Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
catena-Poly[[aquabis(nitrato-κ2O,O′)cadmium(II)]-μ-1,2,3,6,7,8-hexa­hydro­cinnolino[5,4,3-cde]cinnoline-κN1N6], [Cd(NO3)2(C12H12N4)(H2O)]n, (I), and catena-poly[[[bis(nitrato-κ2O,O′)cadmium(II)]-μ-2,2,7,7-tetra­methyl-1,2,3,6,7,8-hexahydro­cinnolino[5,4,3-cde]cinnoline-κN1N6] chloro­form solvate], {[Cd(NO3)2(C12H12N4)]·CHCl3}n, (II), are the first structurally examined cadmium–pyridazine coordination compounds. They possess one-dimensional polymeric structures supported by the bidentate bridging function of the cinnolino[5,4,3-cde]cinnoline ligands, which lie about inversion centres. The Cd atoms are seven-coordinated in (I) and six-coordinated in (II), involving two bidentate nitrate groups [Cd—O = 2.229 (2)–2.657 (2) Å], two N atoms of the cinnoline ligands [Cd—N = 2.252 (2)–2.425 (2) Å], and, additionally, a water O atom in (I) [Cd—O = 2.284 (2) Å]. In (I), the coordinated organic and aqua ligands form an intra­molecular O—H...N hydrogen bond [O...N = 2.730 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106001181/hj1086sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001181/hj1086Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106001181/hj1086IIsup3.hkl
Contains datablock II

CCDC references: 299627; 299628

Comment top

Open metal–organic topologies adopted around transition metal centres with bridging bidentate ligands provide attractive prototypes of porous lattices for application in the adsorption, separation and storage of gases (Janiak, 2003; Eddaoudi et al., 2001). Unfortunately, most such compounds exist as lattice clathrates and their framework structure is unstable, leading to the loss of the initially accumulated guest molecules. In part, this may be attributed to a lack of strong coordination interactions that support the connection of distal metal ions. Generation of open coordination lattices is feasible, employing polyfunctional ligands that provide multiple binding sites for coordination and/or hydrogen bonding, and recently there has been much attention given to this approach, with the use of polycarboxylates (Yaghi et al., 2003), bipyrazoles (Rusanov, et al., 2003) and other types of ligands. In this regard, condensed N-donor aromatic heterocycles, and fused polycycles involving pyridazine, pyrimidine or pyrazine frames, are new and especially attractive classes of rigid multidentate ligands that could facilitate the connection of a set of metal ions, effective integration of the organic and inorganic counterparts, and formation of rigid coordination structures. In this context, we have prepared two cadmium nitrate complexes, (I) and (II), with 1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline (L) and its 2,2,7,7-tetramethyl derivative (Me4L), and report their structures here. Recently, we found that condensed pyridazinopyridazines readily bind four copper(I) ions (Solntsev et al., 2004) and these have application in the design of channelled frameworks.

Compounds (I) and (II) are the first structurally examined cadmium complexes with pyridazines. They adopt closely related one-dimensional polymeric structures that consist of zigzag coordination chains with a trans-bidentate function of the organic ligands (Figs. 1 and 2), compared with the bidentate bridging coordination of 4,4'-bypiridine and related ligands towards CdII ions (Barnett & Champness, 2003).

In the structure of (I), the coordination chains running along the b direction are bound by intermolecular hydrogen bonds [O···Oi 2.930 (2) Å] between the coordinated water molecules of one chain and the O atoms of the nitrate anions of another chain [symmetry code: (i) 1 + x, y, z] (Fig. 3). Such a combination of coordination and hydrogen bonds yields tightly packed layers parallel to the ab plane.

For complex (II), the introduction of methyl groups in the aliphatic linkage of the organic ligand does not influence the coordination mode and topology of the polymer. However, the greater steric volume of the organic ligand effects the elimination of the water molecule from the coordination sphere of the CdII ion, which is decisive for the crystal packing. The shape-complementary situation of the coordination chains produces layers in the bc plane (Fig. 4). The guest chloroform molecules (one equivalent per metal atom) are located between the layers and form weak C—H···O hydrogen bonds with the O atom of the counter-anion [C···O 3.329 (3) Å and C—H···O 139.3 (2)°] (Fig. 2). Tight packing of the chains also leads to a set of forced van der Waals contacts between Cl and O atoms [Cl1···O3ii 3.120 (3) Å and Cl2···O3iii 3.015 (3) Å; symmetry codes: (ii) 2 − x, −y, 1 − z; (iii) 2 − x, y − 1/2, 1/2 − z]. These separations are noticeably short and are the shortest Cl···O contacts observed for chloroform molecules (Cambridge Structural Database, Version 5.26, November 2004; Allen, 2002).

The CdII ions in complex (I) are seven-coordinate and the coordination environment consists of two N atoms of the organic ligands, four O atoms from two bidentate nitrate groups and one coordinated water molecule (Fig. 1). In contrast, the CdII ions in complex (II) have a distorted octahedral environment involving two cis N atoms from the organic ligands and four O atoms of the bidentate nitrate groups (Fig. 2). This structure is the first example of a [CdN2O4] six-coordinate CdII ion with two bidentate nitrate groups. For both compounds, the nitrate anions are coordinated in a typical unsymmetrical manner with two kinds of Cd—O bond lengths, namely Cd1—O2 and Cd1—O4 bonds [2.229 (2)–2.380 (2) Å], and longer Cd1—O1 and Cd—O5 bonds [2.384 (2)–2.657 (2) Å] (Tables 1 and 3). For complex (I), the Cd1—O7(water) bond length [2.284 (2) Å] appears to be even shorter than the Cd—O(nitrate) bond length [Cd—O 2.302 (2)–2.657 (2) Å]. This is the shortest known Cd—O(water) coordination bond with this type of environment of the CdII ion; it may be compared with parameters of other aquacadmium nitrate complexes with bis(2-pyridyl)acetylene [2.310 (1) Å; Zaman et al., 2003] and quinoline [2.35 (2) Å; Cameron et al., 1973]. Due to the higher coordination number of the central atom, the Cd—N bond distances for (I) [2.300 (2) and 2.425 (2) Å] are slightly longer than those for (II) [2.251 (2) and 2.307 (2) Å], while the Cd—N bonds are almost orthogonal in both structures [90.97 (6) and 87.73 (6)°].

In both structures, there are two independent ligand molecules, each of which displays inversion symmetry. The two unique ligand molecules in complex (I) are also chemically different, since only one of them forms strong intramolecular O—H···N hydrogen bonds with the two coordinated water molecules [O7···N4 2.730 (3) Å] (Figs. 1 and 3). This hydrogen bond is a new structural feature of metal–pyridazine complexes, although the possibility of effective interaction between adjacent pyridazine and water ligands may presumably be regarded as an important factor for the geometry of the coordination sphere and for overall bulk structure. A comparable example of an intramolecular interaction between coordinated methyl and pyridazine ligands was reported for the Pt(CH3)3(pdz)2Cl complex [N···C 3.175 (10) Å and C—H···N 121.5 (6)°; Abel et al., 1994].

The geometry of the aromatic frame within molecules of both ligands L [(I)] and Me4L [(II)] is similar (Tables 1 and 3) and is comparable with the structure of unsubstituted pyridazino[4,5-d]pyridazine (Sabelli et al., 1969). The N—N bonds [1.379 (2)–1.383 (2) Å] are longer, while C—N bonds [1.310 (2)–1.320 (2) Å] are shorter than the corresponding parameters for the prototypic 1,2,4,5-tetrazine (C—N 1.334 Å and N—N 1.321 Å; Bertinotti et al., 1956). In both structures, the pyridazine d-bonds [C—C 1.369 (2)–1.381 (2) Å] are appreciably shortened with respect to pairs of c- and e-bonds [C—C 1.416 (2)–1.425 (2) Å] and especially compared with the very long C9—C10 bond in 1,4,5,8-tetramethylnaphthalene (1.473 Å; Shiner et al., 1984). Such alteration of the shorter and longer bonds within the aromatic frame reflects the large contribution of the bis-azine resonance structure (e.g. —CN—NC—). Indeed, condensed pyridazines readily undergo [4 + 2] cycloadditions of the Diels–Alder type and behave as electron-poor bis-azadienes (Haider, 1991). Fused cyclohexane fragments of the ligands L and Me4L adopt an `envelope' conformation that is typical for six-membered cycles with three sp2 atoms.

Thus, in the cadmium nitrate complexes, the organic ligands L and Me4L were coordinated to two metal ions and utilized only half of the available functionality, unlike complexes with copper(I) bromide and iodide (Solntsev et al., 2004). This may be rationalized in terms of the stabilization of CuI–pyridazine coordination by back-bonding and may also be due to a significantly lower electrostatic repulsion of closely situated singly charged CuI ions bridged by pyridazine. The simple bidentate bridging function of the ligands towards CdII dications mitigates against the assembly of high-dimensionality porous frameworks. Studies intended to resolve this problem with the use of unsubstituted condensed pyridazines and bipyridazines are in progress.

Experimental top

1,2,3,6,7,8-Hexahydrocinnolino[5,4,3-cde]cinnoline (L) and its 2,2,7,7-tetramethyl derivative (Me4L) were synthesized by the condensation of 1,3-cyclohexandione (5,5-dimethyl-1,3-cyclohexanedione) and hydrazine, followed by air oxidation (Stille & Ertz, 1964). Compounds (I) and (II) were prepared using a common procedure described below. A solution of the ligand (0.1 mmol, L: 0.021 g; Me4L: 0.027 g) in chloroform (1 ml) was added to a solution of cadmium nitrate tetrahydrate (0.034 g, 0.1 mmol) in methanol (1 ml). Propan-2-ol was added dropwise to the mixture until crystallization was observed and then methanol was added dropwise until total dissolution of the initially formed precipitate. The solution was filtered and left for slow evaporation. After 4–5 d, colourless prismatic crystals of the complexes were filtered off, washed with propan-2-ol and dried in air. The yields were 50–60%. Different metal–ligand ratios in the solution did not affect the composition of the products.

Refinement top

The structures were solved by direct methods. All H atoms were located in difference maps and then refined as riding, with O—H distances constrained to 0.85 Å and C—H distances constrained to 0.96 Å, and with Uiso(H) = 1.2Ueq(C,O) for methylene groups and the coordinated water molecule, or 1.5Ueq(C) for methyl groups.

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SMART-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.00; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Carbon-bound H atoms have been omitted and water H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond. [Symmetry codes: (i) −x, 2 − y, 1 − z; (ii) −x, 1 − y, 1 − z.]
[Figure 2] Fig. 2. The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. The H atoms of the organic ligands have been omitted. The dashed line indicates the hydrogen bond to the chloroform molecule. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z.]
[Figure 3] Fig. 3. A perspective view of the structure of (I), showing the hydrogen bonding (dashed lines) between coordination zigzag chains. N atoms are shaded grey. [Symmetry code: (iii) 1 + x, y, z.]
[Figure 4] Fig. 4. A perspective view of the structure of (II), showing the shape-complementary packing of the coordination zigzag chains. Solvate chloroform molecules and H atoms have been omitted.
(I) catena-Poly[[aqua(dinitrato-κ2O,O')cadmium(II)]-µ-1,2,3,6,7,8- hexahydrocinnolino[5,4,3-cde]cinnoline-κN1:κN6] top
Crystal data top
[Cd(NO3)2(C12H12N4)(H2O)]F(000) = 928
Mr = 466.69Dx = 1.936 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3240 (6) ÅCell parameters from 3796 reflections
b = 13.7493 (12) Åθ = 2.6–27.9°
c = 15.9016 (13) ŵ = 1.42 mm1
β = 90.720 (2)°T = 223 K
V = 1601.2 (2) Å3Prism, colourless
Z = 40.20 × 0.16 × 0.15 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3796 independent reflections
Radiation source: fine-focus sealed tube3476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.765, Tmax = 0.816k = 1817
10135 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.9372P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
3796 reflectionsΔρmax = 0.54 e Å3
236 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0108 (4)
Crystal data top
[Cd(NO3)2(C12H12N4)(H2O)]V = 1601.2 (2) Å3
Mr = 466.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3240 (6) ŵ = 1.42 mm1
b = 13.7493 (12) ÅT = 223 K
c = 15.9016 (13) Å0.20 × 0.16 × 0.15 mm
β = 90.720 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3796 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3476 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.816Rint = 0.015
10135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.05Δρmax = 0.54 e Å3
3796 reflectionsΔρmin = 0.39 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.137861 (18)0.756844 (9)0.297044 (8)0.02741 (6)
O10.0708 (3)0.88942 (17)0.19183 (12)0.0653 (6)
O20.3435 (2)0.87139 (13)0.23819 (11)0.0496 (4)
O30.2765 (3)0.99735 (14)0.16287 (14)0.0679 (6)
O40.0278 (2)0.65929 (13)0.19025 (11)0.0491 (4)
O50.2048 (2)0.71757 (12)0.25436 (11)0.0453 (4)
O60.2428 (3)0.62394 (18)0.14619 (13)0.0735 (6)
O70.4107 (2)0.67710 (12)0.28910 (12)0.0540 (5)
N10.0709 (2)0.87605 (11)0.39335 (10)0.0273 (3)
N20.2110 (2)0.86991 (12)0.45185 (10)0.0299 (3)
N30.0837 (2)0.63115 (11)0.40074 (10)0.0297 (3)
N40.2105 (2)0.55803 (12)0.38978 (10)0.0318 (3)
N50.2307 (3)0.92121 (14)0.19618 (12)0.0407 (4)
N60.1435 (2)0.66600 (14)0.19607 (11)0.0378 (4)
C10.0626 (2)0.93988 (12)0.39941 (11)0.0248 (3)
C20.0686 (2)1.00334 (12)0.47017 (10)0.0243 (3)
C30.2108 (2)1.07218 (13)0.48243 (11)0.0268 (4)
C40.3637 (3)1.07904 (16)0.41914 (12)0.0344 (4)
H4A0.33671.12960.37960.041*
H4B0.47461.09600.44710.041*
C50.3890 (3)0.98282 (17)0.37189 (13)0.0385 (5)
H5A0.47860.99150.32790.046*
H5B0.43440.93470.41010.046*
C60.2109 (3)0.94614 (14)0.33376 (12)0.0318 (4)
H6A0.23020.88310.30920.038*
H6B0.17350.98970.29010.038*
C70.0482 (3)0.37757 (13)0.54395 (11)0.0281 (4)
C80.1992 (3)0.47678 (14)0.43262 (12)0.0296 (4)
C90.0614 (3)0.46322 (13)0.49393 (11)0.0269 (4)
C100.3340 (3)0.39718 (16)0.41759 (14)0.0405 (5)
H10A0.44750.42500.39990.049*
H10B0.28980.35530.37350.049*
C110.3645 (3)0.33756 (17)0.49740 (15)0.0436 (5)
H11A0.42260.37780.53920.052*
H11B0.44470.28420.48560.052*
C120.1865 (3)0.29816 (15)0.53230 (14)0.0381 (5)
H12A0.20970.26720.58550.046*
H12B0.13800.25010.49440.046*
H10.51630.68750.27140.057*
H20.40270.61970.31430.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02906 (9)0.02883 (9)0.02443 (9)0.00138 (5)0.00369 (5)0.00270 (5)
O10.0409 (10)0.1007 (16)0.0541 (11)0.0094 (10)0.0040 (8)0.0224 (11)
O20.0409 (9)0.0488 (9)0.0591 (10)0.0030 (7)0.0016 (8)0.0191 (8)
O30.0746 (14)0.0518 (11)0.0778 (13)0.0082 (10)0.0201 (11)0.0322 (10)
O40.0296 (8)0.0623 (11)0.0556 (10)0.0032 (7)0.0002 (7)0.0209 (8)
O50.0427 (9)0.0451 (8)0.0485 (9)0.0025 (7)0.0098 (7)0.0083 (7)
O60.0484 (11)0.1027 (17)0.0689 (13)0.0167 (11)0.0156 (9)0.0349 (12)
O70.0364 (8)0.0490 (10)0.0770 (12)0.0078 (7)0.0211 (8)0.0271 (9)
N10.0303 (8)0.0275 (7)0.0241 (7)0.0010 (6)0.0014 (6)0.0024 (6)
N20.0294 (8)0.0317 (8)0.0286 (8)0.0031 (6)0.0013 (6)0.0025 (6)
N30.0323 (8)0.0283 (8)0.0287 (8)0.0016 (6)0.0059 (6)0.0025 (6)
N40.0317 (8)0.0318 (8)0.0320 (8)0.0001 (6)0.0094 (7)0.0031 (6)
N50.0410 (10)0.0433 (10)0.0381 (9)0.0048 (8)0.0096 (8)0.0077 (8)
N60.0339 (9)0.0407 (10)0.0388 (10)0.0009 (7)0.0029 (8)0.0060 (7)
C10.0274 (9)0.0247 (8)0.0225 (8)0.0025 (7)0.0024 (7)0.0002 (6)
C20.0258 (8)0.0248 (8)0.0225 (8)0.0017 (6)0.0022 (7)0.0003 (6)
C30.0257 (9)0.0300 (9)0.0249 (8)0.0012 (7)0.0026 (7)0.0005 (7)
C40.0280 (9)0.0447 (11)0.0304 (10)0.0080 (8)0.0014 (8)0.0026 (8)
C50.0286 (10)0.0501 (12)0.0367 (11)0.0028 (9)0.0043 (8)0.0049 (9)
C60.0358 (10)0.0335 (10)0.0260 (9)0.0006 (8)0.0043 (8)0.0038 (7)
C70.0309 (9)0.0273 (9)0.0262 (9)0.0002 (7)0.0047 (7)0.0011 (7)
C80.0309 (9)0.0301 (9)0.0279 (9)0.0008 (7)0.0072 (7)0.0018 (7)
C90.0290 (9)0.0275 (8)0.0242 (8)0.0008 (7)0.0039 (7)0.0011 (6)
C100.0421 (12)0.0368 (11)0.0432 (12)0.0071 (9)0.0202 (10)0.0064 (9)
C110.0394 (12)0.0394 (11)0.0525 (13)0.0089 (9)0.0128 (10)0.0066 (10)
C120.0442 (12)0.0297 (10)0.0408 (11)0.0060 (9)0.0139 (9)0.0072 (8)
Geometric parameters (Å, º) top
Cd1—O72.2841 (16)C3—N2i1.314 (2)
Cd1—N12.3003 (15)C3—C41.499 (3)
Cd1—O42.3017 (16)C4—C51.532 (3)
Cd1—O22.3792 (16)C4—H4A0.9600
Cd1—N32.4249 (15)C4—H4B0.9600
Cd1—O12.518 (2)C5—C61.531 (3)
Cd1—O52.6471 (17)C5—H5A0.9599
O1—N51.251 (3)C5—H5B0.9599
O2—N51.259 (2)C6—H6A0.9600
O3—N51.222 (2)C6—H6B0.9601
O4—N61.263 (2)C7—N3ii1.320 (2)
O5—N61.254 (2)C7—C91.425 (2)
O6—N61.216 (2)C7—C121.503 (3)
O7—H10.8393C8—C91.424 (2)
O7—H20.8875C8—C101.495 (3)
N1—C11.318 (2)C9—C9ii1.369 (4)
N1—N21.379 (2)C10—C111.525 (3)
N2—C3i1.314 (2)C10—H10A0.9600
N3—C7ii1.320 (2)C10—H10B0.9599
N3—N41.381 (2)C11—C121.523 (3)
N4—C81.311 (2)C11—H11A0.9600
C1—C21.425 (2)C11—H11B0.9600
C1—C61.500 (3)C12—H12A0.9600
C2—C2i1.376 (4)C12—H12B0.9600
C2—C31.423 (2)
O7—Cd1—N1124.95 (7)N2i—C3—C2121.34 (17)
O7—Cd1—O488.73 (7)N2i—C3—C4119.20 (16)
N1—Cd1—O4146.19 (6)C2—C3—C4119.46 (16)
O7—Cd1—O274.78 (6)C3—C4—C5111.09 (16)
N1—Cd1—O286.08 (6)C3—C4—H4A109.1
O4—Cd1—O2108.24 (7)C5—C4—H4A109.2
O7—Cd1—N381.16 (5)C3—C4—H4B109.5
N1—Cd1—N390.97 (6)C5—C4—H4B109.9
O4—Cd1—N391.58 (6)H4A—C4—H4B108.1
O2—Cd1—N3148.12 (6)C6—C5—C4112.35 (17)
O7—Cd1—O1118.31 (6)C6—C5—H5A109.3
N1—Cd1—O183.40 (7)C4—C5—H5A109.1
O4—Cd1—O182.42 (7)C6—C5—H5B109.1
O2—Cd1—O151.59 (6)C4—C5—H5B109.0
N3—Cd1—O1159.29 (6)H5A—C5—H5B107.9
O7—Cd1—O5135.65 (6)C1—C6—C5110.89 (16)
N1—Cd1—O596.13 (5)C1—C6—H6A109.4
O4—Cd1—O550.95 (5)C5—C6—H6A109.7
O2—Cd1—O5129.57 (6)C1—C6—H6B109.2
N3—Cd1—O582.31 (6)C5—C6—H6B109.5
O1—Cd1—O578.52 (6)H6A—C6—H6B108.1
N5—O1—Cd192.38 (13)N3ii—C7—C9120.16 (17)
N5—O2—Cd198.88 (13)N3ii—C7—C12121.08 (16)
N6—O4—Cd1104.02 (12)C9—C7—C12118.76 (16)
N6—O5—Cd187.60 (11)N4—C8—C9121.11 (17)
Cd1—O7—H1138.4N4—C8—C10119.64 (16)
Cd1—O7—H2109.9C9—C8—C10119.25 (16)
H1—O7—H2111.7C9ii—C9—C8118.2 (2)
C1—N1—N2122.52 (15)C9ii—C9—C7118.9 (2)
C1—N1—Cd1133.44 (13)C8—C9—C7122.95 (17)
N2—N1—Cd1104.04 (11)C8—C10—C11110.51 (17)
C3i—N2—N1119.44 (15)C8—C10—H10A109.3
C7ii—N3—N4121.12 (15)C11—C10—H10A109.9
C7ii—N3—Cd1130.19 (13)C8—C10—H10B109.7
N4—N3—Cd1108.47 (11)C11—C10—H10B109.3
C8—N4—N3120.51 (15)H10A—C10—H10B108.1
O3—N5—O1122.5 (2)C12—C11—C10112.2 (2)
O3—N5—O2120.9 (2)C12—C11—H11A109.1
O1—N5—O2116.56 (19)C10—C11—H11A109.0
O6—N6—O5122.31 (19)C12—C11—H11B109.2
O6—N6—O4120.28 (19)C10—C11—H11B109.4
O5—N6—O4117.41 (17)H11A—C11—H11B108.0
N1—C1—C2119.71 (16)C7—C12—C11111.59 (17)
N1—C1—C6121.25 (16)C7—C12—H12A109.0
C2—C1—C6119.03 (16)C11—C12—H12A109.6
C2i—C2—C3118.6 (2)C7—C12—H12B109.5
C2i—C2—C1118.3 (2)C11—C12—H12B109.1
C3—C2—C1123.06 (16)H12A—C12—H12B108.0
O7—Cd1—O1—N540.61 (17)O2—Cd1—N3—N457.80 (17)
N1—Cd1—O1—N585.74 (15)O1—Cd1—N3—N4144.33 (18)
O4—Cd1—O1—N5125.03 (15)O5—Cd1—N3—N4122.02 (12)
O2—Cd1—O1—N54.47 (12)C7ii—N3—N4—C82.0 (3)
N3—Cd1—O1—N5160.82 (15)Cd1—N3—N4—C8173.12 (15)
O5—Cd1—O1—N5176.61 (15)Cd1—O1—N5—O3171.4 (2)
O7—Cd1—O2—N5151.94 (15)Cd1—O1—N5—O27.4 (2)
N1—Cd1—O2—N580.19 (14)Cd1—O2—N5—O3170.92 (19)
O4—Cd1—O2—N568.48 (14)Cd1—O2—N5—O17.9 (2)
N3—Cd1—O2—N5165.72 (12)Cd1—O5—N6—O6178.4 (2)
O1—Cd1—O2—N54.49 (13)Cd1—O5—N6—O41.22 (19)
O5—Cd1—O2—N514.51 (17)Cd1—O4—N6—O6178.2 (2)
O7—Cd1—O4—N6160.67 (15)Cd1—O4—N6—O51.4 (2)
N1—Cd1—O4—N614.6 (2)N2—N1—C1—C22.3 (3)
O2—Cd1—O4—N6125.82 (14)Cd1—N1—C1—C2177.78 (12)
N3—Cd1—O4—N679.55 (15)N2—N1—C1—C6178.70 (16)
O1—Cd1—O4—N680.55 (15)Cd1—N1—C1—C61.2 (3)
O5—Cd1—O4—N60.79 (12)N1—C1—C2—C2i1.0 (3)
O7—Cd1—O5—N630.23 (16)C6—C1—C2—C2i180.0 (2)
N1—Cd1—O5—N6170.71 (12)N1—C1—C2—C3178.15 (16)
O4—Cd1—O5—N60.77 (12)C6—C1—C2—C30.9 (3)
O2—Cd1—O5—N680.75 (14)C2i—C2—C3—N2i1.4 (3)
N3—Cd1—O5—N699.13 (12)C1—C2—C3—N2i179.43 (17)
O1—Cd1—O5—N688.74 (13)C2i—C2—C3—C4178.6 (2)
O7—Cd1—N1—C1166.98 (15)C1—C2—C3—C40.5 (3)
O4—Cd1—N1—C118.8 (2)N2i—C3—C4—C5154.78 (18)
O2—Cd1—N1—C198.64 (17)C2—C3—C4—C525.3 (2)
N3—Cd1—N1—C1113.13 (17)C3—C4—C5—C652.6 (2)
O1—Cd1—N1—C146.88 (17)N1—C1—C6—C5151.16 (18)
O5—Cd1—N1—C130.76 (17)C2—C1—C6—C527.8 (2)
O7—Cd1—N1—N212.93 (13)C4—C5—C6—C153.9 (2)
O4—Cd1—N1—N2161.25 (12)N3—N4—C8—C92.7 (3)
O2—Cd1—N1—N281.28 (11)N3—N4—C8—C10177.85 (19)
N3—Cd1—N1—N266.95 (11)N4—C8—C9—C9ii1.1 (3)
O1—Cd1—N1—N2133.03 (11)C10—C8—C9—C9ii179.5 (2)
O5—Cd1—N1—N2149.32 (11)N4—C8—C9—C7177.71 (18)
C1—N1—N2—C3i1.7 (3)C10—C8—C9—C71.8 (3)
Cd1—N1—N2—C3i178.34 (14)N3ii—C7—C9—C9ii1.8 (3)
O7—Cd1—N3—C7ii168.78 (18)C12—C7—C9—C9ii178.2 (2)
N1—Cd1—N3—C7ii43.52 (17)N3ii—C7—C9—C8179.38 (18)
O4—Cd1—N3—C7ii102.76 (17)C12—C7—C9—C80.6 (3)
O2—Cd1—N3—C7ii127.65 (17)N4—C8—C10—C11150.3 (2)
O1—Cd1—N3—C7ii30.2 (3)C9—C8—C10—C1129.1 (3)
O5—Cd1—N3—C7ii52.53 (17)C8—C10—C11—C1254.8 (3)
O7—Cd1—N3—N416.67 (12)N3ii—C7—C12—C11155.06 (19)
N1—Cd1—N3—N4141.93 (12)C9—C7—C12—C1125.0 (3)
O4—Cd1—N3—N471.79 (12)C10—C11—C12—C752.9 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O5iii0.842.112.930 (2)168
O7—H2···N40.892.052.730 (3)133
Symmetry code: (iii) x+1, y, z.
(II) catena-poly[[[(dinitrato-κ2O,O')cadmium(II)]-µ-2,2,7,7-tetramethyl- 1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline-κN1:κN6] chloroform solvate] top
Crystal data top
[Cd(NO3)2(C12H12N4)]·CHCl3F(000) = 1248
Mr = 624.15Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5594 reflections
a = 12.2570 (12) Åθ = 2.4–27.9°
b = 12.5085 (11) ŵ = 1.31 mm1
c = 15.8471 (14) ÅT = 223 K
β = 102.687 (2)°Prism, colourless
V = 2370.3 (4) Å30.22 × 0.17 × 0.15 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
5594 independent reflections
Radiation source: fine-focus sealed tube5130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 816
Tmin = 0.762, Tmax = 0.828k = 1615
13397 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0284P)2 + 2.016P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5594 reflectionsΔρmax = 0.53 e Å3
299 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00154 (17)
Crystal data top
[Cd(NO3)2(C12H12N4)]·CHCl3V = 2370.3 (4) Å3
Mr = 624.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2570 (12) ŵ = 1.31 mm1
b = 12.5085 (11) ÅT = 223 K
c = 15.8471 (14) Å0.22 × 0.17 × 0.15 mm
β = 102.687 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5594 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5130 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.828Rint = 0.013
13397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
5594 reflectionsΔρmin = 0.70 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.617147 (11)0.245492 (10)0.314046 (8)0.02334 (6)
O10.78544 (17)0.14100 (16)0.31820 (15)0.0609 (5)
O20.79300 (15)0.31157 (15)0.31705 (14)0.0541 (5)
O30.94516 (16)0.2186 (2)0.32920 (15)0.0746 (7)
O40.52995 (18)0.33058 (14)0.18542 (10)0.0515 (5)
O50.5455 (2)0.16176 (15)0.17805 (11)0.0607 (6)
O60.47635 (17)0.25102 (13)0.06161 (10)0.0454 (4)
N10.55571 (13)0.37252 (13)0.39847 (10)0.0246 (3)
N20.55714 (13)0.60995 (13)0.63385 (10)0.0259 (3)
N30.34128 (14)0.10920 (13)0.52729 (10)0.0273 (3)
N40.57061 (13)0.12034 (13)0.40202 (10)0.0254 (3)
N50.84418 (16)0.22297 (19)0.32131 (12)0.0413 (5)
N60.51607 (15)0.24771 (13)0.13927 (11)0.0303 (4)
C10.55577 (15)0.48943 (14)0.51646 (11)0.0224 (3)
C20.61033 (15)0.41647 (15)0.47098 (12)0.0243 (4)
C30.73074 (16)0.38999 (17)0.50792 (14)0.0320 (4)
H3A0.76630.37020.46190.038*
H3B0.73470.32990.54620.038*
C40.79402 (16)0.48500 (17)0.55837 (13)0.0301 (4)
C50.73251 (16)0.52066 (17)0.62878 (12)0.0287 (4)
H5A0.76740.58430.65610.034*
H5B0.73980.46590.67210.034*
C60.61067 (15)0.54288 (15)0.59334 (11)0.0233 (3)
C70.91183 (18)0.4470 (2)0.60193 (17)0.0468 (6)
H7A0.94780.41660.55950.070*
H7B0.90710.39430.64500.070*
H7C0.95520.50610.62990.070*
C80.8016 (2)0.5774 (2)0.49697 (15)0.0408 (5)
H8A0.72790.60030.46870.061*
H8B0.84210.55480.45470.061*
H8C0.84170.63570.52910.061*
C90.45689 (15)0.00535 (15)0.46400 (11)0.0230 (3)
C100.35404 (15)0.04789 (15)0.46286 (12)0.0250 (4)
C110.25895 (17)0.03449 (17)0.38570 (13)0.0307 (4)
H11A0.18960.03600.40450.037*
H11B0.25890.09340.34680.037*
C120.26635 (16)0.07163 (16)0.33704 (12)0.0279 (4)
C130.38291 (16)0.08173 (16)0.31594 (12)0.0282 (4)
H13A0.38890.15000.28960.034*
H13B0.39120.02730.27510.034*
C140.47503 (16)0.07063 (14)0.39536 (11)0.0236 (4)
C150.17769 (19)0.07073 (19)0.25234 (14)0.0397 (5)
H15A0.18220.13600.22140.060*
H15B0.10450.06430.26440.060*
H15C0.18950.01100.21740.060*
C160.24593 (19)0.16734 (18)0.39150 (15)0.0377 (5)
H16A0.26040.23260.36400.056*
H16B0.29540.16410.44750.056*
H16C0.16960.16590.39740.056*
C170.9000 (2)0.0960 (2)0.37863 (16)0.0463 (6)
H17A0.90520.01950.37770.056*
Cl10.97537 (8)0.14221 (8)0.47974 (5)0.0721 (2)
Cl20.96080 (6)0.14790 (6)0.29642 (4)0.05471 (17)
Cl30.75834 (6)0.13170 (7)0.36125 (5)0.06374 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02752 (8)0.02425 (8)0.01994 (8)0.00113 (5)0.00887 (5)0.00110 (5)
O10.0534 (11)0.0489 (11)0.0872 (15)0.0083 (9)0.0303 (11)0.0043 (10)
O20.0414 (10)0.0480 (11)0.0771 (13)0.0022 (8)0.0219 (9)0.0064 (10)
O30.0296 (9)0.127 (2)0.0707 (14)0.0156 (11)0.0184 (9)0.0237 (14)
O40.0848 (14)0.0347 (9)0.0290 (8)0.0023 (9)0.0004 (8)0.0015 (7)
O50.1085 (17)0.0371 (9)0.0308 (8)0.0205 (10)0.0031 (9)0.0020 (7)
O60.0580 (11)0.0512 (11)0.0225 (7)0.0031 (8)0.0012 (7)0.0015 (6)
N10.0244 (7)0.0265 (8)0.0234 (7)0.0008 (6)0.0063 (6)0.0027 (6)
N20.0242 (8)0.0299 (8)0.0230 (7)0.0001 (6)0.0038 (6)0.0032 (6)
N30.0260 (8)0.0302 (8)0.0252 (8)0.0028 (6)0.0043 (6)0.0025 (6)
N40.0273 (8)0.0265 (8)0.0223 (7)0.0001 (6)0.0058 (6)0.0032 (6)
N50.0316 (10)0.0634 (13)0.0317 (9)0.0069 (9)0.0127 (8)0.0092 (9)
N60.0324 (9)0.0356 (9)0.0235 (8)0.0027 (7)0.0074 (7)0.0013 (7)
C10.0230 (9)0.0239 (8)0.0202 (8)0.0004 (7)0.0042 (7)0.0000 (7)
C20.0248 (9)0.0246 (8)0.0240 (8)0.0005 (7)0.0062 (7)0.0018 (7)
C30.0258 (9)0.0343 (10)0.0338 (10)0.0067 (8)0.0022 (8)0.0074 (8)
C40.0216 (9)0.0379 (11)0.0296 (9)0.0020 (8)0.0034 (7)0.0055 (8)
C50.0241 (9)0.0349 (10)0.0248 (9)0.0019 (8)0.0003 (7)0.0036 (8)
C60.0238 (8)0.0257 (9)0.0201 (8)0.0012 (7)0.0042 (7)0.0008 (7)
C70.0249 (10)0.0644 (16)0.0465 (13)0.0082 (10)0.0024 (9)0.0141 (12)
C80.0368 (12)0.0481 (13)0.0407 (12)0.0056 (10)0.0157 (10)0.0012 (10)
C90.0245 (8)0.0228 (8)0.0207 (8)0.0002 (7)0.0031 (7)0.0008 (7)
C100.0251 (9)0.0253 (9)0.0236 (8)0.0018 (7)0.0033 (7)0.0007 (7)
C110.0270 (9)0.0329 (10)0.0288 (9)0.0053 (8)0.0011 (8)0.0031 (8)
C120.0270 (9)0.0277 (9)0.0255 (9)0.0001 (7)0.0022 (7)0.0019 (7)
C130.0306 (10)0.0308 (10)0.0217 (9)0.0008 (8)0.0026 (7)0.0039 (7)
C140.0269 (9)0.0237 (8)0.0202 (8)0.0016 (7)0.0052 (7)0.0006 (7)
C150.0383 (12)0.0413 (12)0.0318 (11)0.0006 (9)0.0091 (9)0.0043 (9)
C160.0340 (11)0.0379 (11)0.0388 (11)0.0062 (9)0.0031 (9)0.0040 (9)
C170.0482 (14)0.0458 (13)0.0429 (13)0.0040 (11)0.0059 (11)0.0021 (11)
Cl10.0784 (5)0.0897 (6)0.0425 (4)0.0018 (4)0.0011 (3)0.0090 (4)
Cl20.0457 (3)0.0738 (5)0.0444 (3)0.0008 (3)0.0092 (3)0.0036 (3)
Cl30.0494 (4)0.0773 (5)0.0670 (5)0.0063 (3)0.0184 (3)0.0036 (4)
Geometric parameters (Å, º) top
Cd1—N42.2515 (15)C5—H5A0.9600
Cd1—O22.2991 (18)C5—H5B0.9598
Cd1—N12.3074 (15)C7—H7A0.9599
Cd1—O42.3394 (16)C7—H7B0.9600
Cd1—O52.3836 (18)C7—H7C0.9600
Cd1—O12.4307 (19)C8—H8A0.9599
O1—N51.248 (3)C8—H8B0.9600
O2—N51.268 (3)C8—H8C0.9600
O3—N51.218 (3)C9—C9ii1.381 (3)
O4—N61.258 (2)C9—C141.416 (2)
O5—N61.252 (2)C9—C101.422 (3)
O6—N61.221 (2)C10—C111.502 (3)
N1—C21.316 (2)C11—C121.548 (3)
N1—N2i1.383 (2)C11—H11A0.9600
N2—C61.316 (2)C11—H11B0.9599
N2—N1i1.383 (2)C12—C161.528 (3)
N3—C101.314 (2)C12—C151.530 (3)
N3—N4ii1.382 (2)C12—C131.542 (3)
N4—C141.310 (2)C13—C141.501 (3)
N4—N3ii1.382 (2)C13—H13A0.9600
C1—C1i1.378 (3)C13—H13B0.9600
C1—C21.418 (2)C15—H15A0.9600
C1—C61.423 (2)C15—H15B0.9601
C2—C31.500 (3)C15—H15C0.9600
C3—C41.543 (3)C16—H16A0.9600
C3—H3A0.9599C16—H16B0.9599
C3—H3B0.9600C16—H16C0.9600
C4—C81.527 (3)C17—Cl31.755 (3)
C4—C71.533 (3)C17—Cl21.760 (3)
C4—C51.543 (3)C17—Cl11.762 (3)
C5—C61.502 (2)C17—H17A0.9600
N4—Cd1—O2126.94 (7)C1—C6—C5118.54 (16)
N4—Cd1—N187.73 (6)C4—C7—H7A109.8
O2—Cd1—N199.46 (6)C4—C7—H7B109.6
N4—Cd1—O4136.59 (7)H7A—C7—H7B109.6
O2—Cd1—O495.82 (7)C4—C7—H7C109.9
N1—Cd1—O492.70 (6)H7A—C7—H7C109.6
N4—Cd1—O599.28 (6)H7B—C7—H7C108.3
O2—Cd1—O5109.53 (8)C4—C8—H8A109.9
N1—Cd1—O5136.42 (6)C4—C8—H8B109.6
O4—Cd1—O553.49 (6)H8A—C8—H8B109.9
N4—Cd1—O186.46 (6)C4—C8—H8C109.4
O2—Cd1—O153.60 (7)H8A—C8—H8C109.9
N1—Cd1—O1137.53 (7)H8B—C8—H8C108.1
O4—Cd1—O1119.40 (7)C9ii—C9—C14118.0 (2)
O5—Cd1—O186.00 (8)C9ii—C9—C10118.7 (2)
N5—O1—Cd192.18 (14)C14—C9—C10123.26 (16)
N5—O2—Cd197.91 (14)N3—C10—C9121.33 (17)
N6—O4—Cd196.27 (12)N3—C10—C11119.63 (17)
N6—O5—Cd194.35 (13)C9—C10—C11119.03 (16)
C2—N1—N2i122.19 (15)C10—C11—C12112.42 (16)
C2—N1—Cd1128.72 (13)C10—C11—H11A109.1
N2i—N1—Cd1108.76 (11)C12—C11—H11A108.9
C6—N2—N1i119.06 (15)C10—C11—H11B109.2
C10—N3—N4ii118.93 (16)C12—C11—H11B109.3
C14—N4—N3ii122.92 (15)H11A—C11—H11B107.9
C14—N4—Cd1128.60 (12)C16—C12—C15109.16 (17)
N3ii—N4—Cd1108.23 (11)C16—C12—C13109.43 (17)
O3—N5—O1122.1 (2)C15—C12—C13108.88 (17)
O3—N5—O2121.7 (3)C16—C12—C11110.83 (17)
O1—N5—O2116.21 (19)C15—C12—C11108.82 (16)
O6—N6—O5122.17 (18)C13—C12—C11109.68 (16)
O6—N6—O4122.08 (17)C14—C13—C12111.88 (15)
O5—N6—O4115.75 (18)C14—C13—H13A109.3
C1i—C1—C2118.1 (2)C12—C13—H13A109.2
C1i—C1—C6118.5 (2)C14—C13—H13B109.2
C2—C1—C6123.40 (17)C12—C13—H13B109.2
N1—C2—C1120.41 (17)H13A—C13—H13B108.0
N1—C2—C3121.10 (16)N4—C14—C9120.02 (16)
C1—C2—C3118.49 (16)N4—C14—C13121.22 (16)
C2—C3—C4111.82 (16)C9—C14—C13118.76 (17)
C2—C3—H3A109.4C12—C15—H15A109.4
C4—C3—H3A109.4C12—C15—H15B109.9
C2—C3—H3B109.2H15A—C15—H15B109.6
C4—C3—H3B109.0C12—C15—H15C110.1
H3A—C3—H3B108.0H15A—C15—H15C109.5
C8—C4—C7109.77 (19)H15B—C15—H15C108.3
C8—C4—C3110.29 (17)C12—C16—H16A109.9
C7—C4—C3108.13 (18)C12—C16—H16B109.9
C8—C4—C5110.48 (17)H16A—C16—H16B108.3
C7—C4—C5109.00 (17)C12—C16—H16C108.9
C3—C4—C5109.11 (17)H16A—C16—H16C109.9
C6—C5—C4112.76 (15)H16B—C16—H16C109.9
C6—C5—H5A108.8Cl3—C17—Cl2110.80 (14)
C4—C5—H5A109.0Cl3—C17—Cl1111.23 (14)
C6—C5—H5B109.2Cl2—C17—Cl1109.27 (15)
C4—C5—H5B109.0Cl3—C17—H17A108.5
H5A—C5—H5B107.9Cl2—C17—H17A108.5
N2—C6—C1121.65 (17)Cl1—C17—H17A108.5
N2—C6—C5119.81 (16)
N4—Cd1—O1—N5140.71 (15)N2i—N1—C2—C13.8 (3)
O2—Cd1—O1—N51.83 (13)Cd1—N1—C2—C1176.39 (13)
N1—Cd1—O1—N557.96 (18)N2i—N1—C2—C3175.58 (17)
O4—Cd1—O1—N576.11 (16)Cd1—N1—C2—C33.0 (3)
O5—Cd1—O1—N5119.73 (15)C1i—C1—C2—N11.5 (3)
N4—Cd1—O2—N547.62 (17)C6—C1—C2—N1177.57 (17)
N1—Cd1—O2—N5141.92 (14)C1i—C1—C2—C3177.9 (2)
O4—Cd1—O2—N5124.35 (14)C6—C1—C2—C33.1 (3)
O5—Cd1—O2—N571.11 (15)N1—C2—C3—C4149.28 (18)
O1—Cd1—O2—N51.81 (13)C1—C2—C3—C431.4 (3)
N4—Cd1—O4—N662.78 (17)C2—C3—C4—C866.1 (2)
O2—Cd1—O4—N6107.87 (14)C2—C3—C4—C7173.81 (18)
N1—Cd1—O4—N6152.33 (14)C2—C3—C4—C555.4 (2)
O5—Cd1—O4—N62.16 (14)C8—C4—C5—C668.3 (2)
O1—Cd1—O4—N656.72 (16)C7—C4—C5—C6170.96 (18)
N4—Cd1—O5—N6144.82 (15)C3—C4—C5—C653.1 (2)
O2—Cd1—O5—N680.43 (16)N1i—N2—C6—C11.0 (3)
N1—Cd1—O5—N648.3 (2)N1i—N2—C6—C5178.41 (16)
O4—Cd1—O5—N62.17 (14)C1i—C1—C6—N21.1 (3)
O1—Cd1—O5—N6129.44 (16)C2—C1—C6—N2179.87 (18)
N4—Cd1—N1—C284.41 (16)C1i—C1—C6—C5179.4 (2)
O2—Cd1—N1—C242.69 (17)C2—C1—C6—C50.4 (3)
O4—Cd1—N1—C2139.04 (17)C4—C5—C6—N2154.11 (18)
O5—Cd1—N1—C2174.50 (15)C4—C5—C6—C126.4 (3)
O1—Cd1—N1—C22.2 (2)N4ii—N3—C10—C91.1 (3)
N4—Cd1—N1—N2i89.00 (12)N4ii—N3—C10—C11179.72 (17)
O2—Cd1—N1—N2i143.90 (12)C9ii—C9—C10—N32.3 (3)
O4—Cd1—N1—N2i47.54 (12)C14—C9—C10—N3178.84 (18)
O5—Cd1—N1—N2i12.09 (16)C9ii—C9—C10—C11178.5 (2)
O1—Cd1—N1—N2i171.26 (11)C14—C9—C10—C110.4 (3)
O2—Cd1—N4—C14169.99 (15)N3—C10—C11—C12155.21 (18)
N1—Cd1—N4—C1489.87 (16)C9—C10—C11—C1225.6 (3)
O4—Cd1—N4—C141.7 (2)C10—C11—C12—C1668.7 (2)
O5—Cd1—N4—C1446.86 (17)C10—C11—C12—C15171.26 (18)
O1—Cd1—N4—C14132.22 (17)C10—C11—C12—C1352.2 (2)
O2—Cd1—N4—N3ii15.68 (15)C16—C12—C13—C1467.2 (2)
N1—Cd1—N4—N3ii84.45 (12)C15—C12—C13—C14173.52 (16)
O4—Cd1—N4—N3ii175.98 (11)C11—C12—C13—C1454.5 (2)
O5—Cd1—N4—N3ii138.81 (12)N3ii—N4—C14—C92.6 (3)
O1—Cd1—N4—N3ii53.46 (12)Cd1—N4—C14—C9170.95 (13)
Cd1—O1—N5—O3176.0 (2)N3ii—N4—C14—C13177.67 (17)
Cd1—O1—N5—O23.0 (2)Cd1—N4—C14—C138.7 (3)
Cd1—O2—N5—O3175.8 (2)C9ii—C9—C14—N41.3 (3)
Cd1—O2—N5—O13.2 (2)C10—C9—C14—N4177.59 (17)
Cd1—O5—N6—O6176.44 (19)C9ii—C9—C14—C13179.0 (2)
Cd1—O5—N6—O43.6 (2)C10—C9—C14—C132.1 (3)
Cd1—O4—N6—O6176.36 (18)C12—C13—C14—N4149.38 (18)
Cd1—O4—N6—O53.7 (2)C12—C13—C14—C930.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd(NO3)2(C12H12N4)(H2O)][Cd(NO3)2(C12H12N4)]·CHCl3
Mr466.69624.15
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)223223
a, b, c (Å)7.3240 (6), 13.7493 (12), 15.9016 (13)12.2570 (12), 12.5085 (11), 15.8471 (14)
α, β, γ (°)90, 90.720 (2), 9090, 102.687 (2), 90
V3)1601.2 (2)2370.3 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.421.31
Crystal size (mm)0.20 × 0.16 × 0.150.22 × 0.17 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.8160.762, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
10135, 3796, 3476 13397, 5594, 5130
Rint0.0150.013
(sin θ/λ)max1)0.6580.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.05 0.025, 0.064, 1.06
No. of reflections37965594
No. of parameters236299
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.390.53, 0.70

Computer programs: SMART-NT (Bruker, 1998), SMART-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.00; Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Cd1—O72.2841 (16)N1—C11.318 (2)
Cd1—N12.3003 (15)N1—N21.379 (2)
Cd1—O42.3017 (16)N2—C3i1.314 (2)
Cd1—O22.3792 (16)N3—C7ii1.320 (2)
Cd1—N32.4249 (15)N3—N41.381 (2)
Cd1—O12.518 (2)N4—C81.311 (2)
Cd1—O52.6471 (17)C1—C21.425 (2)
O1—N51.251 (3)C2—C2i1.376 (4)
O2—N51.259 (2)C2—C31.423 (2)
O3—N51.222 (2)C7—C91.425 (2)
O4—N61.263 (2)C8—C91.424 (2)
O5—N61.254 (2)C9—C9ii1.369 (4)
O6—N61.216 (2)
O7—Cd1—N1124.95 (7)N1—Cd1—O183.40 (7)
O7—Cd1—O488.73 (7)O4—Cd1—O182.42 (7)
N1—Cd1—O4146.19 (6)O2—Cd1—O151.59 (6)
O7—Cd1—O274.78 (6)N3—Cd1—O1159.29 (6)
N1—Cd1—O286.08 (6)O7—Cd1—O5135.65 (6)
O4—Cd1—O2108.24 (7)N1—Cd1—O596.13 (5)
O7—Cd1—N381.16 (5)O4—Cd1—O550.95 (5)
N1—Cd1—N390.97 (6)O2—Cd1—O5129.57 (6)
O4—Cd1—N391.58 (6)N3—Cd1—O582.31 (6)
O2—Cd1—N3148.12 (6)O1—Cd1—O578.52 (6)
O7—Cd1—O1118.31 (6)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O5iii0.8392.1052.930 (2)168
O7—H2···N40.8872.0462.730 (3)133
Symmetry code: (iii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cd1—N42.2515 (15)N2—C61.316 (2)
Cd1—O22.2991 (18)N3—C101.314 (2)
Cd1—N12.3074 (15)N3—N4ii1.382 (2)
Cd1—O42.3394 (16)N4—C141.310 (2)
Cd1—O52.3836 (18)C1—C1i1.378 (3)
Cd1—O12.4307 (19)C1—C21.418 (2)
O1—N51.248 (3)C1—C61.423 (2)
O2—N51.268 (3)C9—C9ii1.381 (3)
O3—N51.218 (3)C9—C141.416 (2)
O4—N61.258 (2)C9—C101.422 (3)
O5—N61.252 (2)C17—Cl31.755 (3)
O6—N61.221 (2)C17—Cl21.760 (3)
N1—C21.316 (2)C17—Cl11.762 (3)
N1—N2i1.383 (2)C17—H17A0.9600
N4—Cd1—O2126.94 (7)N1—Cd1—O5136.42 (6)
N4—Cd1—N187.73 (6)O4—Cd1—O553.49 (6)
O2—Cd1—N199.46 (6)N4—Cd1—O186.46 (6)
N4—Cd1—O4136.59 (7)O2—Cd1—O153.60 (7)
O2—Cd1—O495.82 (7)N1—Cd1—O1137.53 (7)
N1—Cd1—O492.70 (6)O4—Cd1—O1119.40 (7)
N4—Cd1—O599.28 (6)O5—Cd1—O186.00 (8)
O2—Cd1—O5109.53 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds