Download citation
Download citation
link to html
The title compounds C13H19NO5, C11H14N2O6·H2O and C11H15NO2, respectively, have been derived from 3-ethoxy­salicylaldehyde, 5-nitro­salicylaldehyde and salicylaldehyde, respectively. The C-O and N-C bond distances, and three hydrogen bonds formed by the phenolate O atom, show that the zwitterionic form exists in the first compound. The second compound is transformed to the quinoid form as a result of resonance between the zwitterionic form and the nitro group. The third compound exists in the phenol-imine form, with appropriate C-N and C-O bond distances.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106017252/hj1092sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106017252/hj1092Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106017252/hj1092IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106017252/hj1092IIIsup4.hkl
Contains datablock III

CCDC references: 616135; 616136; 616137

Comment top

There is considerable interest in Schiff base ligands and their complexes because of their striking antitumour activities (Zhou et al., 2000). Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964), i.e. phenol–imine keto–amine tautomerism. It is known that the phenol–imine tautomer is dominant in salicylaldimine, while the keto–amine form is preferred in the naphthaldimine Schiff bases depending on the solvent polarities. Moreover, o-hydroxy Schiff bases can exist in different tautomeric forms. The configurations of these compounds are controlled by steric and electronic effects (Filarowski et al., 2002), and the phenol–imine (molecular or phenol) and keto–amine (or keto) tautomeric forms are the most common. The subtituents on the phenol ring affect the tautomeric equilibrium. The existence of electron attracting groups on the o- and p-positions to the OH increase the acidity and the stability of the keto amine form with the mesomeric and inductive effects (Filarowski et al., 2002) Studies made so far show that o-hydroxy Schiff bases with electron-attracting groups like Cl and NO2 at the o- or p-position exhibit the keto–amine form (Wozniak et al., 1995). The zwitterionic form is rarely seen in the solid state (Krygowski et al., 1997).

In compound (I) (Fig. 1), there are two molecules in the asymmetric unit. Fig. 3 shows (II), with a water molecule of crystallization in the asymmetric unit, and Fig. 5 shows (III). By analysing the C1—C2, C2—O1, C1—C7 and C7—N1 bonds in Table 8, it can be concluded that the C1—C2 bond lengths in (I) and (II) are longer than that in compound (III), whilst the C2—O1 bond length of in compound (II) is longer than those in other two compounds. The longest C1—C7 bond is in compound (III), and those of (I) and (II) are nearly equal. The C7—N1 bond lengths in all three compounds indicate that these bonds are C=N double bonds. As a result of this analysis, it can be said that the structure of compounds (I), (II) and (III) are closest to (Ia) (scheme 2), (IIb) (scheme 3) and (IIIa) (scheme 4), respectively. For compound (I), the comparisons of the C—O and N—C bond distances with the corresponding values of Allen et al. (1987) and also the existence of three hydrogen bonds formed by the negative O1 atom show that the zwitterionic form is very important (Scheme 2). In (II), evaluating the N—C and C—O bonds, it can be concluded that the aroused zwitterionic form (IIb) is important, arising from the resonating effect of the nitro group (scheme 3). In the solid state, the phenol–imine tautomeric form exists in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız et al., 1998). Also, the position of proton and the bond distances of C—N and C—O indicate that the compound (III) is in phenol–imine tautomeric form, (IIIa) (scheme 4).

In compound (I), each molecule in the asymmetric unit has an intramolecular N—H···O hydrogen bond. In addition, molecules A and B in the asymmetric unit are linked by intermolecular O—H···O hydrogen bonds forming a three-dimensional network, as shown in Fig. 2; this figure also shows the two five-membered pseudo-rings formed by the two intermolecular hydrogen bonds (O4A—H4A···O1B and O4A—H4A···O2B; and O4B—H4B···O1A and O4B—H4B···O2A). In (II), there are two intramolecular hydrogen bonds, N1—H1···O1 and O6—H6···O7, and the water molecules form intermolecular hydrogen bonds with O4 and O6 (Table 4, Fig. 4). Compound (III) has one intramolecular hydrogen bond, O1—H1···N1, which is shown in Fig. 5 and there is also an intermolecular hydrogen bond, O2—H2···O2 (Table 6 and Fig. 6). In all three compounds, in addition to the intermolecular hydrogen bonds, there are ππ interactions (Table 7), leading to a three-dimensional network. Cg1 and Cg2 given in Table 2 and Table 7 are the centroids of the C1A–C6A and C1B–C6B rings for compound (I); Cg1 is the centroid of the C1–C6 ring for (II) and (III).

Experimental top

All three title compounds were prepared as described by Odabasoglu et al. (2003) using as starting materials 3-ethoxysalicylaldehyde and tris(hydroxymethyl)aminomethane for (I) (yield 92%, m.p. 437–439 K). 5-nitrosalicylaldehyde and tris(hydroxymethyl)aminomethane for (II) (yield 95%, m.p. 508–510 K), and salicylaldehyde and (R)-(-)-2-amino-1-butanol for (III) (yield 85%, m.p. 329–331 K).

Refinement top

For (I): Except the attached ones to N, all the H atoms were refined using a riding model with C—H distance of 0.93 A and Uiso values equal to 1.2Ueq of the parent atom.

For (II): Except the attached ones to O5 and O6, all H-atom parameters were freely refined, with C—H distance in the range 0.92 (2)–1.13 (2) Å and Uiso(H) values in the range 0.053 (6)–0.161 (15) Å2.

For (III): Except the attached ones to O1 and O2, all the H atoms were

refined using a riding model with C—H distance of 0.93 A and Uiso values equal to 1.2Ueq of the parent atom.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The packing of (I). Dashed lines indicate hydrogen bonds and C—H···π and ππ interactions. H atoms not involved in hydrogen bonding or C—H···π interactions have been omitted for clarity.
[Figure 3] Fig. 3. A view of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. The packing of (II). Dashed lines indicate hydrogen bonds and ππ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5] Fig. 5. A view of (III), with the atom-numbering scheme and 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 6] Fig. 6. The packing of (III). Dashed lines indicate hydrogen bonds and ππ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) (Z)-6-{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yliminio]methyl}- 2-ethoxyphenolate top
Crystal data top
C13H19NO5Z = 4
Mr = 269.29F(000) = 576
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7424 (8) ÅCell parameters from 22555 reflections
b = 10.6073 (8) Åθ = 2.1–29.0°
c = 14.4820 (11) ŵ = 0.10 mm1
α = 102.592 (6)°T = 296 K
β = 104.459 (6)°Prism, yellow
γ = 105.840 (6)°0.43 × 0.31 × 0.19 mm
V = 1326.7 (2) Å3
Data collection top
Stoe IPDS-II
diffractometer
6080 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.946, Tmax = 0.988l = 1818
22555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
6080 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.14 e Å3
6 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H19NO5γ = 105.840 (6)°
Mr = 269.29V = 1326.7 (2) Å3
Triclinic, P1Z = 4
a = 9.7424 (8) ÅMo Kα radiation
b = 10.6073 (8) ŵ = 0.10 mm1
c = 14.4820 (11) ÅT = 296 K
α = 102.592 (6)°0.43 × 0.31 × 0.19 mm
β = 104.459 (6)°
Data collection top
Stoe IPDS-II
diffractometer
6080 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3597 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.988Rint = 0.051
22555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.14 e Å3
6080 reflectionsΔρmin = 0.17 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.

planes) are estimated using the full covariance matrix. The cell e.s.d.'s are

taken into account individually in the estimation of e.s.d.'s in distances,

angles and torsion angles; correlations between e.s.d.'s in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.

planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.30620 (17)0.78245 (16)0.35738 (11)0.0350 (3)
C1B0.02877 (16)0.34129 (15)0.12329 (11)0.0340 (3)
C2A0.33266 (17)0.65711 (15)0.35498 (11)0.0347 (3)
C2B0.04911 (16)0.21183 (15)0.13568 (11)0.0339 (3)
C3A0.23044 (17)0.55769 (16)0.38209 (11)0.0375 (3)
C3B0.06703 (17)0.10185 (16)0.12875 (11)0.0357 (3)
C4A0.10705 (18)0.58075 (17)0.40102 (12)0.0437 (4)
H2A0.04090.51440.41720.052*
C4B0.19155 (17)0.12250 (16)0.11010 (12)0.0393 (4)
H2B0.26560.04980.10530.047*
C5A0.07808 (18)0.70205 (17)0.39664 (12)0.0432 (4)
H8A0.00820.71420.40760.052*
C5B0.20934 (17)0.25151 (17)0.09813 (12)0.0393 (4)
H8B0.29450.26370.08530.047*
C6A0.17592 (17)0.80151 (17)0.37635 (11)0.0390 (4)
H6A0.15770.88280.37480.047*
C6B0.10276 (17)0.35794 (16)0.10520 (11)0.0366 (3)
H6B0.11570.44280.09810.044*
C7A0.40902 (17)0.89210 (16)0.34174 (11)0.0367 (3)
H7A0.38560.97140.34180.044*
C7B0.13550 (17)0.45466 (16)0.13292 (11)0.0367 (3)
H7B0.11520.53610.12790.044*
C8A0.64885 (16)0.99457 (15)0.30974 (11)0.0347 (3)
C8B0.37344 (16)0.55637 (15)0.16759 (11)0.0359 (3)
C9A0.64241 (18)1.13715 (16)0.34918 (12)0.0406 (4)
H9A0.64621.15450.41850.049*
H9B0.72921.20600.34660.049*
C9B0.3673 (2)0.69896 (16)0.12986 (13)0.0468 (4)
H9C0.45190.76680.13570.056*
H9D0.37520.71940.05970.056*
C10A0.61801 (17)0.95061 (16)0.19595 (11)0.0378 (3)
H10A0.60460.85370.17280.045*
H10B0.52480.96230.16270.045*
C10B0.33988 (17)0.50974 (16)0.28126 (12)0.0386 (3)
H10C0.24620.52100.31410.046*
H10D0.32630.41270.30350.046*
C11A0.80283 (18)0.99254 (17)0.36695 (13)0.0434 (4)
H11A0.88101.05390.35090.052*
H11B0.82131.02690.43830.052*
C11B0.52858 (18)0.55692 (17)0.11089 (13)0.0436 (4)
H11C0.54750.59170.03950.052*
H11D0.60530.61900.12750.052*
C22A0.1902 (2)0.35134 (19)0.42777 (15)0.0569 (5)
H22A0.08410.31040.38750.068*
H22B0.19830.40030.49490.068*
C22B0.14276 (18)0.13258 (16)0.12848 (14)0.0442 (4)
H22C0.15140.10770.06220.053*
H22D0.24190.15930.17780.053*
C33A0.2592 (3)0.2417 (2)0.43089 (17)0.0743 (6)
H33A0.20770.17800.45960.112*
H33B0.36410.28320.47100.112*
H33C0.25010.19350.36410.112*
C33B0.0829 (2)0.24890 (18)0.14170 (14)0.0509 (4)
H33D0.15010.32720.13320.076*
H33E0.07540.27290.20770.076*
H33F0.01530.22110.09270.076*
N1A0.53427 (14)0.88833 (14)0.32724 (10)0.0369 (3)
N1B0.25991 (14)0.45078 (14)0.14838 (10)0.0372 (3)
O1A0.44364 (12)0.63210 (11)0.33041 (9)0.0443 (3)
O1B0.16637 (12)0.19203 (11)0.15402 (9)0.0452 (3)
O2A0.26921 (13)0.44390 (11)0.38499 (9)0.0463 (3)
O2B0.03846 (12)0.01887 (11)0.14138 (9)0.0452 (3)
O3A0.50771 (13)1.14768 (12)0.29112 (9)0.0467 (3)
O3B0.23044 (15)0.70647 (13)0.18605 (12)0.0638 (4)
O4A0.73646 (13)1.02752 (12)0.16903 (9)0.0486 (3)
O4B0.45729 (13)0.58538 (11)0.31012 (9)0.0464 (3)
O5A0.81233 (14)0.85944 (13)0.34382 (9)0.0492 (3)
O5B0.54130 (14)0.42492 (13)0.13334 (10)0.0516 (3)
H1A0.5467 (19)0.809 (2)0.3255 (13)0.050 (5)*
H1B0.272 (2)0.370 (2)0.1517 (13)0.055 (5)*
H3A0.519 (2)1.2337 (17)0.3025 (16)0.082*
H3B0.240 (3)0.7900 (17)0.1760 (17)0.082*
H4A0.791 (2)0.981 (2)0.1612 (17)0.082*
H4B0.505 (2)0.531 (2)0.3254 (16)0.082*
H5A0.831 (3)0.843 (2)0.2897 (13)0.082*
H5B0.556 (3)0.408 (2)0.1893 (13)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0372 (8)0.0371 (8)0.0345 (8)0.0136 (7)0.0160 (7)0.0126 (6)
C1B0.0356 (8)0.0318 (8)0.0381 (8)0.0120 (6)0.0168 (7)0.0118 (6)
C2A0.0371 (8)0.0346 (8)0.0354 (8)0.0130 (7)0.0163 (7)0.0107 (6)
C2B0.0336 (8)0.0354 (8)0.0367 (8)0.0123 (7)0.0171 (7)0.0117 (6)
C3A0.0429 (9)0.0329 (8)0.0374 (8)0.0114 (7)0.0159 (7)0.0114 (7)
C3B0.0373 (8)0.0333 (8)0.0392 (8)0.0130 (7)0.0156 (7)0.0118 (7)
C4A0.0394 (9)0.0444 (10)0.0478 (9)0.0081 (7)0.0212 (8)0.0157 (8)
C4B0.0323 (8)0.0390 (9)0.0487 (9)0.0085 (7)0.0179 (7)0.0174 (7)
C5A0.0365 (9)0.0515 (11)0.0459 (9)0.0174 (8)0.0189 (8)0.0142 (8)
C5B0.0330 (8)0.0458 (9)0.0444 (9)0.0164 (7)0.0178 (7)0.0148 (7)
C6A0.0402 (9)0.0399 (9)0.0422 (9)0.0185 (7)0.0165 (7)0.0133 (7)
C6B0.0390 (8)0.0363 (9)0.0397 (8)0.0173 (7)0.0170 (7)0.0115 (7)
C7A0.0426 (9)0.0349 (8)0.0400 (8)0.0181 (7)0.0180 (7)0.0149 (7)
C7B0.0404 (9)0.0334 (8)0.0434 (9)0.0162 (7)0.0202 (7)0.0137 (7)
C8A0.0346 (8)0.0286 (8)0.0461 (9)0.0118 (6)0.0175 (7)0.0152 (7)
C8B0.0361 (8)0.0310 (8)0.0474 (9)0.0114 (7)0.0218 (7)0.0165 (7)
C9A0.0411 (9)0.0337 (9)0.0490 (9)0.0147 (7)0.0161 (8)0.0132 (7)
C9B0.0564 (11)0.0317 (9)0.0625 (11)0.0152 (8)0.0351 (9)0.0162 (8)
C10A0.0370 (8)0.0357 (9)0.0480 (9)0.0148 (7)0.0202 (7)0.0169 (7)
C10B0.0402 (8)0.0351 (9)0.0490 (9)0.0161 (7)0.0209 (7)0.0180 (7)
C11A0.0400 (9)0.0393 (9)0.0515 (10)0.0164 (7)0.0129 (8)0.0143 (8)
C11B0.0420 (9)0.0418 (10)0.0498 (10)0.0123 (7)0.0184 (8)0.0187 (8)
C22A0.0726 (13)0.0482 (11)0.0600 (11)0.0163 (10)0.0334 (10)0.0286 (9)
C22B0.0368 (8)0.0374 (9)0.0595 (11)0.0089 (7)0.0161 (8)0.0217 (8)
C33A0.0993 (17)0.0591 (13)0.0844 (15)0.0330 (13)0.0381 (14)0.0441 (12)
C33B0.0499 (10)0.0393 (10)0.0654 (12)0.0151 (8)0.0180 (9)0.0212 (9)
N1A0.0408 (7)0.0301 (7)0.0478 (8)0.0150 (6)0.0214 (6)0.0161 (6)
N1B0.0394 (7)0.0293 (7)0.0520 (8)0.0134 (6)0.0243 (6)0.0171 (6)
O1A0.0489 (7)0.0378 (6)0.0642 (7)0.0222 (5)0.0351 (6)0.0223 (5)
O1B0.0432 (6)0.0365 (6)0.0724 (8)0.0186 (5)0.0367 (6)0.0226 (6)
O2A0.0521 (7)0.0372 (6)0.0596 (7)0.0156 (5)0.0283 (6)0.0228 (5)
O2B0.0427 (6)0.0337 (6)0.0693 (8)0.0146 (5)0.0290 (6)0.0212 (6)
O3A0.0442 (6)0.0345 (6)0.0673 (8)0.0194 (5)0.0177 (6)0.0204 (6)
O3B0.0626 (8)0.0407 (7)0.1151 (12)0.0304 (7)0.0481 (8)0.0391 (8)
O4A0.0557 (7)0.0402 (7)0.0764 (8)0.0264 (6)0.0434 (7)0.0318 (6)
O4B0.0622 (8)0.0371 (7)0.0639 (7)0.0252 (6)0.0422 (6)0.0273 (6)
O5A0.0564 (7)0.0472 (7)0.0597 (8)0.0318 (6)0.0244 (6)0.0230 (6)
O5B0.0542 (7)0.0562 (8)0.0627 (8)0.0315 (6)0.0265 (6)0.0292 (7)
Geometric parameters (Å, º) top
C1A—C7A1.414 (2)C9A—H9B0.9700
C1A—C2A1.417 (2)C9B—O3B1.411 (2)
C1A—C6A1.420 (2)C9B—H9C0.9700
C1B—C7B1.418 (2)C9B—H9D0.9700
C1B—C6B1.4188 (19)C10A—O4A1.4138 (17)
C1B—C2B1.420 (2)C10A—H10A0.9700
C2A—O1A1.2936 (16)C10A—H10B0.9700
C2A—C3A1.435 (2)C10B—O4B1.4180 (17)
C2B—O1B1.2952 (16)C10B—H10C0.9700
C2B—C3B1.428 (2)C10B—H10D0.9700
C3A—O2A1.3653 (18)C11A—O5A1.4123 (19)
C3A—C4A1.370 (2)C11A—H11A0.9700
C3B—O2B1.3669 (18)C11A—H11B0.9700
C3B—C4B1.370 (2)C11B—O5B1.413 (2)
C4A—C5A1.402 (2)C11B—H11C0.9700
C4A—H2A0.9300C11B—H11D0.9700
C4B—C5B1.405 (2)C22A—O2A1.4252 (18)
C4B—H2B0.9300C22A—C33A1.497 (3)
C5A—C6A1.354 (2)C22A—H22A0.9700
C5A—H8A0.9300C22A—H22B0.9700
C5B—C6B1.352 (2)C22B—O2B1.4304 (18)
C5B—H8B0.9300C22B—C33B1.498 (2)
C6A—H6A0.9300C22B—H22C0.9700
C6B—H6B0.9300C22B—H22D0.9700
C7A—N1A1.2983 (18)C33A—H33A0.9600
C7A—H7A0.9300C33A—H33B0.9600
C7B—N1B1.2960 (18)C33A—H33C0.9600
C7B—H7B0.9300C33B—H33D0.9600
C8A—N1A1.4695 (18)C33B—H33E0.9600
C8A—C9A1.520 (2)C33B—H33F0.9600
C8A—C11A1.530 (2)N1A—H1A0.878 (19)
C8A—C10A1.538 (2)N1B—H1B0.887 (19)
C8B—N1B1.4726 (18)O3A—H3A0.861 (16)
C8B—C9B1.515 (2)O3B—H3B0.841 (16)
C8B—C11B1.527 (2)O4A—H4A0.831 (15)
C8B—C10B1.533 (2)O4B—H4B0.860 (15)
C9A—O3A1.4183 (19)O5A—H5A0.839 (15)
C9A—H9A0.9700O5B—H5B0.845 (15)
C7A—C1A—C2A121.01 (13)C8B—C9B—H9D109.6
C7A—C1A—C6A118.26 (14)H9C—C9B—H9D108.1
C2A—C1A—C6A120.73 (13)O4A—C10A—C8A112.39 (13)
C7B—C1B—C6B118.58 (13)O4A—C10A—H10A109.1
C7B—C1B—C2B121.00 (13)C8A—C10A—H10A109.1
C6B—C1B—C2B120.37 (13)O4A—C10A—H10B109.1
O1A—C2A—C1A122.40 (13)C8A—C10A—H10B109.1
O1A—C2A—C3A120.81 (13)H10A—C10A—H10B107.9
C1A—C2A—C3A116.78 (13)O4B—C10B—C8B112.23 (13)
O1B—C2B—C1B122.15 (13)O4B—C10B—H10C109.2
O1B—C2B—C3B120.62 (13)C8B—C10B—H10C109.2
C1B—C2B—C3B117.23 (12)O4B—C10B—H10D109.2
O2A—C3A—C4A126.12 (14)C8B—C10B—H10D109.2
O2A—C3A—C2A113.46 (13)H10C—C10B—H10D107.9
C4A—C3A—C2A120.41 (14)O5A—C11A—C8A112.59 (13)
O2B—C3B—C4B125.92 (13)O5A—C11A—H11A109.1
O2B—C3B—C2B113.45 (12)C8A—C11A—H11A109.1
C4B—C3B—C2B120.63 (14)O5A—C11A—H11B109.1
C3A—C4A—C5A121.55 (14)C8A—C11A—H11B109.1
C3A—C4A—H2A119.2H11A—C11A—H11B107.8
C5A—C4A—H2A119.2O5B—C11B—C8B112.84 (14)
C3B—C4B—C5B121.17 (14)O5B—C11B—H11C109.0
C3B—C4B—H2B119.4C8B—C11B—H11C109.0
C5B—C4B—H2B119.4O5B—C11B—H11D109.0
C6A—C5A—C4A119.86 (14)C8B—C11B—H11D109.0
C6A—C5A—H8A120.1H11C—C11B—H11D107.8
C4A—C5A—H8A120.1O2A—C22A—C33A108.00 (15)
C6B—C5B—C4B120.06 (14)O2A—C22A—H22A110.1
C6B—C5B—H8B120.0C33A—C22A—H22A110.1
C4B—C5B—H8B120.0O2A—C22A—H22B110.1
C5A—C6A—C1A120.39 (14)C33A—C22A—H22B110.1
C5A—C6A—H6A119.8H22A—C22A—H22B108.4
C1A—C6A—H6A119.8O2B—C22B—C33B107.19 (13)
C5B—C6B—C1B120.54 (14)O2B—C22B—H22C110.3
C5B—C6B—H6B119.7C33B—C22B—H22C110.3
C1B—C6B—H6B119.7O2B—C22B—H22D110.3
N1A—C7A—C1A123.74 (14)C33B—C22B—H22D110.3
N1A—C7A—H7A118.1H22C—C22B—H22D108.5
C1A—C7A—H7A118.1C22A—C33A—H33A109.5
N1B—C7B—C1B123.48 (14)C22A—C33A—H33B109.5
N1B—C7B—H7B118.3H33A—C33A—H33B109.5
C1B—C7B—H7B118.3C22A—C33A—H33C109.5
N1A—C8A—C9A111.76 (12)H33A—C33A—H33C109.5
N1A—C8A—C11A106.66 (12)H33B—C33A—H33C109.5
C9A—C8A—C11A108.67 (13)C22B—C33B—H33D109.5
N1A—C8A—C10A105.68 (12)C22B—C33B—H33E109.5
C9A—C8A—C10A112.46 (12)H33D—C33B—H33E109.5
C11A—C8A—C10A111.46 (12)C22B—C33B—H33F109.5
N1B—C8B—C9B112.15 (12)H33D—C33B—H33F109.5
N1B—C8B—C11B107.17 (12)H33E—C33B—H33F109.5
C9B—C8B—C11B108.17 (14)C7A—N1A—C8A128.68 (13)
N1B—C8B—C10B105.30 (12)C7A—N1A—H1A112.9 (11)
C9B—C8B—C10B112.26 (13)C8A—N1A—H1A118.4 (11)
C11B—C8B—C10B111.70 (12)C7B—N1B—C8B128.84 (13)
O3A—C9A—C8A110.41 (13)C7B—N1B—H1B113.0 (11)
O3A—C9A—H9A109.6C8B—N1B—H1B118.0 (11)
C8A—C9A—H9A109.6C3A—O2A—C22A117.20 (12)
O3A—C9A—H9B109.6C3B—O2B—C22B117.69 (11)
C8A—C9A—H9B109.6C9A—O3A—H3A108.0 (15)
H9A—C9A—H9B108.1C9B—O3B—H3B108.1 (16)
O3B—C9B—C8B110.13 (14)C10A—O4A—H4A107.9 (16)
O3B—C9B—H9C109.6C10B—O4B—H4B106.3 (15)
C8B—C9B—H9C109.6C11A—O5A—H5A108.4 (16)
O3B—C9B—H9D109.6C11B—O5B—H5B108.0 (16)
C7A—C1A—C2A—O1A5.9 (2)N1A—C8A—C9A—O3A68.60 (16)
C6A—C1A—C2A—O1A174.57 (14)C11A—C8A—C9A—O3A173.97 (12)
C7A—C1A—C2A—C3A173.62 (14)C10A—C8A—C9A—O3A50.08 (16)
C6A—C1A—C2A—C3A5.9 (2)N1B—C8B—C9B—O3B66.88 (17)
C7B—C1B—C2B—O1B1.5 (2)C11B—C8B—C9B—O3B175.14 (12)
C6B—C1B—C2B—O1B178.79 (14)C10B—C8B—C9B—O3B51.45 (16)
C7B—C1B—C2B—C3B177.49 (14)N1A—C8A—C10A—O4A168.39 (12)
C6B—C1B—C2B—C3B0.2 (2)C9A—C8A—C10A—O4A69.42 (16)
O1A—C2A—C3A—O2A3.9 (2)C11A—C8A—C10A—O4A52.90 (16)
C1A—C2A—C3A—O2A175.58 (13)N1B—C8B—C10B—O4B168.24 (12)
O1A—C2A—C3A—C4A175.30 (15)C9B—C8B—C10B—O4B69.46 (16)
C1A—C2A—C3A—C4A5.2 (2)C11B—C8B—C10B—O4B52.24 (16)
O1B—C2B—C3B—O2B1.1 (2)N1A—C8A—C11A—O5A52.16 (17)
C1B—C2B—C3B—O2B179.89 (13)C9A—C8A—C11A—O5A172.80 (12)
O1B—C2B—C3B—C4B179.52 (14)C10A—C8A—C11A—O5A62.72 (17)
C1B—C2B—C3B—C4B0.5 (2)N1B—C8B—C11B—O5B53.05 (16)
O2A—C3A—C4A—C5A179.56 (15)C9B—C8B—C11B—O5B174.17 (12)
C2A—C3A—C4A—C5A1.3 (2)C10B—C8B—C11B—O5B61.80 (16)
O2B—C3B—C4B—C5B179.86 (15)C1A—C7A—N1A—C8A179.63 (15)
C2B—C3B—C4B—C5B0.5 (2)C9A—C8A—N1A—C7A22.5 (2)
C3A—C4A—C5A—C6A2.1 (2)C11A—C8A—N1A—C7A141.16 (16)
C3B—C4B—C5B—C6B0.2 (2)C10A—C8A—N1A—C7A100.12 (17)
C4A—C5A—C6A—C1A1.3 (2)C1B—C7B—N1B—C8B174.65 (15)
C7A—C1A—C6A—C5A176.76 (15)C9B—C8B—N1B—C7B22.1 (2)
C2A—C1A—C6A—C5A2.8 (2)C11B—C8B—N1B—C7B140.72 (16)
C4B—C5B—C6B—C1B0.9 (2)C10B—C8B—N1B—C7B100.22 (17)
C7B—C1B—C6B—C5B178.26 (15)C4A—C3A—O2A—C22A11.4 (2)
C2B—C1B—C6B—C5B0.9 (2)C2A—C3A—O2A—C22A169.38 (14)
C2A—C1A—C7A—N1A2.0 (2)C33A—C22A—O2A—C3A175.37 (16)
C6A—C1A—C7A—N1A177.53 (14)C4B—C3B—O2B—C22B3.8 (2)
C6B—C1B—C7B—N1B179.21 (14)C2B—C3B—O2B—C22B175.52 (13)
C2B—C1B—C7B—N1B3.5 (2)C33B—C22B—O2B—C3B177.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O4Bi0.86 (2)1.85 (2)2.7011 (15)173 (2)
O3B—H3B···O4Aii0.84 (2)1.86 (2)2.6994 (16)173 (2)
O4A—H4A···O1Biii0.83 (2)1.98 (2)2.7300 (15)150 (2)
O4A—H4A···O2Biii0.83 (2)2.43 (2)3.0894 (15)137 (2)
O4B—H4B···O1Aiv0.86 (2)1.92 (2)2.7205 (15)154 (2)
O4B—H4B···O2Aiv0.86 (2)2.52 (2)3.1811 (15)134 (2)
O5A—H5A···O1Biii0.84 (2)1.93 (2)2.7548 (16)169 (2)
O5B—H5B···O1Aiv0.85 (2)2.00 (2)2.8351 (16)171 (2)
N1A—H1A···O1A0.878 (19)1.898 (19)2.6331 (17)140.3 (15)
N1B—H1B···O1B0.887 (19)1.876 (19)2.6210 (17)140.4 (16)
C9A—H9A···Cg1v0.972.843.7045 (17)149
C33B—H33F···Cg2vi0.962.973.628 (2)127
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y2, z; (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x+1, y+2, z+1; (vi) x+2, y+2, z.
(II) (Z)-6-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yliminio]methyl}- 4-nitratocyclohexa-2,4-dienone monohydrate top
Crystal data top
C11H14N2O6·H2OF(000) = 608
Mr = 288.26Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11553 reflections
a = 16.9205 (11) Åθ = 1.9–28.8°
b = 10.7034 (6) ŵ = 0.13 mm1
c = 7.2308 (5) ÅT = 296 K
β = 99.518 (5)°Plate, yellow
V = 1291.52 (14) Å30.38 × 0.25 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2877 independent reflections
Radiation source: fine-focus sealed tube1898 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 2121
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.955, Tmax = 0.989l = 99
11553 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2877 reflectionsΔρmax = 0.30 e Å3
214 parametersΔρmin = 0.32 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (4)
Crystal data top
C11H14N2O6·H2OV = 1291.52 (14) Å3
Mr = 288.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9205 (11) ŵ = 0.13 mm1
b = 10.7034 (6) ÅT = 296 K
c = 7.2308 (5) Å0.38 × 0.25 × 0.08 mm
β = 99.518 (5)°
Data collection top
Stoe IPDS-II
diffractometer
2877 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1898 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.989Rint = 0.059
11553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.30 e Å3
2877 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.

planes) are estimated using the full covariance matrix. The cell e.s.d.'s are

taken into account individually in the estimation of e.s.d.'s in distances,

angles and torsion angles; correlations between e.s.d.'s in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.

planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14865 (9)0.67746 (12)0.3596 (2)0.0316 (3)
C20.18202 (9)0.79887 (14)0.3327 (2)0.0341 (4)
C30.12911 (11)0.90282 (15)0.3381 (3)0.0405 (4)
C40.05203 (11)0.88724 (15)0.3619 (3)0.0400 (4)
C50.02170 (9)0.76740 (14)0.3870 (2)0.0352 (4)
C60.06965 (9)0.66455 (14)0.3869 (2)0.0344 (4)
C70.19745 (9)0.56849 (14)0.3731 (2)0.0332 (4)
C80.33033 (9)0.46906 (13)0.3950 (2)0.0319 (3)
C90.28957 (9)0.34190 (14)0.3605 (3)0.0389 (4)
H9A0.24850.33270.43860.047*
H9B0.26440.33470.23030.047*
C100.36916 (9)0.48493 (14)0.6009 (2)0.0364 (4)
H10A0.41210.42460.63110.044*
H10B0.39230.56790.61890.044*
C110.39198 (10)0.48684 (15)0.2657 (3)0.0421 (4)
H11A0.43680.43050.30200.051*
H11B0.36800.46790.13750.051*
N10.27144 (8)0.57004 (12)0.3532 (2)0.0331 (3)
N20.05935 (8)0.75260 (14)0.4191 (2)0.0435 (4)
O10.25388 (7)0.81207 (10)0.30752 (19)0.0454 (3)
O20.10117 (8)0.84614 (14)0.4203 (3)0.0681 (5)
O30.08391 (8)0.64744 (13)0.4466 (2)0.0622 (4)
O40.34854 (7)0.24826 (10)0.40463 (19)0.0483 (3)
H4A0.32760.17920.38790.072*
O50.31300 (7)0.46812 (10)0.72336 (17)0.0419 (3)
H5A0.27690.51960.69890.063*
O60.41917 (8)0.61161 (11)0.2783 (2)0.0506 (4)
O70.48561 (10)0.68839 (15)0.0087 (3)0.0630 (4)
H10.2918 (12)0.640 (2)0.327 (3)0.051 (6)*
H20.1488 (13)0.982 (2)0.319 (3)0.065 (6)*
H30.0153 (12)0.952 (2)0.360 (3)0.058 (6)*
H40.0493 (12)0.5849 (18)0.410 (3)0.050 (5)*
H50.1737 (10)0.4898 (17)0.408 (3)0.040 (5)*
H60.4431 (16)0.632 (2)0.183 (4)0.076 (8)*
H7A0.4601 (15)0.747 (2)0.062 (4)0.082 (9)*
H7B0.5317 (12)0.714 (3)0.030 (4)0.098 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (7)0.0262 (7)0.0340 (8)0.0018 (6)0.0073 (7)0.0010 (6)
C20.0393 (8)0.0301 (7)0.0344 (9)0.0008 (6)0.0108 (7)0.0039 (6)
C30.0500 (10)0.0272 (7)0.0465 (10)0.0029 (6)0.0143 (8)0.0050 (6)
C40.0454 (9)0.0323 (8)0.0434 (10)0.0099 (7)0.0107 (8)0.0014 (7)
C50.0330 (8)0.0377 (8)0.0353 (9)0.0036 (6)0.0066 (7)0.0008 (6)
C60.0348 (8)0.0307 (7)0.0374 (9)0.0003 (6)0.0051 (7)0.0001 (6)
C70.0321 (7)0.0285 (7)0.0391 (9)0.0011 (6)0.0066 (7)0.0006 (6)
C80.0302 (7)0.0245 (7)0.0422 (9)0.0024 (5)0.0099 (7)0.0022 (6)
C90.0371 (8)0.0268 (7)0.0526 (11)0.0014 (6)0.0068 (8)0.0038 (7)
C100.0363 (8)0.0317 (7)0.0428 (9)0.0027 (6)0.0106 (7)0.0027 (6)
C110.0433 (9)0.0366 (8)0.0500 (11)0.0010 (7)0.0183 (8)0.0052 (7)
N10.0333 (7)0.0252 (6)0.0418 (8)0.0002 (5)0.0090 (6)0.0027 (5)
N20.0350 (7)0.0455 (8)0.0496 (9)0.0046 (6)0.0064 (6)0.0078 (6)
O10.0429 (6)0.0311 (6)0.0668 (9)0.0014 (5)0.0223 (6)0.0083 (5)
O20.0422 (7)0.0560 (8)0.1087 (14)0.0142 (6)0.0204 (8)0.0125 (8)
O30.0424 (7)0.0506 (8)0.0972 (12)0.0077 (6)0.0219 (7)0.0022 (7)
O40.0487 (7)0.0265 (5)0.0667 (9)0.0057 (5)0.0010 (6)0.0081 (5)
O50.0534 (7)0.0289 (5)0.0478 (7)0.0077 (5)0.0217 (6)0.0049 (5)
O60.0548 (8)0.0435 (7)0.0598 (9)0.0127 (6)0.0279 (7)0.0041 (6)
O70.0572 (9)0.0626 (9)0.0728 (11)0.0036 (8)0.0215 (8)0.0215 (8)
Geometric parameters (Å, º) top
C1—C61.390 (2)C9—O41.4131 (18)
C1—C71.423 (2)C9—H9A0.9700
C1—C21.443 (2)C9—H9B0.9700
C2—O11.2666 (19)C10—O51.414 (2)
C2—C31.433 (2)C10—H10A0.9700
C3—C41.354 (3)C10—H10B0.9700
C3—H20.93 (2)C11—O61.4105 (19)
C4—C51.404 (2)C11—H11A0.9700
C4—H30.93 (2)C11—H11B0.9700
C5—C61.368 (2)N1—H10.86 (2)
C5—N21.437 (2)N2—O21.2269 (19)
C6—H40.94 (2)N2—O31.227 (2)
C7—N11.284 (2)O4—H4A0.8200
C7—H50.983 (18)O5—H5A0.8200
C8—N11.4673 (18)O6—H60.88 (3)
C8—C111.524 (2)O7—H7A0.819 (17)
C8—C91.528 (2)O7—H7B0.829 (18)
C8—C101.534 (2)
C6—C1—C7118.00 (13)O4—C9—H9A110.1
C6—C1—C2121.04 (13)C8—C9—H9A110.1
C7—C1—C2120.79 (14)O4—C9—H9B110.1
O1—C2—C3122.44 (14)C8—C9—H9B110.1
O1—C2—C1121.75 (13)H9A—C9—H9B108.4
C3—C2—C1115.82 (14)O5—C10—C8111.68 (13)
C4—C3—C2121.82 (15)O5—C10—H10A109.3
C4—C3—H2120.5 (14)C8—C10—H10A109.3
C2—C3—H2117.7 (14)O5—C10—H10B109.3
C3—C4—C5120.63 (15)C8—C10—H10B109.3
C3—C4—H3124.0 (13)H10A—C10—H10B107.9
C5—C4—H3115.4 (13)O6—C11—C8109.13 (13)
C6—C5—C4120.36 (15)O6—C11—H11A109.9
C6—C5—N2119.57 (14)C8—C11—H11A109.9
C4—C5—N2120.04 (14)O6—C11—H11B109.9
C5—C6—C1120.31 (14)C8—C11—H11B109.9
C5—C6—H4119.6 (12)H11A—C11—H11B108.3
C1—C6—H4120.1 (12)C7—N1—C8127.51 (13)
N1—C7—C1123.18 (14)C7—N1—H1118.1 (13)
N1—C7—H5119.1 (10)C8—N1—H1113.8 (13)
C1—C7—H5117.5 (10)O2—N2—O3122.43 (16)
N1—C8—C11106.98 (13)O2—N2—C5118.55 (15)
N1—C8—C9110.47 (12)O3—N2—C5119.01 (14)
C11—C8—C9110.33 (13)C9—O4—H4A109.5
N1—C8—C10106.61 (12)C10—O5—H5A109.5
C11—C8—C10110.78 (13)C11—O6—H6111.4 (16)
C9—C8—C10111.51 (13)H7A—O7—H7B107 (3)
O4—C9—C8108.19 (12)
C6—C1—C2—O1179.94 (16)C11—C8—C9—O462.53 (18)
C7—C1—C2—O14.9 (2)C10—C8—C9—O461.02 (17)
C6—C1—C2—C30.6 (2)N1—C8—C10—O564.27 (15)
C7—C1—C2—C3174.57 (15)C11—C8—C10—O5179.68 (12)
O1—C2—C3—C4178.85 (17)C9—C8—C10—O556.38 (16)
C1—C2—C3—C41.7 (3)N1—C8—C11—O650.34 (17)
C2—C3—C4—C51.6 (3)C9—C8—C11—O6170.55 (13)
C3—C4—C5—C60.3 (3)C10—C8—C11—O665.48 (17)
C3—C4—C5—N2177.69 (17)C1—C7—N1—C8168.79 (15)
C4—C5—C6—C10.8 (2)C11—C8—N1—C7152.37 (16)
N2—C5—C6—C1178.79 (15)C9—C8—N1—C732.3 (2)
C7—C1—C6—C5175.90 (15)C10—C8—N1—C789.06 (19)
C2—C1—C6—C50.6 (2)C6—C5—N2—O2179.38 (17)
C6—C1—C7—N1178.96 (16)C4—C5—N2—O21.4 (3)
C2—C1—C7—N13.6 (3)C6—C5—N2—O30.3 (2)
N1—C8—C9—O4179.39 (14)C4—C5—N2—O3177.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.821.972.6801 (15)145
O5—H5A···O1ii0.822.032.6661 (15)134
O7—H7A···O6iii0.82 (2)1.96 (2)2.765 (2)167 (3)
O7—H7B···O4iv0.83 (2)2.04 (2)2.855 (2)169 (3)
N1—H1···O10.86 (2)1.95 (2)2.6221 (17)134.6 (18)
O6—H6···O70.88 (3)1.77 (3)2.649 (2)173 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2.
(III) (R,E)-2-[(1-hydroxybutan-2-ylimino)methyl]phenol top
Crystal data top
C11H15NO2Dx = 1.039 Mg m3
Mr = 193.24Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2997 reflections
Hall symbol: R3θ = 1.7–25.7°
a = 23.561 (4) ŵ = 0.07 mm1
c = 5.7823 (8) ÅT = 296 K
V = 2779.8 (8) Å3Prism, yellow
Z = 90.50 × 0.37 × 0.23 mm
F(000) = 936
Data collection top
Stoe IPDS-II
diffractometer
1209 independent reflections
Radiation source: fine-focus sealed tube646 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.039
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 2929
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2929
Tmin = 0.967, Tmax = 0.982l = 77
2997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
1209 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.08 e Å3
3 restraintsΔρmin = 0.10 e Å3
Crystal data top
C11H15NO2Z = 9
Mr = 193.24Mo Kα radiation
Trigonal, R3µ = 0.07 mm1
a = 23.561 (4) ÅT = 296 K
c = 5.7823 (8) Å0.50 × 0.37 × 0.23 mm
V = 2779.8 (8) Å3
Data collection top
Stoe IPDS-II
diffractometer
1209 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
646 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.982Rint = 0.039
2997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.08 e Å3
1209 reflectionsΔρmin = 0.10 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.

planes) are estimated using the full covariance matrix. The cell e.s.d.'s are

taken into account individually in the estimation of e.s.d.'s in distances,

angles and torsion angles; correlations between e.s.d.'s in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.

planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33506 (16)0.15248 (14)0.5014 (4)0.0752 (7)
C20.32212 (17)0.12026 (13)0.7141 (5)0.0847 (8)
C30.3604 (3)0.09421 (18)0.7873 (6)0.1054 (11)
H30.35160.07220.92800.127*
C40.4103 (3)0.1006 (2)0.6558 (8)0.1214 (13)
H40.43600.08350.70910.146*
C50.4246 (2)0.1317 (2)0.4446 (7)0.1153 (12)
H50.45870.13470.35400.138*
C60.38714 (18)0.15821 (18)0.3707 (5)0.0966 (9)
H60.39700.18040.23030.116*
C70.29508 (16)0.17864 (14)0.4153 (5)0.0782 (7)
H70.30500.19950.27230.094*
C80.20890 (17)0.20209 (19)0.4316 (6)0.0984 (10)
H80.22620.22060.27870.118*
C90.2165 (2)0.2560 (2)0.5928 (6)0.1102 (12)
H9A0.18730.27150.54270.132*
H9B0.20320.23810.74710.132*
C100.1372 (2)0.1489 (3)0.4093 (10)0.1527 (17)
H10A0.12120.12840.55890.183*
H10B0.11160.16880.36270.183*
C110.1276 (3)0.0972 (4)0.2357 (14)0.221 (3)
H11A0.08180.06540.22400.331*
H11B0.15130.07590.28490.331*
H11C0.14370.11720.08750.331*
N10.24712 (13)0.17407 (13)0.5286 (4)0.0845 (7)
O10.27283 (14)0.11369 (12)0.8504 (3)0.1060 (7)
O20.28091 (17)0.30953 (13)0.6018 (5)0.1139 (8)
H20.307 (2)0.302 (2)0.733 (8)0.144 (14)*
H10.246 (3)0.130 (3)0.757 (11)0.21 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.092 (2)0.0631 (15)0.0793 (16)0.0452 (15)0.0077 (15)0.0074 (13)
C20.109 (2)0.0676 (18)0.0850 (18)0.0494 (18)0.0133 (18)0.0070 (15)
C30.150 (4)0.093 (2)0.100 (2)0.081 (3)0.023 (2)0.0047 (17)
C40.152 (4)0.128 (3)0.130 (3)0.103 (3)0.038 (3)0.014 (3)
C50.129 (3)0.129 (3)0.128 (3)0.094 (3)0.006 (2)0.015 (2)
C60.113 (3)0.094 (2)0.101 (2)0.066 (2)0.0005 (19)0.0005 (17)
C70.092 (2)0.0701 (18)0.0796 (15)0.0456 (16)0.0056 (16)0.0011 (13)
C80.094 (2)0.115 (2)0.109 (2)0.069 (2)0.0024 (17)0.0146 (19)
C90.128 (3)0.138 (4)0.107 (2)0.099 (3)0.010 (2)0.013 (2)
C100.102 (3)0.165 (4)0.194 (4)0.070 (3)0.021 (3)0.005 (4)
C110.164 (5)0.203 (7)0.269 (8)0.072 (5)0.068 (5)0.072 (6)
N10.0905 (17)0.0840 (17)0.0882 (14)0.0505 (15)0.0017 (14)0.0077 (12)
O10.132 (2)0.1028 (17)0.0945 (13)0.0675 (16)0.0155 (14)0.0245 (12)
O20.143 (3)0.1032 (19)0.1137 (16)0.075 (2)0.0041 (18)0.0095 (14)
Geometric parameters (Å, º) top
C1—C61.389 (4)C8—C91.513 (5)
C1—C21.397 (4)C8—C101.524 (6)
C1—C71.448 (4)C8—H80.9800
C2—O11.347 (4)C9—O21.408 (5)
C2—C31.387 (5)C9—H9A0.9700
C3—C41.344 (6)C9—H9B0.9700
C3—H30.9300C10—C111.506 (8)
C4—C51.377 (6)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.380 (5)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—H60.9300C11—H11C0.9600
C7—N11.263 (4)O1—H11.04 (7)
C7—H70.9300O2—H21.04 (5)
C8—N11.468 (4)
C6—C1—C2118.3 (3)N1—C8—H8109.5
C6—C1—C7120.2 (3)C9—C8—H8109.5
C2—C1—C7121.5 (3)C10—C8—H8109.5
O1—C2—C3119.0 (3)O2—C9—C8113.4 (3)
O1—C2—C1121.3 (3)O2—C9—H9A108.9
C3—C2—C1119.7 (3)C8—C9—H9A108.9
C4—C3—C2120.3 (4)O2—C9—H9B108.9
C4—C3—H3119.9C8—C9—H9B108.9
C2—C3—H3119.9H9A—C9—H9B107.7
C3—C4—C5122.0 (3)C11—C10—C8112.2 (5)
C3—C4—H4119.0C11—C10—H10A109.2
C5—C4—H4119.0C8—C10—H10A109.2
C4—C5—C6118.3 (4)C11—C10—H10B109.2
C4—C5—H5120.9C8—C10—H10B109.2
C6—C5—H5120.9H10A—C10—H10B107.9
C5—C6—C1121.4 (3)C10—C11—H11A109.5
C5—C6—H6119.3C10—C11—H11B109.5
C1—C6—H6119.3H11A—C11—H11B109.5
N1—C7—C1122.0 (3)C10—C11—H11C109.5
N1—C7—H7119.0H11A—C11—H11C109.5
C1—C7—H7119.0H11B—C11—H11C109.5
N1—C8—C9107.5 (3)C7—N1—C8119.2 (3)
N1—C8—C10109.8 (3)C2—O1—H1107 (3)
C9—C8—C10111.1 (4)C9—O2—H2110 (2)
C6—C1—C2—O1179.2 (3)C7—C1—C6—C5177.6 (3)
C7—C1—C2—O11.7 (4)C6—C1—C7—N1179.6 (3)
C6—C1—C2—C31.0 (4)C2—C1—C7—N10.5 (4)
C7—C1—C2—C3178.1 (3)N1—C8—C9—O265.7 (4)
O1—C2—C3—C4179.4 (3)C10—C8—C9—O2174.1 (3)
C1—C2—C3—C40.8 (5)N1—C8—C10—C1165.6 (6)
C2—C3—C4—C51.2 (6)C9—C8—C10—C11175.6 (5)
C3—C4—C5—C61.6 (6)C1—C7—N1—C8179.6 (3)
C4—C5—C6—C11.8 (5)C9—C8—N1—C7116.9 (3)
C2—C1—C6—C51.4 (5)C10—C8—N1—C7122.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i1.04 (5)1.65 (5)2.675 (4)170 (4)
O1—H1···N11.04 (7)1.67 (7)2.591 (3)145 (5)
Symmetry code: (i) y+2/3, xy+1/3, z+1/3.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC13H19NO5C11H14N2O6·H2OC11H15NO2
Mr269.29288.26193.24
Crystal system, space groupTriclinic, P1Monoclinic, P21/cTrigonal, R3
Temperature (K)296296296
a, b, c (Å)9.7424 (8), 10.6073 (8), 14.4820 (11)16.9205 (11), 10.7034 (6), 7.2308 (5)23.561 (4), 23.561 (4), 5.7823 (8)
α, β, γ (°)102.592 (6), 104.459 (6), 105.840 (6)90, 99.518 (5), 9090, 90, 120
V3)1326.7 (2)1291.52 (14)2779.8 (8)
Z449
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.130.07
Crystal size (mm)0.43 × 0.31 × 0.190.38 × 0.25 × 0.080.50 × 0.37 × 0.23
Data collection
DiffractometerStoe IPDS-II
diffractometer
Stoe IPDS-II
diffractometer
Stoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Integration
(X-RED32; Stoe & Cie, 2002)
Integration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.946, 0.9880.955, 0.9890.967, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22555, 6080, 3597 11553, 2877, 1898 2997, 1209, 646
Rint0.0510.0590.039
(sin θ/λ)max1)0.6500.6490.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 0.88 0.040, 0.107, 0.93 0.035, 0.093, 0.81
No. of reflections608028771209
No. of parameters361214134
No. of restraints623
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.170.30, 0.320.08, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C7A—N1A1.2983 (18)C8A—N1A1.4695 (18)
C7B—N1B1.2960 (18)C8B—N1B1.4726 (18)
N1B—C7B—C1B123.48 (14)N1B—C8B—C10B105.30 (12)
N1A—C8A—C9A111.76 (12)O2A—C22A—C33A108.00 (15)
N1A—C8A—C11A106.66 (12)O2B—C22B—C33B107.19 (13)
N1A—C8A—C10A105.68 (12)C7A—N1A—C8A128.68 (13)
N1B—C8B—C9B112.15 (12)C7B—N1B—C8B128.84 (13)
N1B—C8B—C11B107.17 (12)
C7A—C1A—C2A—O1A5.9 (2)C6A—C1A—C7A—N1A177.53 (14)
C6A—C1A—C2A—O1A174.57 (14)C6B—C1B—C7B—N1B179.21 (14)
C7B—C1B—C2B—O1B1.5 (2)C2B—C1B—C7B—N1B3.5 (2)
C6B—C1B—C2B—O1B178.79 (14)C9A—C8A—N1A—C7A22.5 (2)
O1A—C2A—C3A—O2A3.9 (2)C11A—C8A—N1A—C7A141.16 (16)
C1B—C2B—C3B—O2B179.89 (13)C10A—C8A—N1A—C7A100.12 (17)
C2A—C1A—C7A—N1A2.0 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O4Bi0.861 (16)1.845 (16)2.7011 (15)173 (2)
O3B—H3B···O4Aii0.841 (16)1.863 (16)2.6994 (16)173 (2)
O4A—H4A···O1Biii0.831 (15)1.977 (18)2.7300 (15)150 (2)
O4A—H4A···O2Biii0.831 (15)2.430 (19)3.0894 (15)137 (2)
O4B—H4B···O1Aiv0.860 (15)1.921 (17)2.7205 (15)154 (2)
O4B—H4B···O2Aiv0.860 (15)2.523 (19)3.1811 (15)133.9 (18)
O5A—H5A···O1Biii0.839 (15)1.927 (16)2.7548 (16)169 (2)
O5B—H5B···O1Aiv0.845 (15)1.998 (16)2.8351 (16)171 (2)
N1A—H1A···O1A0.878 (19)1.898 (19)2.6331 (17)140.3 (15)
N1B—H1B···O1B0.887 (19)1.876 (19)2.6210 (17)140.4 (16)
C9A—H9A···Cg1v0.9702.84263.7045 (17)148.49
C33B—H33F···Cg2vi0.9602.97223.628 (2)126.61
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y2, z; (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x+1, y+2, z+1; (vi) x+2, y+2, z.
Selected geometric parameters (Å, º) for (II) top
C5—N21.437 (2)C8—N11.4673 (18)
C7—N11.284 (2)
O1—C2—C1121.75 (13)N1—C8—C11106.98 (13)
C6—C5—N2119.57 (14)N1—C8—C9110.47 (12)
N1—C7—C1123.18 (14)N1—C8—C10106.61 (12)
C6—C1—C7—N1178.96 (16)C10—C8—N1—C789.06 (19)
N1—C8—C9—O4179.39 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5i0.821.972.6801 (15)145.1
O5—H5A···O1ii0.822.032.6661 (15)134.2
O7—H7A···O6iii0.819 (17)1.961 (18)2.765 (2)167 (3)
O7—H7B···O4iv0.829 (18)2.037 (19)2.855 (2)169 (3)
N1—H1···O10.86 (2)1.95 (2)2.6221 (17)134.6 (18)
O6—H6···O70.88 (3)1.77 (3)2.649 (2)173 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (III) top
C7—N11.263 (4)C8—N11.468 (4)
N1—C7—C1122.0 (3)N1—C8—C10109.8 (3)
N1—C8—C9107.5 (3)C7—N1—C8119.2 (3)
C7—C1—C2—O11.7 (4)C1—C7—N1—C8179.6 (3)
N1—C8—C9—O265.7 (4)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i1.04 (5)1.65 (5)2.675 (4)170 (4)
O1—H1···N11.04 (7)1.67 (7)2.591 (3)145 (5)
Symmetry code: (i) y+2/3, xy+1/3, z+1/3.
The observed ππ interaction distances (Å) for (I), (II) and (III) top
CompoundCgCgi,iidcentroidsdperpendicular
ICg1–Cg2i4,056 (10)3,243
IICg1–Cg1ii3,684 (10)3,508
IIICg1–Cg1iii4,951 (3)4,929
IIICg1–Cg1iv5,971 (3)4,012
Symmetry codes: (i) −1 + x, y, z; (ii) x, 3/2 − y, −1/2 + z; (iii) 1/3 − y, −1/3 + x-y, −1/3 + z; (iv) 2/3 − x + y, 1/3 − x,-2/3 + z.
The observed bond distances (Å) for (I), (II) and (III). top
CompoundC1—C2C2—O1C1—C7C7—N1
(IA)1.417 (2)1.2936 (16)1.414 (2)1.2983 (18)
(IB)1.420 (2)1.2952 (16)1.418 (2)1.2960 (18)
(II)1.443 (2)1.2666 (19)1.423 (2)1.284 (2)
(III)1.397 (4)1.347 (4)1.448 (4)1.263 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds