10)0.0092 (7)0.0010 (8)0.0030 (7)
Cl20.0545 (10)0.0577 (8)0.0640 (10)0.0063 (9)0.0011 (7)0.0018 (9)
P10.0503 (11)0.0424 (8)0.0515 (10)0.0022 (7)0.0066 (8)0.0005 (7)
N10.047 (3)0.050 (3)0.045 (3)0.000 (2)0.006 (2)0.002 (2)
N20.052 (3)0.048 (2)0.050 (3)0.005 (3)0.002 (2)0.004 (3)
N30.109 (6)0.069 (4)0.088 (5)0.006 (4)0.026 (4)0.023 (3)
N40.044 (3)0.043 (3)0.061 (3)0.002 (2)0.005 (2)0.001 (2)
N50.065 (4)0.116 (4)0.060 (4)0.017 (4)0.016 (3)0.020 (3)
C10.050 (4)0.038 (3)0.073 (5)0.003 (3)0.003 (3)0.000 (3)
C20.065 (5)0.040 (3)0.091 (6)0.004 (3)0.003 (4)0.003 (3)
C30.058 (5)0.043 (3)0.112 (6)0.011 (3)0.008 (4)0.016 (4)
C40.053 (5)0.043 (3)0.088 (5)0.011 (3)0.003 (4)0.015 (3)
C50.051 (4)0.040 (3)0.056 (4)0.002 (3)0.002 (3)0.013 (3)
C60.049 (4)0.055 (4)0.053 (4)0.007 (3)0.007 (3)0.009 (3)
C70.075 (5)0.093 (5)0.053 (4)0.015 (4)0.021 (4)0.015 (4)
C80.049 (4)0.051 (3)0.048 (4)0.003 (3)0.012 (3)0.008 (3)
C90.068 (5)0.087 (5)0.067 (5)0.001 (4)0.018 (4)0.013 (4)
C100.066 (5)0.089 (5)0.075 (5)0.002 (4)0.028 (4)0.014 (4)
C110.081 (6)0.063 (4)0.054 (4)0.010 (4)0.022 (4)0.002 (3)
C120.082 (5)0.060 (4)0.061 (4)0.001 (4)0.014 (4)0.012 (3)
C130.060 (5)0.064 (4)0.061 (4)0.004 (3)0.019 (4)0.003 (3)
C140.111 (8)0.146 (7)0.149 (8)0.024 (6)0.054 (6)0.060 (6)
C150.144 (9)0.079 (5)0.100 (6)0.015 (5)0.026 (6)0.027 (5)
C160.047 (4)0.056 (4)0.065 (4)0.007 (3)0.009 (3)0.001 (3)
C170.076 (5)0.057 (4)0.097 (5)0.009 (4)0.023 (4)0.013 (4)
C180.048 (4)0.047 (3)0.049 (4)0.001 (3)0.012 (3)0.003 (3)
C190.051 (4)0.079 (4)0.059 (4)0.011 (4)0.010 (3)0.006 (4)
C200.062 (5)0.092 (5)0.055 (4)0.003 (4)0.009 (4)0.008 (3)
C210.061 (5)0.074 (4)0.048 (4)0.002 (4)0.017 (4)0.004 (3)
C220.046 (4)0.087 (4)0.060 (5)0.005 (3)0.005 (3)0.000 (4)
C230.054 (4)0.075 (4)0.050 (4)0.001 (3)0.009 (3)0.004 (3)
C240.103 (6)0.165 (8)0.071 (5)0.017 (6)0.035 (5)0.046 (5)
C250.116 (7)0.153 (8)0.080 (6)0.066 (6)0.037 (5)0.006 (5)
C260.053 (4)0.054 (4)0.049 (4)0.010 (3)0.003 (3)0.001 (3)
C270.060 (5)0.074 (4)0.061 (4)0.003 (4)0.002 (3)0.007 (4)
C280.047 (5)0.119 (7)0.096 (6)0.019 (5)0.002 (4)0.027 (5)
C290.084 (7)0.102 (7)0.104 (7)0.052 (6)0.021 (5)0.027 (5)
C300.103 (7)0.066 (5)0.105 (7)0.031 (5)0.008 (6)0.002 (4)
C310.087 (6)0.060 (4)0.084 (5)0.023 (4)0.018 (4)0.009 (4)
C320.048 (4)0.043 (3)0.066 (4)0.000 (3)0.011 (3)0.006 (3)
C330.067 (5)0.057 (4)0.078 (5)0.009 (4)0.009 (4)0.012 (3)
C340.075 (6)0.078 (5)0.104 (6)0.009 (4)0.007 (5)0.041 (4)
C350.078 (7)0.095 (6)0.094 (6)0.014 (5)0.002 (5)0.029 (5)
C360.053 (5)0.093 (5)0.088 (6)0.011 (4)0.002 (4)0.006 (4)
C370.056 (5)0.067 (4)0.078 (5)0.005 (4)0.010 (4)0.006 (3)
C380.063 (4)0.045 (3)0.052 (4)0.007 (3)0.008 (3)0.001 (3)
C390.083 (6)0.068 (4)0.069 (5)0.015 (4)0.022 (4)0.002 (4)
C400.107 (7)0.097 (5)0.065 (5)0.026 (5)0.030 (5)0.007 (4)
C410.110 (7)0.095 (5)0.054 (5)0.004 (5)0.019 (5)0.011 (4)
C420.097 (6)0.086 (5)0.055 (5)0.006 (5)0.004 (4)0.008 (4)
C430.079 (5)0.072 (4)0.062 (5)0.006 (4)0.012 (4)0.000 (4)
Geometric parameters (Å, º) top
Ru1—N11.954 (4)C17—H17B0.9600
Ru1—N42.067 (4)C17—H17C0.9600
Ru1—N22.119 (4)C18—C191.366 (7)
Ru1—P12.3890 (14)C18—C231.369 (7)
Ru1—Cl22.4034 (17)C19—C201.368 (7)
Ru1—Cl12.4106 (17)C19—H190.9300
P1—C321.821 (6)C20—C211.386 (8)
P1—C261.843 (6)C20—H200.9300
P1—C381.847 (5)C21—C221.399 (8)
N1—C11.348 (6)C22—C231.389 (7)
N1—C51.355 (6)C22—H220.9300
N2—C61.310 (6)C23—H230.9300
N2—C81.443 (7)C24—H24A0.9600
N3—C111.379 (7)C24—H24B0.9600
N3—C141.439 (9)C24—H24C0.9600
N3—C151.439 (9)C25—H25A0.9600
N4—C161.320 (6)C25—H25B0.9600
N4—C181.448 (6)C25—H25C0.9600
N5—C211.396 (7)C26—C271.390 (8)
N5—C241.428 (7)C26—C311.402 (7)
N5—C251.430 (8)C27—C281.400 (8)
C1—C21.398 (7)C27—H270.9300
C1—C161.446 (7)C28—C291.343 (9)
C2—C31.365 (8)C28—H280.9300
C2—H20.9300C29—C301.375 (10)
C3—C41.363 (8)C29—H290.9300
C3—H30.9300C30—C311.355 (9)
C4—C51.384 (7)C30—H300.9300
C4—H40.9300C31—H310.9300
C5—C61.452 (7)C32—C371.390 (8)
C6—C71.498 (7)C32—C331.389 (7)
C7—H7A0.9600C33—C341.393 (8)
C7—H7B0.9600C33—H330.9300
C7—H7C0.9600C34—C351.376 (9)
C8—C131.370 (8)C34—H340.9300
C8—C91.377 (8)C35—C361.342 (8)
C9—C101.379 (8)C35—H350.9300
C9—H90.9300C36—C371.389 (8)
C10—C111.391 (8)C36—H360.9300
C10—H100.9300C37—H370.9300
C11—C121.384 (8)C38—C391.377 (7)
C12—C131.390 (7)C38—C431.408 (8)
C12—H120.9300C39—C401.401 (8)
C13—H130.9300C39—H390.9300
C14—H14A0.9600C40—C411.347 (9)
C14—H14B0.9600C40—H400.9300
C14—H14C0.9600C41—C421.378 (9)
C15—H15A0.9600C41—H410.9300
C15—H15B0.9600C42—C431.370 (7)
C15—H15C0.9600C42—H420.9300
C16—C171.498 (7)C43—H430.9300
C17—H17A0.9600
N1—Ru1—N477.64 (17)C1—C16—C17120.0 (5)
N1—Ru1—N277.60 (18)C16—C17—H17A109.5
N4—Ru1—N2154.96 (19)C16—C17—H17B109.5
N1—Ru1—P1175.78 (15)H17A—C17—H17B109.5
N4—Ru1—P1102.35 (12)C16—C17—H17C109.5
N2—Ru1—P1102.62 (14)H17A—C17—H17C109.5
N1—Ru1—Cl289.68 (14)H17B—C17—H17C109.5
N4—Ru1—Cl288.73 (13)C19—C18—C23118.5 (5)
N2—Ru1—Cl287.50 (12)C19—C18—N4121.1 (5)
P1—Ru1—Cl294.54 (6)C23—C18—N4120.4 (5)
N1—Ru1—Cl184.93 (14)C18—C19—C20120.7 (6)
N4—Ru1—Cl188.13 (13)C18—C19—H19119.7
N2—Ru1—Cl193.32 (12)C20—C19—H19119.7
P1—Ru1—Cl190.85 (5)C19—C20—C21122.6 (6)
Cl2—Ru1—Cl1174.23 (5)C19—C20—H20118.7
C32—P1—C26103.0 (2)C21—C20—H20118.7
C32—P1—C38102.9 (3)C20—C21—N5122.7 (6)
C26—P1—C3895.2 (3)C20—C21—C22116.4 (6)
C32—P1—Ru1115.64 (18)N5—C21—C22120.9 (6)
C26—P1—Ru1117.4 (2)C23—C22—C21120.4 (6)
C38—P1—Ru1119.52 (19)C23—C22—H22119.8
C1—N1—C5121.0 (5)C21—C22—H22119.8
C1—N1—Ru1119.5 (3)C18—C23—C22121.4 (6)
C5—N1—Ru1119.4 (4)C18—C23—H23119.3
C6—N2—C8118.9 (4)C22—C23—H23119.3
C6—N2—Ru1113.8 (4)N5—C24—H24A109.5
C8—N2—Ru1127.1 (3)N5—C24—H24B109.5
C11—N3—C14121.5 (7)H24A—C24—H24B109.5
C11—N3—C15120.3 (7)N5—C24—H24C109.5
C14—N3—C15116.9 (6)H24A—C24—H24C109.5
C16—N4—C18116.3 (5)H24B—C24—H24C109.5
C16—N4—Ru1115.2 (4)N5—C25—H25A109.5
C18—N4—Ru1128.4 (3)N5—C25—H25B109.5
C21—N5—C24118.8 (6)H25A—C25—H25B109.5
C21—N5—C25118.6 (6)N5—C25—H25C109.5
C24—N5—C25117.6 (6)H25A—C25—H25C109.5
N1—C1—C2119.8 (5)H25B—C25—H25C109.5
N1—C1—C16112.4 (5)C27—C26—C31117.8 (6)
C2—C1—C16127.8 (6)C27—C26—P1120.4 (5)
C3—C2—C1118.9 (6)C31—C26—P1121.6 (5)
C3—C2—H2120.5C26—C27—C28119.7 (7)
C1—C2—H2120.5C26—C27—H27120.2
C4—C3—C2120.9 (5)C28—C27—H27120.2
C4—C3—H3119.6C29—C28—C27121.0 (8)
C2—C3—H3119.6C29—C28—H28119.5
C3—C4—C5119.3 (6)C27—C28—H28119.5
C3—C4—H4120.3C28—C29—C30119.7 (8)
C5—C4—H4120.3C28—C29—H29120.2
N1—C5—C4120.0 (6)C30—C29—H29120.2
N1—C5—C6112.9 (5)C31—C30—C29121.1 (7)
C4—C5—C6127.1 (6)C31—C30—H30119.5
N2—C6—C5116.0 (5)C29—C30—H30119.5
N2—C6—C7126.0 (5)C30—C31—C26120.7 (7)
C5—C6—C7117.5 (5)C30—C31—H31119.6
C6—C7—H7A109.5C26—C31—H31119.6
C6—C7—H7B109.5C37—C32—C33116.2 (6)
H7A—C7—H7B109.5C37—C32—P1120.6 (5)
C6—C7—H7C109.5C33—C32—P1123.0 (5)
H7A—C7—H7C109.5C32—C33—C34122.2 (7)
H7B—C7—H7C109.5C32—C33—H33118.9
C13—C8—C9118.0 (6)C34—C33—H33118.9
C13—C8—N2119.2 (5)C35—C34—C33118.4 (7)
C9—C8—N2122.8 (6)C35—C34—H34120.8
C8—C9—C10121.4 (6)C33—C34—H34120.8
C8—C9—H9119.3C36—C35—C34121.4 (7)
C10—C9—H9119.3C36—C35—H35119.3
C9—C10—C11121.5 (6)C34—C35—H35119.3
C9—C10—H10119.2C35—C36—C37119.7 (7)
C11—C10—H10119.2C35—C36—H36120.2
N3—C11—C12122.5 (7)C37—C36—H36120.2
N3—C11—C10121.2 (7)C36—C37—C32122.0 (6)
C12—C11—C10116.3 (6)C36—C37—H37119.0
C11—C12—C13122.1 (6)C32—C37—H37119.0
C11—C12—H12119.0C39—C38—C43118.2 (6)
C13—C12—H12119.0C39—C38—P1125.7 (5)
C8—C13—C12120.7 (6)C43—C38—P1115.8 (4)
C8—C13—H13119.6C38—C39—C40120.1 (7)
C12—C13—H13119.6C38—C39—H39119.9
N3—C14—H14A109.5C40—C39—H39119.9
N3—C14—H14B109.5C41—C40—C39120.4 (7)
H14A—C14—H14B109.5C41—C40—H40119.8
N3—C14—H14C109.5C39—C40—H40119.8
H14A—C14—H14C109.5C40—C41—C42120.7 (7)
H14B—C14—H14C109.5C40—C41—H41119.6
N3—C15—H15A109.5C42—C41—H41119.6
N3—C15—H15B109.5C43—C42—C41119.6 (6)
H15A—C15—H15B109.5C43—C42—H42120.2
N3—C15—H15C109.5C41—C42—H42120.2
H15A—C15—H15C109.5C42—C43—C38120.9 (6)
H15B—C15—H15C109.5C42—C43—H43119.6
N4—C16—C1115.1 (5)C38—C43—H43119.6
N4—C16—C17124.9 (6)
N4—Ru1—P1—C32100.4 (3)C9—C10—C11—C122.8 (9)
N2—Ru1—P1—C3277.8 (3)N3—C11—C12—C13179.9 (6)
Cl2—Ru1—P1—C3210.7 (2)C10—C11—C12—C132.2 (9)
Cl1—Ru1—P1—C32171.4 (2)C9—C8—C13—C121.1 (9)
N4—Ru1—P1—C26137.7 (2)N2—C8—C13—C12176.9 (5)
N2—Ru1—P1—C2644.2 (2)C11—C12—C13—C80.4 (9)
Cl2—Ru1—P1—C26132.6 (2)C18—N4—C16—C1177.6 (5)
Cl1—Ru1—P1—C2649.4 (2)Ru1—N4—C16—C11.6 (7)
N4—Ru1—P1—C3823.4 (3)C18—N4—C16—C172.0 (9)
N2—Ru1—P1—C38158.4 (2)Ru1—N4—C16—C17177.9 (5)
Cl2—Ru1—P1—C38113.1 (2)N1—C1—C16—N44.3 (8)
Cl1—Ru1—P1—C3864.8 (2)C2—C1—C16—N4176.1 (6)
N4—Ru1—N1—C13.4 (4)N1—C1—C16—C17175.3 (6)
N2—Ru1—N1—C1179.7 (5)C2—C1—C16—C174.3 (10)
Cl2—Ru1—N1—C192.2 (4)C16—N4—C18—C1982.8 (7)
Cl1—Ru1—N1—C185.8 (4)Ru1—N4—C18—C19101.9 (6)
N4—Ru1—N1—C5178.3 (5)C16—N4—C18—C2396.5 (7)
N2—Ru1—N1—C55.4 (4)Ru1—N4—C18—C2378.8 (6)
Cl2—Ru1—N1—C592.9 (4)C23—C18—C19—C200.0 (9)
Cl1—Ru1—N1—C589.1 (4)N4—C18—C19—C20179.4 (5)
N1—Ru1—N2—C63.6 (4)C18—C19—C20—C210.8 (10)
N4—Ru1—N2—C612.2 (7)C19—C20—C21—N5179.2 (6)
P1—Ru1—N2—C6172.1 (4)C19—C20—C21—C220.6 (9)
Cl2—Ru1—N2—C693.8 (4)C24—N5—C21—C2020.4 (9)
Cl1—Ru1—N2—C680.5 (4)C25—N5—C21—C20175.1 (7)
N1—Ru1—N2—C8171.0 (5)C24—N5—C21—C22159.8 (6)
N4—Ru1—N2—C8162.4 (4)C25—N5—C21—C225.1 (9)
P1—Ru1—N2—C813.3 (5)C20—C21—C22—C230.3 (9)
Cl2—Ru1—N2—C880.8 (4)N5—C21—C22—C23179.9 (5)
Cl1—Ru1—N2—C8104.9 (4)C19—C18—C23—C220.8 (9)
N1—Ru1—N4—C160.8 (4)N4—C18—C23—C22178.5 (5)
N2—Ru1—N4—C169.4 (7)C21—C22—C23—C181.0 (9)
P1—Ru1—N4—C16174.9 (4)C32—P1—C26—C27129.9 (4)
Cl2—Ru1—N4—C1690.8 (4)C38—P1—C26—C27125.5 (5)
Cl1—Ru1—N4—C1684.4 (4)Ru1—P1—C26—C271.7 (5)
N1—Ru1—N4—C18174.5 (5)C32—P1—C26—C3155.2 (6)
N2—Ru1—N4—C18165.9 (4)C38—P1—C26—C3149.4 (5)
P1—Ru1—N4—C189.8 (5)Ru1—P1—C26—C31176.5 (4)
Cl2—Ru1—N4—C1884.6 (5)C31—C26—C27—C281.0 (9)
Cl1—Ru1—N4—C18100.3 (5)P1—C26—C27—C28176.1 (5)
C5—N1—C1—C20.4 (9)C26—C27—C28—C290.7 (10)
Ru1—N1—C1—C2175.2 (5)C27—C28—C29—C301.4 (12)
C5—N1—C1—C16180.0 (6)C28—C29—C30—C312.5 (13)
Ru1—N1—C1—C165.2 (7)C29—C30—C31—C262.9 (12)
N1—C1—C2—C32.2 (10)C27—C26—C31—C302.1 (10)
C16—C1—C2—C3178.2 (6)P1—C26—C31—C30177.1 (5)
C1—C2—C3—C42.5 (10)C26—P1—C32—C37166.8 (5)
C2—C3—C4—C51.1 (10)C38—P1—C32—C3768.3 (5)
C1—N1—C5—C41.1 (9)Ru1—P1—C32—C3763.8 (5)
Ru1—N1—C5—C4173.6 (4)C26—P1—C32—C3317.1 (6)
C1—N1—C5—C6178.9 (5)C38—P1—C32—C33115.6 (5)
Ru1—N1—C5—C66.3 (7)Ru1—P1—C32—C33112.2 (5)
C3—C4—C5—N10.8 (9)C37—C32—C33—C343.1 (9)
C3—C4—C5—C6179.3 (6)P1—C32—C33—C34173.2 (5)
C8—N2—C6—C5173.7 (6)C32—C33—C34—C354.4 (11)
Ru1—N2—C6—C51.4 (7)C33—C34—C35—C362.1 (12)
C8—N2—C6—C71.6 (9)C34—C35—C36—C371.1 (12)
Ru1—N2—C6—C7173.5 (5)C35—C36—C37—C322.4 (10)
N1—C5—C6—N22.9 (8)C33—C32—C37—C360.3 (9)
C4—C5—C6—N2177.0 (6)P1—C32—C37—C36176.6 (5)
N1—C5—C6—C7169.9 (5)C32—P1—C38—C395.1 (6)
C4—C5—C6—C710.1 (10)C26—P1—C38—C39109.8 (6)
C6—N2—C8—C13118.5 (6)Ru1—P1—C38—C39124.6 (5)
Ru1—N2—C8—C1355.9 (7)C32—P1—C38—C43167.7 (5)
C6—N2—C8—C959.4 (7)C26—P1—C38—C4363.1 (5)
Ru1—N2—C8—C9126.3 (5)Ru1—P1—C38—C4362.5 (5)
C13—C8—C9—C100.5 (9)C43—C38—C39—C400.1 (9)
N2—C8—C9—C10177.3 (5)P1—C38—C39—C40172.7 (5)
C8—C9—C10—C111.4 (10)C38—C39—C40—C410.3 (11)
C14—N3—C11—C12167.6 (7)C39—C40—C41—C420.1 (12)
C15—N3—C11—C121.1 (10)C40—C41—C42—C430.9 (11)
C14—N3—C11—C1014.8 (10)C41—C42—C43—C381.2 (10)
C15—N3—C11—C10178.7 (6)C39—C38—C43—C420.8 (9)
C9—C10—C11—N3179.5 (6)P1—C38—C43—C42174.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C43—H43···Cl10.932.783.587 (6)145
C13—H13···Cl20.932.733.518 (6)143
C27—H27···Cl10.932.723.343 (7)126
C2—H2···Cl2i0.932.793.580 (6)144
C4—H4···Cl1ii0.932.813.588 (6)142
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[RuCl2(C25H29N5)(C18H15P)]
Mr833.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2192 (5), 18.3059 (13), 20.9425 (12)
β (°) 94.089 (4)
V3)3907.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.72 × 0.28 × 0.04
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.893, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
24010, 6869, 3478
Rint0.121
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.075, 0.91
No. of reflections6869
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.44

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ru1—N42.067 (4)Ru1—Cl22.4034 (17)
Ru1—N22.119 (4)Ru1—Cl12.4106 (17)
N1—Ru1—N477.64 (17)N2—Ru1—Cl287.50 (12)
N1—Ru1—N277.60 (18)P1—Ru1—Cl294.54 (6)
N4—Ru1—N2154.96 (19)N1—Ru1—Cl184.93 (14)
N1—Ru1—P1175.78 (15)N4—Ru1—Cl188.13 (13)
N4—Ru1—P1102.35 (12)N2—Ru1—Cl193.32 (12)
N2—Ru1—P1102.62 (14)P1—Ru1—Cl190.85 (5)
N1—Ru1—Cl289.68 (14)Cl2—Ru1—Cl1174.23 (5)
N4—Ru1—Cl288.73 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C43—H43···Cl10.932.783.587 (6)145.1
C13—H13···Cl20.932.733.518 (6)142.8
C27—H27···Cl10.932.723.343 (7)125.6
C2—H2···Cl2i0.932.793.580 (6)143.6
C4—H4···Cl1ii0.932.813.588 (6)141.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds