Download citation
Download citation
link to html
In the title compound, {[Co(SO4)(C10H8N2)(H2O)3]·C2H6O2}n, each CoII center is octa­hedrally coordinated by two N atoms from two bridging 4,4′-bipyridine (bipy) ligands and four O atoms, one from a monodentate sulfate ligand and three from aqua ligands. The bipy ligands occupy special positions of site symmetry \overline{1} and bridge adjacent cobalt(II) centers to form one-dimensional linear coordination chains. Adjacent chains are arranged in a cross-like fashion around the mid-point of the bipy ligands, resulting in a three-dimensional supra­molecular array.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106031520/hj3018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106031520/hj3018Isup2.hkl
Contains datablock I

CCDC reference: 621272

Comment top

Supramolecular assembly and crystal engineering of metal-organic coordination frames have recently attracted great interest, owing to their interesting structural topologies and potential application as functional materials (Batten & Robson, 1998; Eddaoudi et al., 2001). It is well established that two main weak interactions, viz. hydrogen bonds (Aakeröy & Beatty, 1998) and ππ interactions (Ning et al., 1999), play vital roles in molecular recognition and supramolecular chemistry. Some interesting coordination polymers assembled with bipy have been reported, showing various structural motifs, including two-dimensional layers (Carlucci or Calucci et al., 1997; Tong et al., 1998) and three-dimensional nets (Lu et al., 1998; Hagrman, et al., 1998; Kondo, et al., 1999; Greve et al. 2003; Zhang et al., 1999). We have synthesized the title compound with CoSO4 and bipy via solvothermal reactions in the hope of obtaining complexes retaining some of the solvent molecules, capable of hydrogen bonding. We report here the crystal structure of the title new polymeric compound containing 1,2-ethanediol solvent molecules, {[Co(C10H8N2)(H2O)3(SO)4]·C2H6O2}n, (I).

Part of the structure of (I) is shown in Fig. 1. Each CoII center is situated on an inversion center with an octahedral geometry (Table 1). The bipy ligand functions as bridging ligands to adjacent CoII centers, leading to the formation of linear –Co–bipy–Co– chains in which the separations of neighboring CoII centers connected by one bipy ligand within each chain are 11.405 (s.u.?) Å, and the nearest Co···Co(x - 1, y, z) inter-chain separation is 7.523 (s.u.?) Å. The geometry of the bipy, water and sulfate ligands is in very good agreement with those observed in other cobalt complexes, e.g. [Co(bipy)(H2O)3(SO4)]·2H2O (Lu et al., 1998).

Adjacent chains are each arranged in a cross-like fashion, intersecting at the centers of the bipy ligands, resulting in a three-dimensional supramolecular array. The rhombic channels (12.016 × 10.777 Å) running along the a axis (Fig. 2) are filled with the sulfate anions and 1,2-ethanediol molecules. The structure of the resulting array is predominantly directed by ππ stacking interactions between the bipy bridges and numerous classical hydrogen-bonding interactions, such as O—H···O involving the water, sulfate ligands and 1,2-ethanediol solvent molecules (Fig. 3 and Table 2). The two pyridyl rings of each bipy ligand are coplanar with each other. The close inter-chain bipy rings (N1BC/C1BC–C5BC and N2A/C6A–C10 A) have a face-to-face distance of 4.042 Å, showing significant ππ stacking interaction (Fig. 3). It is noteworthy that such an arrangement of the title compound is different from those of three recently documented one-dimensional coordination polymers with analogous coordination chain skeletons, in which the chains in adjacent layers are rotated by 60° to provide helical staircase networks (Hagrman et al., 1998; Lu et al., 1998; Kondo et al., 1999). It is also different from another arrangement of one-dimensional coordination chains with a similar chain skeleton, e.g. in [Co(bipy)(O2CCH3)2(H2O)2] (Zhang et al., 1999) and [Co(bipy)(H2O)4][NO3]2.bipy (Carlucci or Calucci et al., 1997), in which the adjacent chains are only interconnected by hydrogen bonds, resulting in three-dimensional networks.

Experimental top

A mixture of 4,4'-bipyridine (0.1 mmol), trimethylammonioacetate (0.1 mmol), Co(SO4)2·7H2O (0.1 mmol), 1,2-ethanediol (2.0 ml) and water (1.0 ml) were placed in a thick Pyrex tube. The tube was sealed and heated at 353 K for 3 d to give red block-like crystals of the title compound. Analysis found: C 33.76, H 4.80, N 7.96%; calculated for C12H20CoN2O9S: C 33.73, H 4.72, N 6.56%. FT–IR data (KBr, cm-1): 3400 (m, b), 3070 (w), 1604 (m), 1531 (w), 1488 (w), 1411 (m), 1430 (w), 1218 (m), 1120 (s), 806 (m).

Refinement top

The H atoms of CH and CH2 groups were positioned geometrically and allowed to ride on their parent atoms [C—H = 0.93 and 0.97 Å, respectively, with Uiso(H) = 1.2Ueq(C)]. The H atoms of OH groups and water molecules were located in a difference Fourier map and refined with restraints on the O—H bond lengths.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Part of the chain structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The dashed lines represents an O—H···O interaction. H atoms not involved in hydrogen bonds have been omitted for clarity. Unlabelled atoms are related to labelled atoms by (-x + 1, -y + 1, -z + 1) and (-x + 1, -y + 2, -z + 2).
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis. Sulfate anions, 1,2-ethanediol solvent molecules and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Hydrogen-bonding interactions (dashed lines) and ππ stacking interactions between adjacent chains. H atoms have been omitted for clarity.
catena-Poly[[[triaquasulfatocobalt(II)]-µ-4,4'-bipyridine] 1,2-ethanediol solvate] top
Crystal data top
[Co(SO4)(C10H8N2)(H2O)3]·C2H6O2F(000) = 884
Mr = 427.29Dx = 1.668 Mg m3
MonoclinicP21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5232 (12) ÅCell parameters from 4215 reflections
b = 11.7458 (18) Åθ = 2.7–27.8°
c = 19.475 (3) ŵ = 1.18 mm1
β = 98.671 (3)°T = 293 K
V = 1701.2 (5) Å3Block, red
Z = 40.40 × 0.35 × 0.23 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
2989 independent reflections
Radiation source: fine-focus sealed tube2535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.649, Tmax = 0.773k = 1213
9065 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.9234P]
where P = (Fo2 + 2Fc2)/3
2989 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.71 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Co(SO4)(C10H8N2)(H2O)3]·C2H6O2V = 1701.2 (5) Å3
Mr = 427.29Z = 4
MonoclinicP21/nMo Kα radiation
a = 7.5232 (12) ŵ = 1.18 mm1
b = 11.7458 (18) ÅT = 293 K
c = 19.475 (3) Å0.40 × 0.35 × 0.23 mm
β = 98.671 (3)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
2989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2535 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.773Rint = 0.029
9065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03212 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.71 e Å3
2989 reflectionsΔρmin = 0.26 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.45447 (5)0.72407 (3)0.756520 (18)0.02083 (12)
O10.6834 (2)0.63373 (16)0.80090 (10)0.0294 (4)
O20.9232 (3)0.76605 (16)0.78895 (11)0.0340 (5)
O30.9833 (3)0.56667 (17)0.80858 (14)0.0434 (6)
O40.8985 (4)0.6826 (2)0.89968 (11)0.0485 (6)
S10.87281 (9)0.66301 (5)0.82520 (4)0.02356 (17)
O1W0.2015 (3)0.7910 (2)0.71627 (13)0.0436 (6)
O2W0.3258 (3)0.58930 (19)0.79902 (12)0.0336 (5)
O3W0.6112 (3)0.84893 (17)0.71758 (11)0.0314 (5)
N10.4668 (3)0.63834 (19)0.66007 (12)0.0263 (5)
C10.5033 (5)0.5266 (2)0.65705 (15)0.0341 (7)
H1A0.52000.48520.69820.041*
C20.5173 (5)0.4707 (2)0.59618 (15)0.0365 (8)
H2A0.54260.39320.59700.044*
C30.4938 (4)0.5289 (2)0.53354 (14)0.0260 (6)
C40.4573 (4)0.6448 (2)0.53673 (14)0.0311 (7)
H4A0.44150.68830.49640.037*
C50.4447 (4)0.6947 (2)0.59957 (15)0.0318 (7)
H5A0.41930.77210.60020.038*
N20.4528 (3)0.8278 (2)0.84809 (12)0.0282 (5)
C60.4769 (5)0.7831 (3)0.91141 (17)0.0455 (9)
H6A0.48260.70430.91550.055*
C70.4939 (5)0.8467 (3)0.97109 (16)0.0460 (9)
H7A0.50920.81031.01400.055*
C80.4887 (4)0.9640 (2)0.96815 (14)0.0282 (6)
C90.4654 (5)1.0100 (3)0.90256 (16)0.0455 (9)
H9A0.46301.08870.89700.055*
C100.4456 (5)0.9406 (3)0.84492 (16)0.0463 (9)
H10A0.42610.97470.80130.056*
O50.4548 (4)0.4084 (3)0.90214 (14)0.0637 (8)
O60.7105 (4)0.5602 (2)0.98525 (15)0.0587 (7)
C110.6449 (5)0.3952 (3)0.9108 (2)0.0518 (9)
H11A0.68910.43110.87180.062*
H11B0.67220.31460.90930.062*
C120.7446 (5)0.4434 (3)0.9762 (2)0.0564 (10)
H12A0.71180.40151.01530.068*
H12B0.87250.43290.97620.068*
H3WA0.593 (4)0.920 (2)0.7093 (17)0.039 (9)*
H2WA0.220 (3)0.585 (3)0.8033 (19)0.048 (11)*
H1WA0.175 (5)0.825 (3)0.6822 (15)0.047 (12)*
H1WB0.131 (5)0.782 (4)0.741 (2)0.071 (15)*
H2WB0.374 (5)0.541 (3)0.8253 (18)0.059 (13)*
H3WB0.720 (4)0.834 (3)0.7359 (18)0.050 (11)*
H50.409 (7)0.409 (4)0.943 (2)0.093 (17)*
H60.759 (9)0.593 (6)0.950 (3)0.18 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0225 (2)0.0214 (2)0.0193 (2)0.00062 (14)0.00557 (14)0.00300 (14)
O10.0200 (10)0.0282 (10)0.0398 (12)0.0013 (8)0.0036 (8)0.0051 (9)
O20.0305 (11)0.0267 (10)0.0470 (13)0.0036 (9)0.0131 (10)0.0022 (9)
O30.0254 (11)0.0247 (11)0.0825 (18)0.0006 (9)0.0161 (11)0.0103 (11)
O40.0684 (17)0.0457 (13)0.0290 (12)0.0168 (12)0.0010 (11)0.0038 (10)
S10.0214 (4)0.0204 (3)0.0291 (4)0.0009 (3)0.0045 (3)0.0033 (3)
O1W0.0320 (13)0.0647 (17)0.0358 (14)0.0130 (12)0.0110 (11)0.0151 (13)
O2W0.0233 (12)0.0342 (12)0.0443 (13)0.0012 (10)0.0082 (10)0.0084 (10)
O3W0.0331 (13)0.0223 (11)0.0396 (13)0.0005 (9)0.0082 (10)0.0044 (9)
N10.0341 (14)0.0232 (12)0.0220 (12)0.0026 (10)0.0050 (10)0.0030 (9)
C10.058 (2)0.0246 (15)0.0205 (15)0.0062 (14)0.0075 (14)0.0027 (12)
C20.064 (2)0.0211 (15)0.0245 (15)0.0107 (14)0.0070 (14)0.0000 (12)
C30.0294 (16)0.0251 (14)0.0231 (14)0.0008 (11)0.0033 (11)0.0024 (11)
C40.0495 (19)0.0241 (14)0.0204 (14)0.0042 (13)0.0070 (13)0.0028 (11)
C50.0477 (19)0.0225 (14)0.0251 (15)0.0074 (13)0.0054 (13)0.0025 (12)
N20.0334 (14)0.0282 (13)0.0232 (12)0.0044 (10)0.0056 (10)0.0032 (10)
C60.079 (3)0.0275 (17)0.0313 (18)0.0077 (17)0.0138 (17)0.0020 (14)
C70.084 (3)0.0326 (17)0.0227 (16)0.0040 (17)0.0113 (17)0.0015 (13)
C80.0307 (16)0.0322 (15)0.0223 (15)0.0044 (12)0.0060 (12)0.0040 (12)
C90.082 (3)0.0262 (16)0.0293 (17)0.0124 (17)0.0111 (17)0.0026 (13)
C100.082 (3)0.0346 (18)0.0220 (16)0.0152 (17)0.0073 (16)0.0002 (13)
O50.0419 (15)0.108 (2)0.0425 (16)0.0074 (15)0.0104 (12)0.0203 (15)
O60.0689 (19)0.0548 (16)0.0576 (18)0.0039 (14)0.0264 (15)0.0016 (13)
C110.047 (2)0.054 (2)0.058 (2)0.0002 (18)0.0192 (18)0.0047 (18)
C120.042 (2)0.050 (2)0.074 (3)0.0006 (18)0.0013 (19)0.005 (2)
Geometric parameters (Å, º) top
Co1—O2W2.090 (2)C4—C51.373 (4)
Co1—O3W2.094 (2)C4—H4A0.9300
Co1—O12.0954 (19)C5—H5A0.9300
Co1—O1W2.099 (2)N2—C61.327 (4)
Co1—N12.145 (2)N2—C101.328 (4)
Co1—N22.161 (2)C6—C71.371 (4)
O1—S11.473 (2)C6—H6A0.9300
O2—S11.479 (2)C7—C81.379 (4)
O3—S11.469 (2)C7—H7A0.9300
O4—S11.453 (2)C8—C91.374 (4)
O1W—H1WA0.77 (3)C8—C8ii1.490 (5)
O1W—H1WB0.77 (3)C9—C101.377 (4)
O2W—H2WA0.81 (2)C9—H9A0.9300
O2W—H2WB0.81 (2)C10—H10A0.9300
O3W—H3WA0.86 (2)O5—C111.423 (4)
O3W—H3WB0.86 (2)O5—H50.91 (4)
N1—C51.340 (4)O6—C121.411 (5)
N1—C11.344 (4)O6—H60.91 (4)
C1—C21.373 (4)C11—C121.489 (5)
C1—H1A0.9300C11—H11A0.9700
C2—C31.386 (4)C11—H11B0.9700
C2—H2A0.9300C12—H12A0.9700
C3—C41.392 (4)C12—H12B0.9700
C3—C3i1.488 (5)
O2W—Co1—O3W173.38 (9)C2—C3—C3i122.1 (3)
O2W—Co1—O181.62 (8)C4—C3—C3i121.7 (3)
O3W—Co1—O191.79 (8)C5—C4—C3119.9 (3)
O2W—Co1—O1W89.05 (10)C5—C4—H4A120.1
O3W—Co1—O1W97.52 (9)C3—C4—H4A120.1
O1—Co1—O1W170.56 (9)N1—C5—C4123.8 (3)
O2W—Co1—N194.30 (9)N1—C5—H5A118.1
O3W—Co1—N184.88 (9)C4—C5—H5A118.1
O1—Co1—N188.98 (9)C6—N2—C10115.9 (3)
O1W—Co1—N190.29 (10)C6—N2—Co1121.8 (2)
O2W—Co1—N292.26 (9)C10—N2—Co1122.0 (2)
O3W—Co1—N288.71 (9)N2—C6—C7123.7 (3)
O1—Co1—N292.98 (9)N2—C6—H6A118.2
O1W—Co1—N288.81 (10)C7—C6—H6A118.2
N1—Co1—N2173.36 (9)C6—C7—C8120.7 (3)
S1—O1—Co1135.20 (12)C6—C7—H7A119.7
O4—S1—O3110.34 (15)C8—C7—H7A119.7
O4—S1—O1109.55 (14)C9—C8—C7115.5 (3)
O3—S1—O1107.54 (12)C9—C8—C8ii122.2 (3)
O4—S1—O2110.00 (13)C7—C8—C8ii122.3 (3)
O3—S1—O2109.35 (13)C8—C9—C10120.5 (3)
O1—S1—O2110.04 (12)C8—C9—H9A119.7
Co1—O1W—H1WA128 (3)C10—C9—H9A119.7
Co1—O1W—H1WB113 (4)N2—C10—C9123.7 (3)
H1WA—O1W—H1WB119 (4)N2—C10—H10A118.2
Co1—O2W—H2WA127 (3)C9—C10—H10A118.2
Co1—O2W—H2WB126 (3)C11—O5—H5114 (3)
H2WA—O2W—H2WB104 (4)C12—O6—H6103 (5)
Co1—O3W—H3WA132 (2)O5—C11—C12115.3 (3)
Co1—O3W—H3WB105 (2)O5—C11—H11A108.4
H3WA—O3W—H3WB113 (3)C12—C11—H11A108.4
C5—N1—C1116.3 (2)O5—C11—H11B108.4
C5—N1—Co1121.47 (18)C12—C11—H11B108.4
C1—N1—Co1122.19 (19)H11A—C11—H11B107.5
N1—C1—C2123.2 (3)O6—C12—C11113.5 (3)
N1—C1—H1A118.4O6—C12—H12A108.9
C2—C1—H1A118.4C11—C12—H12A108.9
C1—C2—C3120.5 (3)O6—C12—H12B108.9
C1—C2—H2A119.7C11—C12—H12B108.9
C3—C2—H2A119.7H12A—C12—H12B107.7
C2—C3—C4116.3 (2)
O2W—Co1—O1—S1155.91 (19)C1—N1—C5—C40.0 (5)
O3W—Co1—O1—S124.75 (18)Co1—N1—C5—C4177.7 (2)
O1W—Co1—O1—S1164.8 (5)C3—C4—C5—N10.5 (5)
N1—Co1—O1—S1109.60 (18)O2W—Co1—N2—C636.6 (3)
N2—Co1—O1—S164.05 (18)O3W—Co1—N2—C6136.8 (3)
Co1—O1—S1—O496.19 (19)O1—Co1—N2—C645.1 (3)
Co1—O1—S1—O3143.88 (17)O1W—Co1—N2—C6125.6 (3)
Co1—O1—S1—O224.9 (2)N1—Co1—N2—C6152.1 (7)
O2W—Co1—N1—C5143.1 (2)O2W—Co1—N2—C10150.2 (3)
O3W—Co1—N1—C543.5 (2)O3W—Co1—N2—C1036.4 (3)
O1—Co1—N1—C5135.4 (2)O1—Co1—N2—C10128.1 (3)
O1W—Co1—N1—C554.0 (2)O1W—Co1—N2—C1061.2 (3)
N2—Co1—N1—C528.2 (9)N1—Co1—N2—C1021.1 (9)
O2W—Co1—N1—C139.4 (2)C10—N2—C6—C70.0 (5)
O3W—Co1—N1—C1134.0 (2)Co1—N2—C6—C7173.5 (3)
O1—Co1—N1—C142.1 (2)N2—C6—C7—C80.8 (6)
O1W—Co1—N1—C1128.5 (2)C6—C7—C8—C90.1 (5)
N2—Co1—N1—C1149.3 (7)C6—C7—C8—C8ii178.4 (4)
C5—N1—C1—C20.3 (5)C7—C8—C9—C101.2 (5)
Co1—N1—C1—C2178.0 (3)C8ii—C8—C9—C10179.7 (4)
N1—C1—C2—C30.1 (5)C6—N2—C10—C91.4 (5)
C1—C2—C3—C40.4 (5)Co1—N2—C10—C9172.1 (3)
C1—C2—C3—C3i179.4 (3)C8—C9—C10—N22.1 (6)
C2—C3—C4—C50.6 (5)O5—C11—C12—O656.3 (5)
C3i—C3—C4—C5179.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3iii0.86 (2)1.83 (2)2.683 (3)171 (3)
O3W—H3WB···O20.86 (2)1.89 (2)2.721 (3)163 (4)
O2W—H2WA···O3iv0.81 (2)1.81 (3)2.625 (3)176 (4)
O2W—H2WB···O50.81 (2)2.18 (3)2.983 (4)169 (4)
O1W—H1WA···O5v0.77 (3)2.03 (3)2.790 (4)166 (4)
O1W—H1WB···O2iv0.77 (3)1.95 (3)2.714 (3)170 (5)
O6—H6···O40.91 (4)1.87 (5)2.749 (4)164 (7)
Symmetry codes: (iii) x+3/2, y+1/2, z+3/2; (iv) x1, y, z; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(SO4)(C10H8N2)(H2O)3]·C2H6O2
Mr427.29
Crystal system, space groupMonoclinicP21/n
Temperature (K)293
a, b, c (Å)7.5232 (12), 11.7458 (18), 19.475 (3)
β (°) 98.671 (3)
V3)1701.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.40 × 0.35 × 0.23
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.649, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
9065, 2989, 2535
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.08
No. of reflections2989
No. of parameters258
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O2W2.090 (2)O2—S11.479 (2)
Co1—O3W2.094 (2)O3—S11.469 (2)
Co1—O12.0954 (19)O4—S11.453 (2)
Co1—O1W2.099 (2)O5—C111.423 (4)
Co1—N12.145 (2)O6—C121.411 (5)
Co1—N22.161 (2)C11—C121.489 (5)
O1—S11.473 (2)
O2W—Co1—O3W173.38 (9)O1—Co1—O1W170.56 (9)
O2W—Co1—O181.62 (8)N1—Co1—N2173.36 (9)
O3W—Co1—O191.79 (8)O5—C11—C12115.3 (3)
O2W—Co1—O1W89.05 (10)O6—C12—C11113.5 (3)
O3W—Co1—O1W97.52 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3i0.86 (2)1.83 (2)2.683 (3)171 (3)
O3W—H3WB···O20.86 (2)1.89 (2)2.721 (3)163 (4)
O2W—H2WA···O3ii0.81 (2)1.81 (3)2.625 (3)176 (4)
O2W—H2WB···O50.81 (2)2.18 (3)2.983 (4)169 (4)
O1W—H1WA···O5iii0.77 (3)2.03 (3)2.790 (4)166 (4)
O1W—H1WB···O2ii0.77 (3)1.95 (3)2.714 (3)170 (5)
O6—H6···O40.91 (4)1.87 (5)2.749 (4)164 (7)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds