Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, propynylferrocene, [Fe(C5H5)(C8H7)], (I), and (phenyl­ethyn­yl)ferrocene, [Fe(C5H5)(C13H9)], (II), are stabilized by weak C—H...π inter­actions. The C[triple bond]C bond distances in these mol­ecules are in the range 1.182 (3)–1.192 (3) Å. In (II), the ferrocenyl and phenyl groups are perpendicular, making an angle of 89.06 (13)°, which is a rare occurrence.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106022438/hj3011sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106022438/hj3011Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106022438/hj3011IIsup3.hkl
Contains datablock II

CCDC references: 618597; 618598

Comment top

Recently, alkyne chemistry has experienced a major renaissance by the involvement of molecules with CC bonds in the frontiers of modern organic chemistry, namely biochemistry, materials science and organometallic chemistry (Stang & Diederich, 1995; Diederich et al., 2005). In this regard, ferrocenylalkynes occupy an important position since they can be converted to a structurally diverse set of ferrocenyl (Fc) compounds that are attractive synthetic targets owing to their physical, chemical and biological properties (Togni & Hayashi, 1995). The Fc group is often incorporated into a bioactive compound to obtain enhanced biological activities (Zora et al., 2002, 2003; Jaouen et al., 2004). In addition, the Fc group is ideal for use in drug design owing to its low toxicity, stability and lipophilicity (Biot et al., 2000).

There is considerable interest in the synthesis of new materials with large second-order optical nonlinearities because of their potential use in device applications related to telecommunications, optical computing, optical storage, and optical information processing (Williams, 1984; Chemla & Zyss, 1987). In this regard, ferrocene-based donor–acceptor chromophores are widely investigated for their linear and nonlinear optical properties (Barlow & Marder, 2000; Stankovic et al., 2001). In particular, ethynylferrocene (Wurst et al., 1995; Polin & Schottenberger, 1995 or??? 1996) and its derivatives (Nock & Schottenberger, 1993; Ingham et al., 1994) have attracted substantial interest due to the potential for electronic communication through the unsaturated alkyne linkage to the Fe center. There are also examples of ethynylferrocene linked through the alkyne spacer group to other metal centers (Berry et al., 2004; Laus et al., 2005). In this respect, crystal structures of ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996) and its derivatives (Ingham et al., 1994; Dufkova et al., 2003; Hocek et al., 2004) have gained importance. We report here the crystal structures of propynylferrocene, (I), and (phenylethynyl)ferrocene, (II).

The molecular structure of (I) is shown in Fig. 1. Selected bond distances and angles are given in Table 1. There are two molecules present in the asymmetric unit of (I). The CC bond distances in these molecules are 1.182 (3) and 1.184 (3) Å, which are in accord with those in similar complexes such as 1,1,3-triferrocenylprop-2-yn-1-ol [1.180 (13) Å; Lucasser et al., 1995)]and 1-trimethylsilylethynylferrocene [1.188 (7) Å; Schottenberger et al., 1999]. The Fe—Cgs and Fe—Cgas distances are in the range 1.6388 (11)–1.6467 (11) Å, and the Cgs—Fe—Cgas angles are 178.64 (8) and 178.77 (5)°, where Cgs and Cgas are the substituted and unsubstituted Cp ring centroids. The Cp rings in each molecule are almost parallel since the angles between the Cp ring planes are 1.43 (10) and 1.71 (19)°. The Cp rings of Fc groups deviate slightly from the eclipsed conformation as evidenced by the average C—CgsCgas—C torsion angles of 7.41 (3) and -4.71 (3)°. The C—C bond distances in Cp rings range from 1.342 (5) to 1.427 (3)°, while the Fe—C bond lengths range between 2.006 (3) and 2.0510 (17)°, all of which are as expected.

As in ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996), there are no direction-specific aromatic ππ interactions between adjacent rings in (I), but there are two C—H···π interactions (Cg1 and Cg2 are the centroids of the C1–C5 and C21–C25 rings, resepctively; Table 2 and Fig. 2).

The molecular structure of (II) is shown in Fig. 3. Selected bond distances and angles are given in Table 3. Compound (II) comprises Fc and Ph rings linked by an acetylene residue. The unusual feature of (II) is that substituted Cp ring and Ph ring are almost perpendicular, with an angle of 89.06 (13)°, which is a rare occurrence. This is clearly an indication of the interrupted conjugation between the Fc and Ph groups. However, in 1,1'-bis(phenylethynyl)ferrocene (Ingham et al., 1994), a closely related compound, there is not a large tilting of the phenyl groups from the planes of the cyclopentadienyl rings since the angles between phenyl rings and the cyclopentadienyl rings are 11.2 (2) and 26.6 (2)°. Moreover, a literature search for crystal structures incorporating the diphenylacetylene group has revealed some derivatives including tolane (Mavridis & Moustakali-Mavridis, 1977), perfluorodiphenylacetylene (Goodhand & Hamor, 1979), octafluoronaphthalene–diphenylacetylene (1/1) (Collings et al., 2001) and N-[4-(phenylethynyl)phenyl]benzamide (Yin et al., 2005). In all, ethynyl-bridged Ph rings are found to be almost coplanar, which is in contrast to the situation in (II).

The CC bond length in (II) is 1.192 (3) Å, which is in agreement with those in 1,1'-bis(phenylethynyl)ferrocene (Ingham et al., 1994) and (Z)-1,4-diferrocenylbut-1-en-3-yne [1.199 (4) Å; Wurst et al., 1995]. The Fc group is almost in the eclipsed conformation since the average C11—CgsCgas—C6 pseudo-torsion angle is 0.60 (4)°. The centroids of the Cp rings are almost equidistant from Fe atoms as indicated by the Fe—Cgs and Fe—Cgas distances of 1.641 (12) and 1.642 (12) Å, respectively. The Cgs—Fe—Cgas angle is 179.16 (6)°. The Cp rings are almost parallel since the angle between the Cp ring planes is 1.62 (16)°. The C—C bond distances in the Cp rings range from 1.390 (4) to 1.428?(3) Å. The Fe—C bond lengths are in the range 2.021 (3)–2.039 (2) Å.

As in compound (I) and ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996), compound (II) is also stabilized by four C—H···π interactions, two of them, C14—H14···π and C15—H15···π, being in chelate ring form (Table 4 and Fig. 4) (Cg1, Cg2 and Cg3 are the centroids of the C1–C5, C6–C10 and C13–C18 rings).

Experimental top

Compound (I) was prepared from ethynylferrocene by Vilsmeier–Haack formylation (Doisneau et al., 1992). Suitable crystals of (I) were obtained by slow evaporation of a 19:1 hexane–ethyl acetate solution at room temperature. Compound (II) was synthesized by a modified literature procedure (Okuro et al., 1993). Iodobenzene (0.3 ml, 2.38 mmol) and ethynylferrocene (500 mg, 2.38 mmol) were added to a mixture of CuI (23 mg, 0.12 mmol), PPh3 (62 mg, 0.24 mmol), K2CO3 (493 mg, 3.57 mmol) and dimethylformamide (4.8 ml) under argon. The resulting mixture was refluxed at 393 K for 16 h. The solution was then extracted with ether, washed with water and dried over MgSO4. Final purification was achieved by flash column chromatography on silica gel using hexane as the eluant. The product was obtained in 47% yield. The spectroscopic data for (II) were in agreement with those reported previously for this compounds (Stepnicka et al., 1999). Single crystals of (II) were obtained by slow evaporation of a 19:1 hexane–ethyl acetate solution at room temperature.

Refinement top

All H atoms were refined using the riding-model approximation, with C—H = 0.93 Å for aromatic atoms [Uiso(H) = 1.2Ueq(parent atom)] and C—H = 0.96 Å for methyl groups [Uiso(H) = 1.5Ueq(parent atom)].

Structure description top

Recently, alkyne chemistry has experienced a major renaissance by the involvement of molecules with CC bonds in the frontiers of modern organic chemistry, namely biochemistry, materials science and organometallic chemistry (Stang & Diederich, 1995; Diederich et al., 2005). In this regard, ferrocenylalkynes occupy an important position since they can be converted to a structurally diverse set of ferrocenyl (Fc) compounds that are attractive synthetic targets owing to their physical, chemical and biological properties (Togni & Hayashi, 1995). The Fc group is often incorporated into a bioactive compound to obtain enhanced biological activities (Zora et al., 2002, 2003; Jaouen et al., 2004). In addition, the Fc group is ideal for use in drug design owing to its low toxicity, stability and lipophilicity (Biot et al., 2000).

There is considerable interest in the synthesis of new materials with large second-order optical nonlinearities because of their potential use in device applications related to telecommunications, optical computing, optical storage, and optical information processing (Williams, 1984; Chemla & Zyss, 1987). In this regard, ferrocene-based donor–acceptor chromophores are widely investigated for their linear and nonlinear optical properties (Barlow & Marder, 2000; Stankovic et al., 2001). In particular, ethynylferrocene (Wurst et al., 1995; Polin & Schottenberger, 1995 or??? 1996) and its derivatives (Nock & Schottenberger, 1993; Ingham et al., 1994) have attracted substantial interest due to the potential for electronic communication through the unsaturated alkyne linkage to the Fe center. There are also examples of ethynylferrocene linked through the alkyne spacer group to other metal centers (Berry et al., 2004; Laus et al., 2005). In this respect, crystal structures of ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996) and its derivatives (Ingham et al., 1994; Dufkova et al., 2003; Hocek et al., 2004) have gained importance. We report here the crystal structures of propynylferrocene, (I), and (phenylethynyl)ferrocene, (II).

The molecular structure of (I) is shown in Fig. 1. Selected bond distances and angles are given in Table 1. There are two molecules present in the asymmetric unit of (I). The CC bond distances in these molecules are 1.182 (3) and 1.184 (3) Å, which are in accord with those in similar complexes such as 1,1,3-triferrocenylprop-2-yn-1-ol [1.180 (13) Å; Lucasser et al., 1995)]and 1-trimethylsilylethynylferrocene [1.188 (7) Å; Schottenberger et al., 1999]. The Fe—Cgs and Fe—Cgas distances are in the range 1.6388 (11)–1.6467 (11) Å, and the Cgs—Fe—Cgas angles are 178.64 (8) and 178.77 (5)°, where Cgs and Cgas are the substituted and unsubstituted Cp ring centroids. The Cp rings in each molecule are almost parallel since the angles between the Cp ring planes are 1.43 (10) and 1.71 (19)°. The Cp rings of Fc groups deviate slightly from the eclipsed conformation as evidenced by the average C—CgsCgas—C torsion angles of 7.41 (3) and -4.71 (3)°. The C—C bond distances in Cp rings range from 1.342 (5) to 1.427 (3)°, while the Fe—C bond lengths range between 2.006 (3) and 2.0510 (17)°, all of which are as expected.

As in ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996), there are no direction-specific aromatic ππ interactions between adjacent rings in (I), but there are two C—H···π interactions (Cg1 and Cg2 are the centroids of the C1–C5 and C21–C25 rings, resepctively; Table 2 and Fig. 2).

The molecular structure of (II) is shown in Fig. 3. Selected bond distances and angles are given in Table 3. Compound (II) comprises Fc and Ph rings linked by an acetylene residue. The unusual feature of (II) is that substituted Cp ring and Ph ring are almost perpendicular, with an angle of 89.06 (13)°, which is a rare occurrence. This is clearly an indication of the interrupted conjugation between the Fc and Ph groups. However, in 1,1'-bis(phenylethynyl)ferrocene (Ingham et al., 1994), a closely related compound, there is not a large tilting of the phenyl groups from the planes of the cyclopentadienyl rings since the angles between phenyl rings and the cyclopentadienyl rings are 11.2 (2) and 26.6 (2)°. Moreover, a literature search for crystal structures incorporating the diphenylacetylene group has revealed some derivatives including tolane (Mavridis & Moustakali-Mavridis, 1977), perfluorodiphenylacetylene (Goodhand & Hamor, 1979), octafluoronaphthalene–diphenylacetylene (1/1) (Collings et al., 2001) and N-[4-(phenylethynyl)phenyl]benzamide (Yin et al., 2005). In all, ethynyl-bridged Ph rings are found to be almost coplanar, which is in contrast to the situation in (II).

The CC bond length in (II) is 1.192 (3) Å, which is in agreement with those in 1,1'-bis(phenylethynyl)ferrocene (Ingham et al., 1994) and (Z)-1,4-diferrocenylbut-1-en-3-yne [1.199 (4) Å; Wurst et al., 1995]. The Fc group is almost in the eclipsed conformation since the average C11—CgsCgas—C6 pseudo-torsion angle is 0.60 (4)°. The centroids of the Cp rings are almost equidistant from Fe atoms as indicated by the Fe—Cgs and Fe—Cgas distances of 1.641 (12) and 1.642 (12) Å, respectively. The Cgs—Fe—Cgas angle is 179.16 (6)°. The Cp rings are almost parallel since the angle between the Cp ring planes is 1.62 (16)°. The C—C bond distances in the Cp rings range from 1.390 (4) to 1.428?(3) Å. The Fe—C bond lengths are in the range 2.021 (3)–2.039 (2) Å.

As in compound (I) and ethynylferrocene (Wurst et al., 1995; Steiner et al., 1996), compound (II) is also stabilized by four C—H···π interactions, two of them, C14—H14···π and C15—H15···π, being in chelate ring form (Table 4 and Fig. 4) (Cg1, Cg2 and Cg3 are the centroids of the C1–C5, C6–C10 and C13–C18 rings).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of (I), showing the C—H···π interactions as dashed lines. H atoms not involved in C—H···π interactions have been omitted for clarity.
[Figure 3] Fig. 3. A view of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 4] Fig. 4. A packing diagram of (II), showing the C—H···π interactions as dashed lines. H atoms not involved in C—H···π interactions have been omitted for clarity·[Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
(I) Propynylferrocene top
Crystal data top
[Fe(C5H5)(C8H7)]Z = 4
Mr = 224.08F(000) = 464
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8232 (7) ÅCell parameters from 24535 reflections
b = 10.3192 (7) Åθ = 2.2–28.0°
c = 11.1465 (8) ŵ = 1.41 mm1
α = 76.431 (5)°T = 296 K
β = 86.740 (6)°Prism, red
γ = 70.527 (5)°0.60 × 0.49 × 0.40 mm
V = 1035.25 (13) Å3
Data collection top
Stoe IPDS 2
diffractometer
4072 independent reflections
Radiation source: fine-focus sealed tube3613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
rotation w scanh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.558, Tmax = 0.670l = 1313
15013 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.2017P]
where P = (Fo2 + 2Fc2)/3
4072 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C5H5)(C8H7)]γ = 70.527 (5)°
Mr = 224.08V = 1035.25 (13) Å3
Triclinic, P1Z = 4
a = 9.8232 (7) ÅMo Kα radiation
b = 10.3192 (7) ŵ = 1.41 mm1
c = 11.1465 (8) ÅT = 296 K
α = 76.431 (5)°0.60 × 0.49 × 0.40 mm
β = 86.740 (6)°
Data collection top
Stoe IPDS 2
diffractometer
4072 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3613 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.670Rint = 0.046
15013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4072 reflectionsΔρmin = 0.27 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2566 (2)0.93568 (18)0.45313 (16)0.0476 (4)
C20.1379 (2)0.93999 (18)0.38245 (16)0.0503 (4)
H20.04180.99370.38850.060*
C30.1923 (3)0.8481 (2)0.30142 (17)0.0611 (5)
H30.13800.83140.24470.073*
C40.3425 (3)0.7867 (2)0.32163 (19)0.0658 (6)
H40.40450.72240.28030.079*
C50.3832 (2)0.8390 (2)0.41532 (19)0.0590 (5)
H50.47640.81470.44670.071*
C60.2237 (3)0.6602 (2)0.66397 (18)0.0639 (5)
H60.23220.70270.72680.077*
C70.0953 (3)0.6810 (2)0.6018 (2)0.0740 (7)
H70.00370.73950.61590.089*
C80.1309 (3)0.5963 (3)0.5134 (2)0.0733 (7)
H80.06670.58910.45920.088*
C90.2794 (3)0.5260 (2)0.5227 (2)0.0658 (6)
H90.33180.46380.47520.079*
C100.3360 (2)0.5650 (2)0.61544 (19)0.0609 (5)
H100.43260.53270.64060.073*
C110.2501 (2)1.01640 (19)0.54273 (17)0.0498 (4)
C120.2432 (2)1.0898 (2)0.61160 (18)0.0556 (4)
C130.2336 (3)1.1830 (3)0.6949 (2)0.0769 (7)
H13A0.22801.27520.64740.115*
H13B0.31771.14530.74830.115*
H13C0.14881.18950.74360.115*
C210.7106 (2)0.4911 (2)0.85223 (16)0.0502 (4)
C220.5681 (2)0.5899 (2)0.83404 (18)0.0588 (5)
H220.48650.57850.87560.071*
C230.5726 (3)0.7085 (2)0.74149 (19)0.0651 (5)
H230.49410.78860.71140.078*
C240.7158 (3)0.6847 (2)0.70271 (18)0.0642 (5)
H240.74810.74610.64230.077*
C250.8024 (2)0.5514 (2)0.77125 (17)0.0562 (4)
H250.90150.51030.76470.067*
C260.7595 (5)0.6483 (3)1.0655 (2)0.0932 (10)
H260.78140.56301.12380.112*
C270.6225 (4)0.7494 (6)1.0382 (4)0.1195 (15)
H270.53620.74451.07460.143*
C280.6410 (5)0.8591 (4)0.9454 (4)0.1181 (14)
H280.56810.94120.90860.142*
C290.7816 (5)0.8263 (3)0.9181 (3)0.1031 (11)
H290.82190.88200.85910.124*
C300.8558 (3)0.6978 (3)0.9909 (3)0.0853 (8)
H300.95480.65170.98990.102*
C310.7531 (2)0.3561 (2)0.93613 (17)0.0545 (4)
C320.7847 (3)0.2429 (2)1.00351 (19)0.0612 (5)
C330.8221 (4)0.1022 (3)1.0853 (3)0.0920 (9)
H33A0.75150.10161.14840.138*
H33B0.91560.07791.12280.138*
H33C0.82390.03461.03850.138*
Fe10.23771 (3)0.73888 (2)0.48018 (2)0.04332 (9)
Fe20.70385 (3)0.67878 (3)0.88701 (2)0.04716 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (10)0.0372 (8)0.0466 (9)0.0176 (7)0.0040 (7)0.0019 (7)
C20.0611 (11)0.0397 (9)0.0442 (9)0.0124 (8)0.0031 (8)0.0035 (7)
C30.0912 (15)0.0480 (10)0.0406 (9)0.0209 (10)0.0023 (9)0.0058 (8)
C40.0839 (15)0.0520 (11)0.0554 (11)0.0177 (10)0.0240 (10)0.0129 (9)
C50.0542 (11)0.0560 (11)0.0632 (11)0.0208 (9)0.0125 (9)0.0057 (9)
C60.0964 (17)0.0519 (11)0.0453 (10)0.0308 (11)0.0096 (10)0.0071 (8)
C70.0593 (13)0.0536 (12)0.0943 (16)0.0171 (10)0.0227 (12)0.0037 (11)
C80.0866 (16)0.0634 (13)0.0790 (15)0.0468 (13)0.0174 (12)0.0035 (11)
C90.0915 (16)0.0369 (10)0.0680 (12)0.0209 (10)0.0040 (11)0.0113 (9)
C100.0644 (12)0.0469 (10)0.0612 (11)0.0146 (9)0.0094 (9)0.0041 (9)
C110.0581 (10)0.0405 (9)0.0499 (9)0.0205 (8)0.0036 (8)0.0010 (8)
C120.0699 (12)0.0463 (10)0.0526 (10)0.0260 (9)0.0047 (9)0.0038 (8)
C130.117 (2)0.0633 (14)0.0656 (13)0.0473 (14)0.0018 (13)0.0185 (11)
C210.0632 (11)0.0523 (10)0.0426 (8)0.0264 (9)0.0019 (8)0.0140 (7)
C220.0574 (11)0.0700 (13)0.0551 (10)0.0290 (10)0.0080 (8)0.0121 (9)
C230.0715 (13)0.0651 (13)0.0535 (10)0.0185 (10)0.0208 (10)0.0043 (9)
C240.0882 (15)0.0653 (13)0.0417 (9)0.0333 (12)0.0005 (9)0.0054 (9)
C250.0661 (12)0.0607 (11)0.0456 (9)0.0242 (10)0.0074 (8)0.0159 (8)
C260.175 (3)0.0758 (17)0.0476 (12)0.066 (2)0.0266 (16)0.0074 (11)
C270.108 (2)0.206 (5)0.103 (2)0.082 (3)0.043 (2)0.111 (3)
C280.147 (3)0.074 (2)0.118 (3)0.012 (2)0.040 (3)0.055 (2)
C290.183 (4)0.0781 (19)0.0777 (17)0.081 (2)0.010 (2)0.0140 (15)
C300.0820 (17)0.097 (2)0.0942 (18)0.0349 (15)0.0184 (14)0.0419 (16)
C310.0688 (12)0.0529 (11)0.0506 (10)0.0280 (9)0.0002 (8)0.0168 (9)
C320.0806 (14)0.0530 (12)0.0559 (11)0.0279 (10)0.0031 (10)0.0150 (9)
C330.138 (3)0.0545 (14)0.0784 (16)0.0329 (15)0.0030 (16)0.0032 (12)
Fe10.04950 (15)0.03504 (13)0.04301 (14)0.01267 (11)0.00112 (10)0.00623 (10)
Fe20.05592 (16)0.04383 (15)0.04323 (14)0.01826 (12)0.00377 (11)0.00899 (11)
Geometric parameters (Å, º) top
C1—C51.425 (3)C21—C221.423 (3)
C1—C21.427 (3)C21—C251.425 (3)
C1—C111.429 (3)C21—C311.427 (3)
C1—Fe12.0510 (17)C21—Fe22.0414 (18)
C2—C31.417 (3)C22—C231.415 (3)
C2—Fe12.0393 (17)C22—Fe22.0318 (19)
C2—H20.9300C22—H220.9300
C3—C41.406 (3)C23—C241.406 (3)
C3—Fe12.0377 (19)C23—Fe22.0320 (19)
C3—H30.9300C23—H230.9300
C4—C51.414 (3)C24—C251.414 (3)
C4—Fe12.037 (2)C24—Fe22.039 (2)
C4—H40.9300C24—H240.9300
C5—Fe12.037 (2)C25—Fe22.0337 (19)
C5—H50.9300C25—H250.9300
C6—C101.391 (3)C26—C301.371 (4)
C6—C71.402 (3)C26—C271.398 (5)
C6—Fe12.0340 (19)C26—Fe22.018 (2)
C6—H60.9300C26—H260.9300
C7—C81.421 (4)C27—C281.397 (6)
C7—Fe12.028 (2)C27—Fe22.011 (3)
C7—H70.9300C27—H270.9300
C8—C91.393 (3)C28—C291.342 (5)
C8—Fe12.032 (2)C28—Fe22.006 (3)
C8—H80.9300C28—H280.9300
C9—C101.396 (3)C29—C301.366 (4)
C9—Fe12.037 (2)C29—Fe22.018 (3)
C9—H90.9300C29—H290.9300
C10—Fe12.0411 (19)C30—Fe22.026 (2)
C10—H100.9300C30—H300.9300
C11—C121.184 (3)C31—C321.182 (3)
C12—C131.464 (3)C32—C331.461 (3)
C13—H13A0.9600C33—H33A0.9600
C13—H13B0.9600C33—H33B0.9600
C13—H13C0.9600C33—H33C0.9600
C5—C1—C2107.29 (17)C29—C28—H28125.7
C5—C1—C11126.39 (18)C27—C28—H28125.7
C2—C1—C11126.30 (17)Fe2—C28—H28125.1
C5—C1—Fe169.09 (11)C28—C29—C30109.0 (3)
C2—C1—Fe169.15 (10)C28—C29—Fe270.04 (19)
C11—C1—Fe1128.26 (12)C30—C29—Fe270.58 (15)
C3—C2—C1108.01 (18)C28—C29—H29125.5
C3—C2—Fe169.60 (10)C30—C29—H29125.5
C1—C2—Fe170.03 (10)Fe2—C29—H29125.5
C3—C2—H2126.0C29—C30—C26108.4 (3)
C1—C2—H2126.0C29—C30—Fe269.94 (16)
Fe1—C2—H2126.0C26—C30—Fe269.88 (14)
C4—C3—C2108.17 (19)C29—C30—H30125.8
C4—C3—Fe169.77 (11)C26—C30—H30125.8
C2—C3—Fe169.72 (10)Fe2—C30—H30126.0
C4—C3—H3125.9C32—C31—C21177.5 (2)
C2—C3—H3125.9C31—C32—C33178.9 (2)
Fe1—C3—H3126.2C32—C33—H33A109.5
C3—C4—C5108.49 (18)C32—C33—H33B109.5
C3—C4—Fe169.85 (12)H33A—C33—H33B109.5
C5—C4—Fe169.72 (11)C32—C33—H33C109.5
C3—C4—H4125.8H33A—C33—H33C109.5
C5—C4—H4125.8H33B—C33—H33C109.5
Fe1—C4—H4126.3C7—Fe1—C840.96 (10)
C4—C5—C1108.03 (19)C7—Fe1—C640.37 (10)
C4—C5—Fe169.66 (12)C8—Fe1—C668.01 (10)
C1—C5—Fe170.12 (10)C7—Fe1—C4162.56 (11)
C4—C5—H5126.0C8—Fe1—C4124.72 (11)
C1—C5—H5126.0C6—Fe1—C4155.08 (10)
Fe1—C5—H5125.8C7—Fe1—C5155.69 (10)
C10—C6—C7108.2 (2)C8—Fe1—C5161.98 (11)
C10—C6—Fe170.32 (11)C6—Fe1—C5121.18 (10)
C7—C6—Fe169.59 (12)C4—Fe1—C540.62 (9)
C10—C6—H6125.9C7—Fe1—C967.95 (10)
C7—C6—H6125.9C8—Fe1—C940.04 (10)
Fe1—C6—H6125.8C6—Fe1—C967.52 (9)
C6—C7—C8107.4 (2)C4—Fe1—C9107.28 (9)
C6—C7—Fe170.04 (12)C5—Fe1—C9125.72 (9)
C8—C7—Fe169.68 (13)C7—Fe1—C3125.93 (10)
C6—C7—H7126.3C8—Fe1—C3106.97 (10)
C8—C7—H7126.3C6—Fe1—C3163.88 (10)
Fe1—C7—H7125.6C4—Fe1—C340.37 (9)
C9—C8—C7107.7 (2)C5—Fe1—C368.33 (9)
C9—C8—Fe170.18 (12)C9—Fe1—C3119.24 (9)
C7—C8—Fe169.36 (12)C7—Fe1—C2108.22 (9)
C9—C8—H8126.2C8—Fe1—C2120.00 (9)
C7—C8—H8126.2C6—Fe1—C2127.27 (8)
Fe1—C8—H8125.9C4—Fe1—C268.25 (8)
C8—C9—C10108.2 (2)C5—Fe1—C268.57 (8)
C8—C9—Fe169.78 (12)C9—Fe1—C2154.00 (9)
C10—C9—Fe170.12 (11)C3—Fe1—C240.69 (8)
C8—C9—H9125.9C7—Fe1—C1067.53 (9)
C10—C9—H9125.9C8—Fe1—C1067.40 (9)
Fe1—C9—H9125.8C6—Fe1—C1039.91 (9)
C6—C10—C9108.5 (2)C4—Fe1—C10120.39 (9)
C6—C10—Fe169.77 (11)C5—Fe1—C10108.72 (9)
C9—C10—Fe169.84 (11)C9—Fe1—C1040.04 (9)
C6—C10—H10125.7C3—Fe1—C10154.00 (9)
C9—C10—H10125.7C2—Fe1—C10164.43 (8)
Fe1—C10—H10126.2C7—Fe1—C1120.92 (9)
C12—C11—C1176.28 (19)C8—Fe1—C1155.47 (10)
C11—C12—C13178.9 (2)C6—Fe1—C1109.29 (8)
C12—C13—H13A109.5C4—Fe1—C168.38 (8)
C12—C13—H13B109.5C5—Fe1—C140.79 (8)
H13A—C13—H13B109.5C9—Fe1—C1163.52 (9)
C12—C13—H13C109.5C3—Fe1—C168.49 (8)
H13A—C13—H13C109.5C2—Fe1—C140.82 (7)
H13B—C13—H13C109.5C10—Fe1—C1127.22 (8)
C22—C21—C25107.61 (18)C28—Fe2—C2740.71 (17)
C22—C21—C31125.93 (18)C28—Fe2—C2938.97 (16)
C25—C21—C31126.5 (2)C27—Fe2—C2967.06 (15)
C22—C21—Fe269.19 (11)C28—Fe2—C2667.53 (14)
C25—C21—Fe269.24 (11)C27—Fe2—C2640.58 (15)
C31—C21—Fe2127.16 (13)C29—Fe2—C2666.74 (12)
C23—C22—C21107.79 (19)C28—Fe2—C3066.31 (14)
C23—C22—Fe269.63 (12)C27—Fe2—C3067.21 (13)
C21—C22—Fe269.92 (11)C29—Fe2—C3039.48 (13)
C23—C22—H22126.1C26—Fe2—C3039.64 (13)
C21—C22—H22126.1C28—Fe2—C22124.92 (16)
Fe2—C22—H22125.9C27—Fe2—C22107.69 (12)
C24—C23—C22108.45 (19)C29—Fe2—C22160.57 (14)
C24—C23—Fe270.04 (12)C26—Fe2—C22122.40 (11)
C22—C23—Fe269.61 (11)C30—Fe2—C22157.83 (11)
C24—C23—H23125.8C28—Fe2—C23107.19 (12)
C22—C23—H23125.8C27—Fe2—C23120.61 (14)
Fe2—C23—H23126.1C29—Fe2—C23124.23 (12)
C23—C24—C25108.30 (19)C26—Fe2—C23156.88 (14)
C23—C24—Fe269.53 (12)C30—Fe2—C23160.82 (12)
C25—C24—Fe269.49 (11)C22—Fe2—C2340.75 (9)
C23—C24—H24125.9C28—Fe2—C25154.95 (18)
C25—C24—H24125.9C27—Fe2—C25162.91 (18)
Fe2—C24—H24126.7C29—Fe2—C25121.73 (14)
C24—C25—C21107.84 (19)C26—Fe2—C25126.05 (12)
C24—C25—Fe269.86 (12)C30—Fe2—C25109.29 (10)
C21—C25—Fe269.82 (11)C22—Fe2—C2568.85 (9)
C24—C25—H25126.1C23—Fe2—C2568.44 (9)
C21—C25—H25126.1C28—Fe2—C24120.03 (15)
Fe2—C25—H25125.8C27—Fe2—C24155.21 (17)
C30—C26—C27107.6 (3)C29—Fe2—C24107.97 (11)
C30—C26—Fe270.48 (14)C26—Fe2—C24162.06 (14)
C27—C26—Fe269.45 (15)C30—Fe2—C24125.48 (12)
C30—C26—H26126.2C22—Fe2—C2468.44 (9)
C27—C26—H26126.2C23—Fe2—C2440.43 (9)
Fe2—C26—H26125.5C25—Fe2—C2440.64 (8)
C28—C27—C26106.3 (3)C28—Fe2—C21162.50 (18)
C28—C27—Fe269.44 (17)C27—Fe2—C21125.65 (15)
C26—C27—Fe269.97 (16)C29—Fe2—C21157.34 (15)
C28—C27—H27126.8C26—Fe2—C21109.37 (9)
C26—C27—H27126.8C30—Fe2—C21123.14 (10)
Fe2—C27—H27125.3C22—Fe2—C2140.88 (8)
C29—C28—C27108.6 (3)C23—Fe2—C2168.50 (8)
C29—C28—Fe270.99 (17)C25—Fe2—C2140.94 (8)
C27—C28—Fe269.86 (18)C24—Fe2—C2168.45 (8)
C5—C1—C2—C30.70 (19)C6—C10—Fe1—C5116.55 (14)
C11—C1—C2—C3177.69 (17)C9—C10—Fe1—C5123.71 (14)
Fe1—C1—C2—C359.46 (12)C6—C10—Fe1—C9119.7 (2)
C5—C1—C2—Fe158.76 (12)C6—C10—Fe1—C3164.7 (2)
C11—C1—C2—Fe1122.85 (17)C9—C10—Fe1—C344.9 (3)
C1—C2—C3—C40.3 (2)C6—C10—Fe1—C239.3 (4)
Fe1—C2—C3—C459.39 (14)C9—C10—Fe1—C2159.1 (3)
C1—C2—C3—Fe159.73 (12)C6—C10—Fe1—C174.84 (16)
C2—C3—C4—C50.1 (2)C9—C10—Fe1—C1165.42 (13)
Fe1—C3—C4—C559.20 (14)C5—C1—Fe1—C7158.73 (13)
C2—C3—C4—Fe159.35 (13)C2—C1—Fe1—C782.19 (14)
C3—C4—C5—C10.6 (2)C11—C1—Fe1—C738.2 (2)
Fe1—C4—C5—C159.87 (13)C5—C1—Fe1—C8165.1 (2)
C3—C4—C5—Fe159.29 (14)C2—C1—Fe1—C846.1 (2)
C2—C1—C5—C40.8 (2)C11—C1—Fe1—C874.4 (3)
C11—C1—C5—C4177.60 (17)C5—C1—Fe1—C6115.72 (14)
Fe1—C1—C5—C459.58 (14)C2—C1—Fe1—C6125.19 (12)
C2—C1—C5—Fe158.79 (12)C11—C1—Fe1—C64.8 (2)
C11—C1—C5—Fe1122.81 (17)C5—C1—Fe1—C437.76 (13)
C10—C6—C7—C80.0 (2)C2—C1—Fe1—C481.32 (13)
Fe1—C6—C7—C859.95 (14)C11—C1—Fe1—C4158.3 (2)
C10—C6—C7—Fe159.97 (14)C2—C1—Fe1—C5119.09 (16)
C6—C7—C8—C90.2 (2)C11—C1—Fe1—C5120.5 (2)
Fe1—C7—C8—C959.98 (15)C5—C1—Fe1—C939.9 (3)
C6—C7—C8—Fe160.17 (14)C2—C1—Fe1—C9159.0 (3)
C7—C8—C9—C100.3 (2)C11—C1—Fe1—C980.6 (3)
Fe1—C8—C9—C1059.81 (15)C5—C1—Fe1—C381.32 (13)
C7—C8—C9—Fe159.46 (14)C2—C1—Fe1—C337.76 (12)
C7—C6—C10—C90.2 (2)C11—C1—Fe1—C3158.2 (2)
Fe1—C6—C10—C959.28 (14)C5—C1—Fe1—C2119.09 (16)
C7—C6—C10—Fe159.52 (14)C11—C1—Fe1—C2120.4 (2)
C8—C9—C10—C60.4 (2)C5—C1—Fe1—C1074.72 (15)
Fe1—C9—C10—C659.23 (14)C2—C1—Fe1—C10166.20 (12)
C8—C9—C10—Fe159.60 (15)C11—C1—Fe1—C1045.8 (2)
C25—C21—C22—C230.8 (2)C29—C28—Fe2—C27119.1 (3)
C31—C21—C22—C23178.92 (18)C27—C28—Fe2—C29119.1 (3)
Fe2—C21—C22—C2359.57 (14)C29—C28—Fe2—C2680.3 (2)
C25—C21—C22—Fe258.77 (13)C27—C28—Fe2—C2638.8 (2)
C31—C21—C22—Fe2121.51 (18)C29—C28—Fe2—C3037.1 (2)
C21—C22—C23—C240.3 (2)C27—C28—Fe2—C3082.0 (2)
Fe2—C22—C23—C2459.48 (15)C29—C28—Fe2—C22164.95 (17)
C21—C22—C23—Fe259.75 (13)C27—C28—Fe2—C2275.9 (2)
C22—C23—C24—C250.4 (2)C29—C28—Fe2—C23123.6 (2)
Fe2—C23—C24—C2558.85 (14)C27—C28—Fe2—C23117.2 (2)
C22—C23—C24—Fe259.21 (14)C29—C28—Fe2—C2547.9 (4)
C23—C24—C25—C210.9 (2)C27—C28—Fe2—C25167.0 (2)
Fe2—C24—C25—C2159.74 (13)C29—C28—Fe2—C2481.5 (2)
C23—C24—C25—Fe258.88 (15)C27—C28—Fe2—C24159.4 (2)
C22—C21—C25—C241.0 (2)C29—C28—Fe2—C21163.5 (3)
C31—C21—C25—C24178.69 (17)C27—C28—Fe2—C2144.4 (5)
Fe2—C21—C25—C2459.76 (14)C26—C27—Fe2—C28117.1 (3)
C22—C21—C25—Fe258.74 (13)C28—C27—Fe2—C2936.6 (2)
C31—C21—C25—Fe2121.54 (18)C26—C27—Fe2—C2980.5 (2)
C30—C26—C27—C280.2 (3)C28—C27—Fe2—C26117.1 (3)
Fe2—C26—C27—C2860.26 (19)C28—C27—Fe2—C3079.6 (2)
C30—C26—C27—Fe260.43 (18)C26—C27—Fe2—C3037.49 (18)
C26—C27—C28—C290.1 (3)C28—C27—Fe2—C22123.4 (2)
Fe2—C27—C28—C2960.7 (2)C26—C27—Fe2—C22119.48 (19)
C26—C27—C28—Fe260.60 (19)C28—C27—Fe2—C2380.7 (3)
C27—C28—C29—C300.1 (3)C26—C27—Fe2—C23162.16 (17)
Fe2—C28—C29—C3060.0 (2)C28—C27—Fe2—C25161.2 (4)
C27—C28—C29—Fe260.0 (2)C26—C27—Fe2—C2544.0 (5)
C28—C29—C30—C260.2 (3)C28—C27—Fe2—C2446.6 (4)
Fe2—C29—C30—C2659.50 (18)C26—C27—Fe2—C24163.8 (2)
C28—C29—C30—Fe259.7 (2)C28—C27—Fe2—C21165.0 (2)
C27—C26—C30—C290.2 (3)C26—C27—Fe2—C2177.9 (2)
Fe2—C26—C30—C2959.54 (18)C30—C29—Fe2—C28119.7 (3)
C27—C26—C30—Fe259.78 (18)C28—C29—Fe2—C2738.2 (2)
C6—C7—Fe1—C8118.25 (19)C30—C29—Fe2—C2781.5 (2)
C8—C7—Fe1—C6118.25 (19)C28—C29—Fe2—C2682.5 (2)
C6—C7—Fe1—C4158.0 (3)C30—C29—Fe2—C2637.2 (2)
C8—C7—Fe1—C439.8 (4)C28—C29—Fe2—C30119.7 (3)
C6—C7—Fe1—C548.5 (3)C28—C29—Fe2—C2239.8 (4)
C8—C7—Fe1—C5166.78 (19)C30—C29—Fe2—C22159.5 (3)
C6—C7—Fe1—C980.77 (14)C28—C29—Fe2—C2374.2 (3)
C8—C7—Fe1—C937.49 (14)C30—C29—Fe2—C23166.11 (18)
C6—C7—Fe1—C3168.31 (12)C28—C29—Fe2—C25158.3 (2)
C8—C7—Fe1—C373.44 (16)C30—C29—Fe2—C2582.0 (2)
C6—C7—Fe1—C2126.67 (13)C28—C29—Fe2—C24115.8 (2)
C8—C7—Fe1—C2115.08 (14)C30—C29—Fe2—C24124.5 (2)
C6—C7—Fe1—C1037.34 (13)C28—C29—Fe2—C21167.2 (3)
C8—C7—Fe1—C1080.91 (15)C30—C29—Fe2—C2147.5 (4)
C6—C7—Fe1—C183.68 (14)C30—C26—Fe2—C2879.5 (2)
C8—C7—Fe1—C1158.07 (13)C27—C26—Fe2—C2838.9 (2)
C9—C8—Fe1—C7118.7 (2)C30—C26—Fe2—C27118.4 (3)
C9—C8—Fe1—C680.76 (15)C30—C26—Fe2—C2937.1 (2)
C7—C8—Fe1—C637.97 (14)C27—C26—Fe2—C2981.4 (3)
C9—C8—Fe1—C474.76 (17)C27—C26—Fe2—C30118.4 (3)
C7—C8—Fe1—C4166.51 (14)C30—C26—Fe2—C22162.39 (16)
C9—C8—Fe1—C543.6 (3)C27—C26—Fe2—C2279.2 (2)
C7—C8—Fe1—C5162.3 (3)C30—C26—Fe2—C23160.6 (2)
C7—C8—Fe1—C9118.7 (2)C27—C26—Fe2—C2342.2 (4)
C9—C8—Fe1—C3115.50 (14)C30—C26—Fe2—C2576.2 (2)
C7—C8—Fe1—C3125.76 (14)C27—C26—Fe2—C25165.4 (2)
C9—C8—Fe1—C2157.84 (13)C30—C26—Fe2—C2439.2 (4)
C7—C8—Fe1—C283.43 (15)C27—C26—Fe2—C24157.6 (3)
C9—C8—Fe1—C1037.47 (14)C30—C26—Fe2—C21118.95 (18)
C7—C8—Fe1—C1081.26 (15)C27—C26—Fe2—C21122.6 (2)
C9—C8—Fe1—C1169.24 (17)C29—C30—Fe2—C2836.6 (2)
C7—C8—Fe1—C150.5 (3)C26—C30—Fe2—C2882.8 (2)
C10—C6—Fe1—C7119.12 (19)C29—C30—Fe2—C2781.1 (3)
C10—C6—Fe1—C880.61 (15)C26—C30—Fe2—C2738.4 (2)
C7—C6—Fe1—C838.51 (14)C26—C30—Fe2—C29119.5 (3)
C10—C6—Fe1—C445.5 (3)C29—C30—Fe2—C26119.5 (3)
C7—C6—Fe1—C4164.6 (2)C29—C30—Fe2—C22162.0 (3)
C10—C6—Fe1—C582.02 (15)C26—C30—Fe2—C2242.6 (4)
C7—C6—Fe1—C5158.86 (13)C29—C30—Fe2—C2337.2 (4)
C10—C6—Fe1—C937.20 (14)C26—C30—Fe2—C23156.6 (3)
C7—C6—Fe1—C981.92 (15)C29—C30—Fe2—C25116.8 (2)
C10—C6—Fe1—C3155.3 (3)C26—C30—Fe2—C25123.70 (19)
C7—C6—Fe1—C336.2 (4)C29—C30—Fe2—C2474.4 (2)
C10—C6—Fe1—C2167.65 (12)C26—C30—Fe2—C24166.16 (18)
C7—C6—Fe1—C273.23 (16)C29—C30—Fe2—C21160.2 (2)
C7—C6—Fe1—C10119.12 (19)C26—C30—Fe2—C2180.4 (2)
C10—C6—Fe1—C1125.48 (13)C23—C22—Fe2—C2875.0 (2)
C7—C6—Fe1—C1115.40 (14)C21—C22—Fe2—C28166.09 (19)
C3—C4—Fe1—C743.9 (3)C23—C22—Fe2—C27116.7 (2)
C5—C4—Fe1—C7163.6 (3)C21—C22—Fe2—C27124.5 (2)
C3—C4—Fe1—C874.53 (15)C23—C22—Fe2—C2945.6 (4)
C5—C4—Fe1—C8165.75 (13)C21—C22—Fe2—C29164.5 (3)
C3—C4—Fe1—C6171.24 (18)C23—C22—Fe2—C26158.78 (17)
C5—C4—Fe1—C651.5 (3)C21—C22—Fe2—C2682.36 (18)
C3—C4—Fe1—C5119.72 (18)C23—C22—Fe2—C30170.5 (3)
C3—C4—Fe1—C9115.07 (14)C21—C22—Fe2—C3051.6 (3)
C5—C4—Fe1—C9125.21 (13)C21—C22—Fe2—C23118.86 (18)
C5—C4—Fe1—C3119.72 (18)C23—C22—Fe2—C2581.10 (14)
C3—C4—Fe1—C237.71 (12)C21—C22—Fe2—C2537.76 (11)
C5—C4—Fe1—C282.01 (13)C23—C22—Fe2—C2437.31 (14)
C3—C4—Fe1—C10156.74 (12)C21—C22—Fe2—C2481.55 (13)
C5—C4—Fe1—C1083.54 (14)C23—C22—Fe2—C21118.86 (18)
C3—C4—Fe1—C181.80 (13)C24—C23—Fe2—C28116.4 (2)
C5—C4—Fe1—C137.92 (12)C22—C23—Fe2—C28124.0 (2)
C4—C5—Fe1—C7168.1 (2)C24—C23—Fe2—C27158.8 (2)
C1—C5—Fe1—C749.1 (3)C22—C23—Fe2—C2781.6 (2)
C4—C5—Fe1—C840.9 (3)C24—C23—Fe2—C2977.1 (2)
C1—C5—Fe1—C8159.9 (3)C22—C23—Fe2—C29163.28 (19)
C4—C5—Fe1—C6157.32 (13)C24—C23—Fe2—C26170.7 (2)
C1—C5—Fe1—C683.67 (14)C22—C23—Fe2—C2651.1 (3)
C1—C5—Fe1—C4119.01 (17)C24—C23—Fe2—C3049.4 (4)
C4—C5—Fe1—C973.94 (16)C22—C23—Fe2—C30169.0 (3)
C1—C5—Fe1—C9167.04 (11)C24—C23—Fe2—C22119.6 (2)
C4—C5—Fe1—C337.25 (13)C24—C23—Fe2—C2537.42 (13)
C1—C5—Fe1—C381.76 (12)C22—C23—Fe2—C2582.19 (14)
C4—C5—Fe1—C281.15 (13)C22—C23—Fe2—C24119.6 (2)
C1—C5—Fe1—C237.86 (11)C24—C23—Fe2—C2181.58 (14)
C4—C5—Fe1—C10115.18 (14)C22—C23—Fe2—C2138.03 (13)
C1—C5—Fe1—C10125.81 (12)C24—C25—Fe2—C2847.3 (3)
C4—C5—Fe1—C1119.01 (17)C21—C25—Fe2—C28166.2 (3)
C8—C9—Fe1—C738.33 (15)C24—C25—Fe2—C27162.5 (4)
C10—C9—Fe1—C780.86 (15)C21—C25—Fe2—C2743.7 (4)
C10—C9—Fe1—C8119.2 (2)C24—C25—Fe2—C2980.60 (18)
C8—C9—Fe1—C682.11 (16)C21—C25—Fe2—C29160.55 (15)
C10—C9—Fe1—C637.08 (14)C24—C25—Fe2—C26163.47 (16)
C8—C9—Fe1—C4123.85 (16)C21—C25—Fe2—C2677.69 (17)
C10—C9—Fe1—C4116.96 (15)C24—C25—Fe2—C30122.44 (16)
C8—C9—Fe1—C5164.78 (14)C21—C25—Fe2—C30118.72 (15)
C10—C9—Fe1—C576.03 (16)C24—C25—Fe2—C2281.13 (14)
C8—C9—Fe1—C381.59 (17)C21—C25—Fe2—C2237.71 (12)
C10—C9—Fe1—C3159.21 (14)C24—C25—Fe2—C2337.22 (13)
C8—C9—Fe1—C248.2 (3)C21—C25—Fe2—C2381.62 (13)
C10—C9—Fe1—C2167.36 (17)C21—C25—Fe2—C24118.84 (18)
C8—C9—Fe1—C10119.2 (2)C24—C25—Fe2—C21118.84 (18)
C8—C9—Fe1—C1164.1 (3)C23—C24—Fe2—C2881.2 (2)
C10—C9—Fe1—C144.9 (3)C25—C24—Fe2—C28158.9 (2)
C4—C3—Fe1—C7165.14 (14)C23—C24—Fe2—C2748.0 (3)
C2—C3—Fe1—C775.48 (16)C25—C24—Fe2—C27167.9 (3)
C4—C3—Fe1—C8124.08 (14)C23—C24—Fe2—C29122.09 (19)
C2—C3—Fe1—C8116.55 (14)C25—C24—Fe2—C29118.09 (18)
C4—C3—Fe1—C6166.6 (3)C23—C24—Fe2—C26168.2 (3)
C2—C3—Fe1—C647.3 (4)C25—C24—Fe2—C2648.3 (4)
C2—C3—Fe1—C4119.37 (19)C23—C24—Fe2—C30162.15 (15)
C4—C3—Fe1—C537.47 (13)C25—C24—Fe2—C3078.02 (17)
C2—C3—Fe1—C581.90 (13)C23—C24—Fe2—C2237.61 (13)
C4—C3—Fe1—C982.37 (16)C25—C24—Fe2—C2282.22 (14)
C2—C3—Fe1—C9158.26 (13)C25—C24—Fe2—C23119.82 (19)
C4—C3—Fe1—C2119.37 (19)C23—C24—Fe2—C25119.82 (19)
C4—C3—Fe1—C1051.0 (3)C23—C24—Fe2—C2181.72 (14)
C2—C3—Fe1—C10170.36 (18)C25—C24—Fe2—C2138.10 (13)
C4—C3—Fe1—C181.49 (14)C22—C21—Fe2—C2841.0 (4)
C2—C3—Fe1—C137.88 (12)C25—C21—Fe2—C28160.3 (4)
C3—C2—Fe1—C7124.39 (15)C31—C21—Fe2—C2879.0 (4)
C1—C2—Fe1—C7116.53 (13)C22—C21—Fe2—C2775.1 (2)
C3—C2—Fe1—C881.11 (16)C25—C21—Fe2—C27165.54 (19)
C1—C2—Fe1—C8159.81 (13)C31—C21—Fe2—C2744.9 (3)
C3—C2—Fe1—C6165.15 (14)C22—C21—Fe2—C29166.7 (2)
C1—C2—Fe1—C675.77 (15)C25—C21—Fe2—C2947.3 (3)
C3—C2—Fe1—C437.43 (14)C31—C21—Fe2—C2973.4 (3)
C1—C2—Fe1—C481.66 (13)C22—C21—Fe2—C26117.50 (17)
C3—C2—Fe1—C581.26 (14)C25—C21—Fe2—C26123.15 (17)
C1—C2—Fe1—C537.83 (11)C31—C21—Fe2—C262.5 (2)
C3—C2—Fe1—C947.5 (3)C22—C21—Fe2—C30159.31 (15)
C1—C2—Fe1—C9166.59 (18)C25—C21—Fe2—C3081.33 (16)
C1—C2—Fe1—C3119.09 (17)C31—C21—Fe2—C3039.3 (2)
C3—C2—Fe1—C10164.1 (3)C25—C21—Fe2—C22119.35 (16)
C1—C2—Fe1—C1045.0 (3)C31—C21—Fe2—C22120.0 (2)
C3—C2—Fe1—C1119.09 (17)C22—C21—Fe2—C2337.91 (12)
C6—C10—Fe1—C737.76 (14)C25—C21—Fe2—C2381.44 (13)
C9—C10—Fe1—C781.98 (16)C31—C21—Fe2—C23157.9 (2)
C6—C10—Fe1—C882.27 (16)C22—C21—Fe2—C25119.35 (16)
C9—C10—Fe1—C837.47 (15)C31—C21—Fe2—C25120.7 (2)
C9—C10—Fe1—C6119.7 (2)C22—C21—Fe2—C2481.52 (13)
C6—C10—Fe1—C4159.63 (14)C25—C21—Fe2—C2437.84 (12)
C9—C10—Fe1—C480.64 (16)C31—C21—Fe2—C24158.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.933.103.874 (2)142
C29—H29···Cg1ii0.933.123.889 (3)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
(II) (Phenylethynyl)ferrocene top
Crystal data top
[Fe(C5H5)(C13H9)]F(000) = 592
Mr = 286.14Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10424 reflections
a = 8.7368 (9) Åθ = 1.9–27.9°
b = 10.6296 (15) ŵ = 1.10 mm1
c = 15.1113 (16) ÅT = 296 K
β = 105.327 (8)°Plate, red
V = 1353.5 (3) Å30.62 × 0.51 × 0.14 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2650 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
w scanθmax = 26.0°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 810
Tmin = 0.583, Tmax = 0.848k = 1213
7479 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C5H5)(C13H9)]V = 1353.5 (3) Å3
Mr = 286.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7368 (9) ŵ = 1.10 mm1
b = 10.6296 (15) ÅT = 296 K
c = 15.1113 (16) Å0.62 × 0.51 × 0.14 mm
β = 105.327 (8)°
Data collection top
Stoe IPDS 2
diffractometer
2650 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1865 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.848Rint = 0.045
7479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.91Δρmax = 0.18 e Å3
2650 reflectionsΔρmin = 0.21 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8896 (3)0.33485 (19)0.37962 (13)0.0522 (5)
C20.8274 (3)0.2171 (2)0.34068 (13)0.0577 (5)
H20.74070.20620.29010.069*
C30.9205 (3)0.1200 (2)0.39231 (15)0.0645 (6)
H30.90570.03410.38180.077*
C41.0398 (3)0.1766 (2)0.46243 (15)0.0660 (6)
H41.11780.13400.50590.079*
C51.0214 (3)0.3082 (2)0.45583 (14)0.0587 (5)
H51.08410.36720.49440.070*
C60.6545 (4)0.3274 (3)0.51408 (19)0.0841 (8)
H60.61730.40640.49210.101*
C70.5918 (3)0.2107 (3)0.47678 (19)0.0846 (8)
H70.50550.19920.42610.102*
C80.6834 (4)0.1147 (3)0.5301 (2)0.0808 (7)
H80.66890.02860.52050.097*
C90.7992 (3)0.1719 (3)0.59944 (16)0.0769 (7)
H90.87530.13010.64460.092*
C100.7828 (4)0.3028 (3)0.59019 (18)0.0794 (7)
H100.84570.36260.62780.095*
C110.8314 (3)0.4571 (2)0.34863 (13)0.0558 (5)
C120.7863 (3)0.5603 (2)0.32363 (14)0.0564 (5)
C130.7305 (2)0.68504 (18)0.29474 (13)0.0509 (5)
C140.6196 (3)0.7447 (2)0.33065 (16)0.0651 (6)
H140.58080.70460.37490.078*
C150.5664 (3)0.8634 (2)0.30094 (18)0.0748 (7)
H150.49080.90250.32480.090*
C160.6238 (3)0.9243 (2)0.23672 (19)0.0766 (7)
H160.58751.00440.21700.092*
C170.7343 (3)0.8668 (2)0.20194 (18)0.0759 (7)
H170.77390.90840.15860.091*
C180.7881 (3)0.74820 (19)0.22991 (15)0.0619 (6)
H180.86340.71010.20530.074*
Fe10.82136 (4)0.22731 (3)0.474237 (18)0.05270 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0622 (14)0.0480 (11)0.0498 (10)0.0001 (10)0.0206 (9)0.0036 (8)
C20.0732 (14)0.0535 (12)0.0490 (10)0.0020 (12)0.0206 (10)0.0017 (9)
C30.0890 (18)0.0484 (13)0.0649 (13)0.0071 (12)0.0360 (13)0.0025 (10)
C40.0679 (16)0.0693 (14)0.0662 (13)0.0171 (12)0.0272 (12)0.0153 (11)
C50.0601 (14)0.0606 (14)0.0567 (11)0.0014 (10)0.0179 (10)0.0026 (9)
C60.096 (2)0.0771 (18)0.097 (2)0.0256 (17)0.0565 (19)0.0176 (15)
C70.0605 (16)0.115 (2)0.0830 (17)0.0018 (17)0.0264 (13)0.0081 (17)
C80.0891 (19)0.0741 (17)0.0937 (17)0.0076 (16)0.0495 (16)0.0083 (15)
C90.0833 (19)0.0956 (19)0.0604 (14)0.0137 (15)0.0343 (13)0.0204 (13)
C100.098 (2)0.084 (2)0.0689 (15)0.0014 (15)0.0451 (14)0.0090 (13)
C110.0629 (14)0.0550 (13)0.0513 (11)0.0054 (11)0.0184 (10)0.0004 (9)
C120.0611 (14)0.0512 (13)0.0560 (11)0.0026 (10)0.0142 (10)0.0025 (9)
C130.0521 (12)0.0448 (11)0.0552 (10)0.0045 (9)0.0130 (9)0.0008 (8)
C140.0635 (14)0.0637 (16)0.0735 (14)0.0040 (11)0.0276 (11)0.0024 (10)
C150.0619 (16)0.0673 (16)0.0972 (17)0.0089 (12)0.0245 (14)0.0157 (13)
C160.0738 (18)0.0492 (14)0.1017 (19)0.0044 (12)0.0145 (15)0.0025 (12)
C170.0841 (19)0.0600 (15)0.0890 (16)0.0036 (13)0.0325 (15)0.0196 (12)
C180.0635 (15)0.0557 (15)0.0726 (13)0.0063 (11)0.0288 (11)0.0069 (9)
Fe10.06105 (19)0.05138 (17)0.04986 (16)0.00331 (16)0.02204 (12)0.00424 (13)
Geometric parameters (Å, º) top
C1—C51.425 (3)C8—C91.390 (4)
C1—C21.428 (3)C8—Fe12.034 (2)
C1—C111.429 (3)C8—H80.9300
C1—Fe12.0390 (19)C9—C101.402 (4)
C2—C31.414 (3)C9—Fe12.039 (2)
C2—Fe12.0358 (19)C9—H90.9300
C2—H20.9300C10—Fe12.035 (2)
C3—C41.409 (3)C10—H100.9300
C3—Fe12.038 (2)C11—C121.192 (3)
C3—H30.9300C12—C131.440 (3)
C4—C51.408 (3)C13—C141.384 (3)
C4—Fe12.036 (2)C13—C181.387 (3)
C4—H40.9300C14—C151.378 (3)
C5—Fe12.031 (2)C14—H140.9300
C5—H50.9300C15—C161.367 (4)
C6—C101.402 (4)C15—H150.9300
C6—C71.412 (4)C16—C171.360 (4)
C6—Fe12.021 (3)C16—H160.9300
C6—H60.9300C17—C181.372 (3)
C7—C81.411 (4)C17—H170.9300
C7—Fe12.024 (3)C18—H180.9300
C7—H70.9300
C5—C1—C2107.25 (18)C14—C13—C12121.28 (19)
C5—C1—C11126.0 (2)C18—C13—C12120.20 (19)
C2—C1—C11126.77 (19)C15—C14—C13120.2 (2)
C5—C1—Fe169.21 (11)C15—C14—H14119.9
C2—C1—Fe169.37 (11)C13—C14—H14119.9
C11—C1—Fe1126.52 (15)C16—C15—C14120.6 (2)
C3—C2—C1108.16 (18)C16—C15—H15119.7
C3—C2—Fe169.75 (11)C14—C15—H15119.7
C1—C2—Fe169.61 (11)C17—C16—C15119.5 (2)
C3—C2—H2125.9C17—C16—H16120.2
C1—C2—H2125.9C15—C16—H16120.2
Fe1—C2—H2126.3C16—C17—C18120.9 (2)
C4—C3—C2107.84 (19)C16—C17—H17119.5
C4—C3—Fe169.69 (13)C18—C17—H17119.5
C2—C3—Fe169.61 (12)C17—C18—C13120.2 (2)
C4—C3—H3126.1C17—C18—H18119.9
C2—C3—H3126.1C13—C18—H18119.9
Fe1—C3—H3126.2C6—Fe1—C740.86 (12)
C5—C4—C3108.8 (2)C6—Fe1—C5122.19 (11)
C5—C4—Fe169.57 (13)C7—Fe1—C5158.78 (11)
C3—C4—Fe169.83 (14)C6—Fe1—C868.46 (12)
C5—C4—H4125.6C7—Fe1—C840.68 (11)
C3—C4—H4125.6C5—Fe1—C8158.68 (11)
Fe1—C4—H4126.6C6—Fe1—C1040.45 (11)
C4—C5—C1107.9 (2)C7—Fe1—C1068.13 (12)
C4—C5—Fe169.91 (13)C5—Fe1—C10107.18 (10)
C1—C5—Fe169.80 (12)C8—Fe1—C1067.90 (11)
C4—C5—H5126.0C6—Fe1—C4158.82 (12)
C1—C5—H5126.0C7—Fe1—C4159.25 (12)
Fe1—C5—H5125.8C5—Fe1—C440.52 (9)
C10—C6—C7107.8 (2)C8—Fe1—C4123.54 (11)
C10—C6—Fe170.30 (14)C10—Fe1—C4123.54 (11)
C7—C6—Fe169.69 (15)C6—Fe1—C2122.23 (10)
C10—C6—H6126.1C7—Fe1—C2107.45 (10)
C7—C6—H6126.1C5—Fe1—C268.78 (9)
Fe1—C6—H6125.5C8—Fe1—C2123.61 (11)
C8—C7—C6107.8 (2)C10—Fe1—C2158.18 (10)
C8—C7—Fe170.03 (15)C4—Fe1—C268.18 (9)
C6—C7—Fe169.45 (15)C6—Fe1—C3158.73 (12)
C8—C7—H7126.1C7—Fe1—C3123.05 (12)
C6—C7—H7126.1C5—Fe1—C368.54 (9)
Fe1—C7—H7126.0C8—Fe1—C3108.44 (10)
C9—C8—C7107.7 (3)C10—Fe1—C3159.70 (11)
C9—C8—Fe170.24 (14)C4—Fe1—C340.48 (9)
C7—C8—Fe169.29 (15)C2—Fe1—C340.64 (8)
C9—C8—H8126.1C6—Fe1—C1106.36 (10)
C7—C8—H8126.1C7—Fe1—C1122.50 (10)
Fe1—C8—H8125.9C5—Fe1—C140.99 (8)
C8—C9—C10108.9 (2)C8—Fe1—C1159.43 (11)
C8—C9—Fe169.84 (14)C10—Fe1—C1121.91 (10)
C10—C9—Fe169.70 (13)C4—Fe1—C168.43 (9)
C8—C9—H9125.5C2—Fe1—C141.02 (8)
C10—C9—H9125.5C3—Fe1—C168.75 (8)
Fe1—C9—H9126.5C6—Fe1—C967.84 (11)
C9—C10—C6107.8 (3)C7—Fe1—C967.65 (11)
C9—C10—Fe170.03 (13)C5—Fe1—C9123.04 (10)
C6—C10—Fe169.25 (14)C8—Fe1—C939.92 (10)
C9—C10—H10126.1C10—Fe1—C940.27 (11)
C6—C10—H10126.1C4—Fe1—C9109.01 (10)
Fe1—C10—H10126.2C2—Fe1—C9159.76 (11)
C12—C11—C1178.5 (3)C3—Fe1—C9124.19 (10)
C11—C12—C13179.0 (2)C1—Fe1—C9158.39 (11)
C14—C13—C18118.52 (19)
C5—C1—C2—C30.2 (2)C9—C10—Fe1—C6119.0 (3)
C11—C1—C2—C3179.9 (2)C9—C10—Fe1—C780.78 (19)
Fe1—C1—C2—C359.30 (15)C6—C10—Fe1—C738.24 (17)
C5—C1—C2—Fe159.07 (14)C9—C10—Fe1—C5121.19 (17)
C11—C1—C2—Fe1120.8 (2)C6—C10—Fe1—C5119.78 (17)
C1—C2—C3—C40.2 (2)C9—C10—Fe1—C836.75 (16)
Fe1—C2—C3—C459.43 (15)C6—C10—Fe1—C882.28 (19)
C1—C2—C3—Fe159.21 (14)C9—C10—Fe1—C479.75 (19)
C2—C3—C4—C50.6 (3)C6—C10—Fe1—C4161.22 (16)
Fe1—C3—C4—C558.79 (15)C9—C10—Fe1—C2163.1 (2)
C2—C3—C4—Fe159.38 (15)C6—C10—Fe1—C244.1 (4)
C3—C4—C5—C10.7 (2)C9—C10—Fe1—C346.7 (4)
Fe1—C4—C5—C159.69 (15)C6—C10—Fe1—C3165.7 (3)
C3—C4—C5—Fe158.96 (16)C9—C10—Fe1—C1163.62 (16)
C2—C1—C5—C40.6 (2)C6—C10—Fe1—C177.36 (19)
C11—C1—C5—C4179.51 (19)C6—C10—Fe1—C9119.0 (3)
Fe1—C1—C5—C459.76 (15)C5—C4—Fe1—C641.4 (3)
C2—C1—C5—Fe159.17 (14)C3—C4—Fe1—C6161.6 (2)
C11—C1—C5—Fe1120.7 (2)C5—C4—Fe1—C7164.1 (3)
C10—C6—C7—C80.5 (3)C3—C4—Fe1—C743.8 (3)
Fe1—C6—C7—C859.75 (18)C3—C4—Fe1—C5120.24 (17)
C10—C6—C7—Fe160.25 (17)C5—C4—Fe1—C8160.83 (14)
C6—C7—C8—C90.6 (3)C3—C4—Fe1—C878.93 (16)
Fe1—C7—C8—C960.00 (18)C5—C4—Fe1—C1076.70 (16)
C6—C7—C8—Fe159.39 (18)C3—C4—Fe1—C10163.06 (13)
C7—C8—C9—C100.5 (3)C5—C4—Fe1—C282.43 (13)
Fe1—C8—C9—C1058.91 (17)C3—C4—Fe1—C237.81 (12)
C7—C8—C9—Fe159.40 (18)C5—C4—Fe1—C3120.24 (17)
C8—C9—C10—C60.2 (3)C5—C4—Fe1—C138.12 (12)
Fe1—C9—C10—C659.17 (17)C3—C4—Fe1—C182.11 (13)
C8—C9—C10—Fe159.00 (18)C5—C4—Fe1—C9118.98 (14)
C7—C6—C10—C90.2 (3)C3—C4—Fe1—C9120.78 (15)
Fe1—C6—C10—C959.67 (17)C3—C2—Fe1—C6163.12 (16)
C7—C6—C10—Fe159.87 (17)C1—C2—Fe1—C677.44 (17)
C18—C13—C14—C151.1 (3)C3—C2—Fe1—C7120.77 (16)
C12—C13—C14—C15179.1 (2)C1—C2—Fe1—C7119.79 (15)
C13—C14—C15—C160.8 (4)C3—C2—Fe1—C581.37 (15)
C14—C15—C16—C170.1 (4)C1—C2—Fe1—C538.07 (13)
C15—C16—C17—C180.5 (4)C3—C2—Fe1—C878.98 (18)
C16—C17—C18—C130.2 (4)C1—C2—Fe1—C8161.58 (14)
C14—C13—C18—C170.6 (3)C3—C2—Fe1—C10164.6 (3)
C12—C13—C18—C17179.6 (2)C1—C2—Fe1—C1045.2 (3)
C10—C6—Fe1—C7118.6 (2)C3—C2—Fe1—C437.67 (14)
C10—C6—Fe1—C578.45 (18)C1—C2—Fe1—C481.77 (14)
C7—C6—Fe1—C5162.96 (14)C1—C2—Fe1—C3119.44 (19)
C10—C6—Fe1—C880.76 (18)C3—C2—Fe1—C1119.44 (19)
C7—C6—Fe1—C837.82 (16)C3—C2—Fe1—C948.2 (3)
C7—C6—Fe1—C10118.6 (2)C1—C2—Fe1—C9167.7 (3)
C10—C6—Fe1—C447.9 (3)C4—C3—Fe1—C6161.7 (3)
C7—C6—Fe1—C4166.5 (2)C2—C3—Fe1—C642.6 (3)
C10—C6—Fe1—C2162.20 (15)C4—C3—Fe1—C7162.97 (15)
C7—C6—Fe1—C279.22 (18)C2—C3—Fe1—C777.94 (17)
C10—C6—Fe1—C3166.4 (2)C4—C3—Fe1—C537.10 (13)
C7—C6—Fe1—C347.8 (3)C2—C3—Fe1—C581.99 (14)
C10—C6—Fe1—C1120.32 (16)C4—C3—Fe1—C8120.43 (15)
C7—C6—Fe1—C1121.10 (16)C2—C3—Fe1—C8120.49 (15)
C10—C6—Fe1—C937.61 (17)C4—C3—Fe1—C1044.4 (3)
C7—C6—Fe1—C980.98 (17)C2—C3—Fe1—C10163.5 (3)
C8—C7—Fe1—C6119.0 (2)C2—C3—Fe1—C4119.09 (19)
C8—C7—Fe1—C5162.2 (2)C4—C3—Fe1—C2119.09 (19)
C6—C7—Fe1—C543.3 (3)C4—C3—Fe1—C181.26 (14)
C6—C7—Fe1—C8119.0 (2)C2—C3—Fe1—C137.83 (13)
C8—C7—Fe1—C1081.08 (18)C4—C3—Fe1—C979.09 (17)
C6—C7—Fe1—C1037.87 (15)C2—C3—Fe1—C9161.83 (15)
C8—C7—Fe1—C447.3 (4)C5—C1—Fe1—C6120.57 (15)
C6—C7—Fe1—C4166.3 (2)C2—C1—Fe1—C6120.62 (15)
C8—C7—Fe1—C2121.63 (17)C11—C1—Fe1—C60.5 (2)
C6—C7—Fe1—C2119.42 (16)C5—C1—Fe1—C7162.18 (14)
C8—C7—Fe1—C379.75 (19)C2—C1—Fe1—C779.01 (17)
C6—C7—Fe1—C3161.30 (15)C11—C1—Fe1—C742.1 (2)
C8—C7—Fe1—C1164.11 (15)C2—C1—Fe1—C5118.81 (18)
C6—C7—Fe1—C176.94 (18)C11—C1—Fe1—C5120.1 (2)
C8—C7—Fe1—C937.46 (16)C5—C1—Fe1—C8167.3 (3)
C6—C7—Fe1—C981.49 (17)C2—C1—Fe1—C848.5 (3)
C4—C5—Fe1—C6163.60 (14)C11—C1—Fe1—C872.6 (3)
C1—C5—Fe1—C677.47 (16)C5—C1—Fe1—C1079.28 (16)
C4—C5—Fe1—C7164.4 (3)C2—C1—Fe1—C10161.91 (15)
C1—C5—Fe1—C745.5 (3)C11—C1—Fe1—C1040.8 (2)
C4—C5—Fe1—C848.8 (3)C5—C1—Fe1—C437.70 (13)
C1—C5—Fe1—C8167.7 (3)C2—C1—Fe1—C481.11 (14)
C4—C5—Fe1—C10121.89 (15)C11—C1—Fe1—C4157.7 (2)
C1—C5—Fe1—C10119.18 (14)C5—C1—Fe1—C2118.81 (18)
C1—C5—Fe1—C4118.93 (18)C11—C1—Fe1—C2121.1 (2)
C4—C5—Fe1—C280.83 (13)C5—C1—Fe1—C381.32 (14)
C1—C5—Fe1—C238.09 (12)C2—C1—Fe1—C337.48 (13)
C4—C5—Fe1—C337.06 (12)C11—C1—Fe1—C3158.6 (2)
C1—C5—Fe1—C381.87 (13)C5—C1—Fe1—C949.6 (3)
C4—C5—Fe1—C1118.93 (18)C2—C1—Fe1—C9168.4 (3)
C4—C5—Fe1—C980.62 (16)C11—C1—Fe1—C970.4 (3)
C1—C5—Fe1—C9160.45 (14)C8—C9—Fe1—C682.47 (19)
C9—C8—Fe1—C680.78 (18)C10—C9—Fe1—C637.78 (18)
C7—C8—Fe1—C637.98 (16)C8—C9—Fe1—C738.16 (17)
C9—C8—Fe1—C7118.8 (2)C10—C9—Fe1—C782.09 (19)
C9—C8—Fe1—C543.5 (3)C8—C9—Fe1—C5162.62 (16)
C7—C8—Fe1—C5162.3 (2)C10—C9—Fe1—C577.13 (19)
C9—C8—Fe1—C1037.06 (17)C10—C9—Fe1—C8120.2 (2)
C7—C8—Fe1—C1081.70 (19)C8—C9—Fe1—C10120.2 (2)
C9—C8—Fe1—C479.44 (19)C8—C9—Fe1—C4119.93 (17)
C7—C8—Fe1—C4161.79 (17)C10—C9—Fe1—C4119.83 (18)
C9—C8—Fe1—C2164.00 (15)C8—C9—Fe1—C241.6 (4)
C7—C8—Fe1—C277.2 (2)C10—C9—Fe1—C2161.8 (3)
C9—C8—Fe1—C3121.63 (17)C8—C9—Fe1—C377.53 (19)
C7—C8—Fe1—C3119.60 (18)C10—C9—Fe1—C3162.22 (17)
C9—C8—Fe1—C1159.8 (2)C8—C9—Fe1—C1160.8 (2)
C7—C8—Fe1—C141.1 (4)C10—C9—Fe1—C140.5 (4)
C7—C8—Fe1—C9118.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg3i0.933.133.927 (3)145
C14—H14···Cg2ii0.933.143.817 (3)131
C15—H15···Cg2ii0.933.253.870 (3)126
C18—H18···Cg1iii0.932.723.535 (3)147
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C5H5)(C8H7)][Fe(C5H5)(C13H9)]
Mr224.08286.14
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)296296
a, b, c (Å)9.8232 (7), 10.3192 (7), 11.1465 (8)8.7368 (9), 10.6296 (15), 15.1113 (16)
α, β, γ (°)76.431 (5), 86.740 (6), 70.527 (5)90, 105.327 (8), 90
V3)1035.25 (13)1353.5 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.411.10
Crystal size (mm)0.60 × 0.49 × 0.400.62 × 0.51 × 0.14
Data collection
DiffractometerStoe IPDS 2Stoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Integration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.558, 0.6700.583, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
15013, 4072, 3613 7479, 2650, 1865
Rint0.0460.045
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.01 0.029, 0.069, 0.91
No. of reflections40722650
No. of parameters255172
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.270.18, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—C111.429 (3)C21—C311.427 (3)
C11—C121.184 (3)C31—C321.182 (3)
C12—C131.464 (3)C32—C331.461 (3)
C5—C1—C2107.29 (17)C22—C21—C31125.93 (18)
C2—C1—C11126.30 (17)C25—C21—C31126.5 (2)
C12—C11—C1176.28 (19)C32—C31—C21177.5 (2)
C11—C12—C13178.9 (2)C31—C32—C33178.9 (2)
C11—C1—C2—C3177.69 (17)C31—C21—C22—C23178.92 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.933.1013.874 (2)141.61
C29—H29···Cg1ii0.933.1213.889 (3)141.21
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
C1—C111.429 (3)C12—C131.440 (3)
C11—C121.192 (3)
C5—C1—C2107.25 (18)C12—C11—C1178.5 (3)
C5—C1—C11126.0 (2)C11—C12—C13179.0 (2)
C11—C1—C2—C3179.9 (2)C12—C13—C14—C15179.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg3i0.933.1283.927 (3)145.04
C14—H14···Cg2ii0.933.1433.817 (3)130.81
C15—H15···Cg2ii0.933.2463.870 (3)126.30
C18—H18···Cg1iii0.932.7163.535 (3)147.41
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds