Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′-bipyridine)cadmium(II)]-μ3-4,4′-dicarboxy­biphenyl-3,3′-di­carboxyl­ato] 0.35-hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′-bipyridine (4,4′-bpy) and biphenyl-3,3′,4,4′-tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′-bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′-bpy ligands form a ring dimer node, which links into an extended broad zonal one-dimensional chain along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105028751/hj1069sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105028751/hj1069Isup2.hkl
Contains datablock I

CCDC reference: 290557

Comment top

The metal carboxylate coordination polymers have emerged as an important family in the past few years (Rao et al., 2004). It is also well known that the incorporation of carboxylic acid groups into coordination compounds gives interesting supramolecular architectures (Puddephatt et al., 2002). Multifunctional carboxylates and related species provide an effective means of designing novel hybrid structures with porous and other properties (Yaghi et al., 2003; Kitagawa et al., 2004). In some of these structures, the carboxylate acts as a linker between two inorganic units. The biphenyl-3,3',4,4'-tetracarboxylic acid ligand (H4L) has multifunctional possibilities: (a) it has four carboxyl groups that may be completely or partially deprotonated; (b) it can act not only as a hydrogen-bond acceptor but also as a hydrogen-bond donor, depending on the number of deprotonated carboxyl groups; (c) some of the carboxyl groups can be rotated out of the plane of the benzene ring upon complexation as a result of steric effects; thus the ligand may connect metal ions in three dimensions; (d) it is a flexible ligand. To the best of our knowledge, the crystal structure of a metal complex with the H4L ligand has not been reported previously, although there are several crystal structures of complexes with analogous (but rigid) ligands, viz. terephthalic acid (Shi et al., 2005), benzene-1,3,5-tricarboxylic acid (Rosi et al., 2002; Li et al., 1999; Millange et al., 2002; Kepert & Rosseinsky, 1998), benzene-1,2,4,5-tetracarboxylic acid (Shi et al., 2001, 2005; Cao et al., 2002; Hou et al., 2004), biphenyl-4,4'-dicarboxylic acid (Shi et al., 2005; Pan et al., 2003; Dai et al., 2004; Mukherjee et al., 2004; Shiu et al., 2003) and its analogs. However, the H4L coordination geometry is very different from those of the rigid ligands above because of the flexibility of its four carboxyl groups. We report here the preparation and crystal structure of a novel one-dimensional coordination polymer, formulated {[Cd(H2L)(4,4'-bpy)2]·0.35H2O}n (4,4'-bpy is 4,4'-bipyridine), (I).

Single-crystal X-ray diffraction reveals that (I) is an extended broad zonal one-dimensional chain based on ring dimer building blocks constructed from two Cd atoms, two H2L2− ligands and four 4,4'-bpy ligands. Each CdII atom is six-coordinate (Fig. 1), with two O atoms donated by one chelating bidentate H2L2− ligand, two from two separate bridging bidentate H2L2− ligands and two N atoms [Cd1—N2 = 2.312 (4) and Cd1—N3 = 2.404 (4) Å] from two 4,4'-bpy ligands, which, unusualy, act as monodentate (not bridging bidentate) ligands. The four Cd1—Ocarboxyl distances fall in the range 2.206 (3)–2.466 (4) Å and the O—Cd1—O angles vary from 54.6 (1) to 85.1 (1)°. The bond lengths and angles of Cd—Ocarboxyl are similar to those in other cadmium–carboxylate coordination polymers (Shi et al., 2005) with the Cd center displaying the typical distorted octahedral coordination geometry (Table 1). The H2L2− ligands exhibit an interesting connection mode with the metal ions, which is different from those in the other reported analogous ligands (Shi et al., 2001, 2005). As shown in the scheme and Fig. 1, three types of coordination modes of H2L2− ligands are present in the structure, viz. (a) two carboxylate groups (C13 and C16) are not deprotonated and remain free [C13—O2 = 1.180 (6) Å, C13—O1 = 1.330 (6) Å, C16—O8 = 1.208 (6) Å and C16—O7 = 1.310 (6) Å]; (b) one carboxylate group (C15) adopts a bidentate chelating mode, chelating one CdII atom; (c) another carboxylate group (C14) adopts a bidentate bridging mode, connecting two CdII atoms. Each H2L2− ligand acts as a tetradentate ligand coordinating to three CdII atoms. Two Cd atom, two H2L2− and four 4,4'-bpy ligands act as a ring dimer node (see Fig. 2). Nodes are connected through Cd1—O4i and O4—Cd1i bonds [symmetry code: (i) 2 − x, 1 − y, 2 − z] into an extended broad zonal one-dimensional chain along the c axis (see Fig. 3).

In the packing arrangement of (I) (see Fig. 4), adjacent one-dimensional chains are parallel to each other and associate into a two-dimensional supermolecular layer via hydrogen bonds between the N atoms of 4,4'-bpy and the free carboxyl groups of the H2L2− ligands (Table 2). Note that atom H1 bonded to carboxylic atom O1 could not be located in the final difference Fourier map and was instead included in an idealized position. The water molecule O9W was refined with a site occupancy of 0.35 and the H atoms attached to atom O9W were not located.

Experimental top

H4L was purchased from TCI and used without further purification. Compound (I) was synthesized hydrothermally under autogenous pressure. A mixture of Cd(CH3COO)2·3H2O (0.303 g, 1 mmol), H4L (0.330 g, 1 mmol), 4,4'-bpy (0.312 g, 2 mmol) and NaOH (0.080 g, 2 mmol) was stirred for 20 min and then sealed in a Parr Teflon-lined stainless steel vessel, which was heated to 443 K for 72 h. After slow cooling to ambient temperature, colorless block-shaped crystals of (I) were separated mechanically from the powder and washed with distilled water (yield ca 70% based on Cd). The compound is insoluble in common organic solvents and water. Analysis found: C 57.3, H 3.3, N 7.5%; C36H24.70CdN4O8.35 requires: C 56.9, H 3.28, N 7.38%.

Refinement top

All H atoms on C and O atoms were positioned geometrically and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)]. The water molecule O9W was refined freely with a site occupancy of 0.35, and the attached H atoms were not located.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990).

Figures top
[Figure 1] Fig. 1. View of the local coordination of the CdII atom, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. [Symmetry codes: (i) 2 − x, 1 − y, 2 − z; (ii) x, y, z − 1.]
[Figure 2] Fig. 2. View of the dimer node, with displacement ellipsoids drawn at the 30% probability level. H atoms and water molecules have been omitted for clarity. [Symmetry code: (i) 2 − x, 1 − y, 2 − z.]
[Figure 3] Fig. 3. The one-dimensional chain-like fragment (along c) in (I). H atoms, 4,4'-bpy groups and water molecules have been omitted for clarity [Symmetry code: (i) 2 − x, 1 − y, 2 − z.]
[Figure 4] Fig. 4. The two-dimensional supermolecular hydrogen-bonded framework (along the ac plane) formed via O—H···N interactions.
poly[[bis(4,4'-bipyridine-κN)cadmium(II)]-µ3-4,4'-dicarboxybiphenyl- 3,3'-dicarboxylato] 0.352-hydrate top
Crystal data top
[Cd(C16H8O8)(C10H8N2)2]·0.35H2OF(000) = 1534
Mr = 759.34Dx = 1.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 12.101 (5) ÅCell parameters from 18569 reflections
b = 24.379 (5) Åθ = 1.7–28.2°
c = 10.679 (5) ŵ = 0.79 mm1
β = 105.413 (5)°T = 298 K
V = 3037 (2) Å3BLOCK, colorless
Z = 40.35 × 0.26 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7162 independent reflections
Radiation source: fine-focus sealed tube3097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 715
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3232
Tmin = 0.784, Tmax = 0.828l = 1414
18797 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
7162 reflections(Δ/σ)max = 0.074
454 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(C16H8O8)(C10H8N2)2]·0.35H2OV = 3037 (2) Å3
Mr = 759.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.101 (5) ŵ = 0.79 mm1
b = 24.379 (5) ÅT = 298 K
c = 10.679 (5) Å0.35 × 0.26 × 0.25 mm
β = 105.413 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7162 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3097 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.828Rint = 0.084
18797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.96Δρmax = 0.62 e Å3
7162 reflectionsΔρmin = 0.64 e Å3
454 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.90990 (4)0.548869 (16)0.60887 (4)0.03137 (14)
C11.0949 (5)0.6760 (2)1.4369 (5)0.0304 (14)
C21.0549 (5)0.7268 (2)1.3886 (5)0.0448 (18)
H21.07950.75781.43920.054*
C30.9787 (5)0.7331 (2)1.2663 (5)0.0422 (17)
H30.95390.76801.23660.051*
C40.9392 (5)0.6878 (2)1.1881 (5)0.0291 (14)
C50.9756 (5)0.6367 (2)1.2385 (5)0.0324 (15)
H50.94820.60591.18840.039*
C61.0511 (4)0.6291 (2)1.3603 (5)0.0274 (13)
C70.8585 (5)0.6924 (2)1.0572 (5)0.0283 (14)
C80.7753 (5)0.7341 (2)1.0308 (5)0.0327 (14)
H80.77340.76051.09320.039*
C90.6961 (5)0.7353 (2)0.9099 (5)0.0333 (14)
H90.63980.76230.89310.040*
C100.6981 (4)0.69732 (19)0.8129 (4)0.0221 (13)
C110.7827 (4)0.65735 (19)0.8388 (4)0.0220 (12)
C120.8607 (4)0.6557 (2)0.9592 (5)0.0268 (13)
H120.91710.62870.97520.032*
C131.1896 (5)0.6733 (2)1.5605 (6)0.0377 (16)
C141.0722 (4)0.5717 (2)1.4110 (5)0.0270 (14)
C150.8039 (5)0.6169 (2)0.7439 (5)0.0270 (13)
C160.6056 (5)0.7008 (2)0.6875 (5)0.0321 (14)
C170.7529 (5)0.6151 (2)0.3680 (5)0.0369 (15)
H170.77630.64350.42740.044*
C180.6844 (5)0.6275 (2)0.2476 (5)0.0356 (15)
H180.66150.66360.22760.043*
C190.6489 (4)0.5873 (2)0.1559 (5)0.0296 (14)
C200.6880 (5)0.5345 (2)0.1924 (5)0.0410 (16)
H200.66820.50580.13320.049*
C210.7553 (5)0.5245 (2)0.3145 (5)0.0429 (17)
H210.77970.48880.33640.051*
C220.4290 (5)0.6514 (2)0.1220 (6)0.0413 (16)
H220.38000.68150.13560.050*
C230.5006 (5)0.6435 (2)0.0005 (5)0.0369 (15)
H230.49940.66800.06680.044*
C240.5742 (4)0.5991 (2)0.0249 (5)0.0307 (14)
C250.5737 (5)0.5661 (2)0.0790 (5)0.0468 (18)
H250.62360.53650.06860.056*
C260.4990 (6)0.5767 (3)0.2002 (5)0.0531 (19)
H260.50040.55360.26900.064*
C271.1061 (5)0.6123 (2)0.8243 (5)0.0387 (16)
H271.09120.63670.75500.046*
C281.1770 (5)0.6288 (2)0.9425 (5)0.0404 (16)
H281.20880.66380.95080.049*
C291.2016 (5)0.5933 (2)1.0503 (5)0.0346 (15)
C301.1529 (5)0.5417 (2)1.0296 (5)0.0358 (15)
H301.16820.51621.09670.043*
C311.0820 (5)0.5281 (2)0.9106 (5)0.0399 (16)
H311.04820.49350.90040.048*
C321.3739 (6)0.6798 (3)1.3239 (6)0.0543 (19)
H321.38010.71671.34710.065*
C331.2930 (5)0.6650 (2)1.2125 (6)0.0471 (18)
H331.24600.69151.16250.056*
C341.2818 (5)0.6106 (2)1.1748 (5)0.0336 (15)
C351.3503 (5)0.5734 (3)1.2578 (6)0.056 (2)
H351.34270.53601.24070.067*
C361.4301 (6)0.5924 (3)1.3663 (6)0.064 (2)
H361.47760.56681.41910.077*
N10.4260 (4)0.6184 (2)0.2217 (4)0.0401 (13)
N20.7880 (4)0.56398 (17)0.4049 (4)0.0336 (12)
N31.0585 (4)0.56275 (19)0.8063 (4)0.0353 (13)
N41.4438 (4)0.6443 (2)1.4004 (5)0.0520 (15)
O11.2580 (4)0.63062 (17)1.5593 (3)0.0488 (12)
H11.27740.61691.63200.073*
O21.2042 (4)0.70631 (16)1.6440 (4)0.0557 (13)
O31.0579 (3)0.55962 (14)1.5182 (3)0.0407 (10)
O41.0988 (3)0.53745 (14)1.3326 (3)0.0462 (11)
O50.7839 (3)0.56738 (14)0.7515 (3)0.0367 (10)
O60.8586 (3)0.63558 (13)0.6660 (3)0.0330 (9)
O70.6062 (3)0.65876 (16)0.6114 (4)0.0406 (10)
H70.54940.65990.54920.061*
O80.5368 (3)0.73779 (15)0.6628 (3)0.0471 (12)
O9W0.3789 (16)0.4901 (9)0.4412 (19)0.167 (12)0.352 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0390 (3)0.0299 (2)0.0213 (2)0.0065 (3)0.00110 (17)0.0009 (2)
C10.037 (4)0.023 (3)0.025 (3)0.002 (3)0.003 (3)0.004 (2)
C20.057 (5)0.028 (3)0.037 (4)0.002 (3)0.009 (4)0.005 (3)
C30.067 (5)0.016 (3)0.032 (3)0.004 (3)0.009 (3)0.005 (3)
C40.034 (4)0.027 (3)0.023 (3)0.000 (3)0.000 (3)0.000 (3)
C50.039 (4)0.029 (3)0.025 (3)0.001 (3)0.001 (3)0.007 (3)
C60.031 (3)0.031 (3)0.021 (3)0.010 (3)0.007 (3)0.003 (2)
C70.034 (4)0.019 (3)0.025 (3)0.004 (3)0.004 (3)0.005 (2)
C80.047 (4)0.030 (3)0.021 (3)0.004 (3)0.009 (3)0.007 (2)
C90.035 (4)0.028 (3)0.034 (3)0.013 (3)0.003 (3)0.007 (3)
C100.030 (3)0.023 (3)0.013 (3)0.001 (3)0.005 (3)0.001 (2)
C110.029 (3)0.018 (3)0.020 (3)0.001 (3)0.010 (3)0.001 (2)
C120.034 (3)0.027 (3)0.021 (3)0.013 (3)0.010 (3)0.001 (2)
C130.042 (4)0.034 (4)0.033 (4)0.002 (3)0.003 (3)0.014 (3)
C140.020 (3)0.025 (3)0.030 (3)0.003 (2)0.002 (3)0.001 (3)
C150.029 (3)0.035 (4)0.015 (3)0.008 (3)0.002 (3)0.004 (2)
C160.031 (4)0.041 (4)0.020 (3)0.003 (3)0.000 (3)0.003 (3)
C170.046 (4)0.034 (4)0.027 (3)0.001 (3)0.002 (3)0.002 (3)
C180.043 (4)0.035 (3)0.026 (3)0.003 (3)0.003 (3)0.003 (3)
C190.022 (3)0.041 (4)0.023 (3)0.001 (3)0.000 (3)0.003 (3)
C200.046 (4)0.037 (4)0.031 (3)0.005 (3)0.005 (3)0.009 (3)
C210.058 (5)0.040 (4)0.025 (3)0.009 (3)0.001 (3)0.003 (3)
C220.037 (4)0.044 (4)0.044 (4)0.005 (3)0.013 (3)0.013 (3)
C230.033 (4)0.042 (4)0.033 (3)0.003 (3)0.003 (3)0.002 (3)
C240.026 (4)0.034 (3)0.028 (3)0.001 (3)0.001 (3)0.003 (3)
C250.045 (4)0.055 (4)0.035 (4)0.014 (3)0.001 (3)0.001 (3)
C260.069 (5)0.054 (4)0.024 (3)0.002 (4)0.009 (3)0.004 (3)
C270.039 (4)0.038 (4)0.032 (3)0.001 (3)0.003 (3)0.010 (3)
C280.038 (4)0.030 (3)0.044 (4)0.008 (3)0.006 (3)0.002 (3)
C290.028 (4)0.042 (4)0.028 (3)0.000 (3)0.003 (3)0.006 (3)
C300.040 (4)0.037 (4)0.024 (3)0.001 (3)0.002 (3)0.004 (3)
C310.041 (4)0.033 (3)0.039 (4)0.012 (3)0.001 (3)0.006 (3)
C320.058 (5)0.056 (4)0.045 (4)0.012 (4)0.006 (4)0.024 (4)
C330.046 (4)0.043 (4)0.043 (4)0.003 (3)0.005 (3)0.012 (3)
C340.029 (4)0.040 (4)0.030 (3)0.003 (3)0.004 (3)0.008 (3)
C350.063 (5)0.046 (4)0.042 (4)0.010 (4)0.015 (4)0.016 (3)
C360.052 (5)0.082 (6)0.047 (5)0.020 (4)0.009 (4)0.008 (4)
N10.037 (3)0.049 (3)0.027 (3)0.002 (3)0.003 (2)0.013 (2)
N20.040 (3)0.030 (3)0.026 (3)0.009 (2)0.002 (2)0.004 (2)
N30.028 (3)0.044 (3)0.027 (3)0.001 (2)0.004 (2)0.000 (2)
N40.038 (4)0.072 (4)0.042 (3)0.004 (3)0.004 (3)0.016 (3)
O10.051 (3)0.056 (3)0.027 (2)0.005 (2)0.013 (2)0.001 (2)
O20.073 (3)0.045 (3)0.033 (3)0.001 (2)0.013 (2)0.017 (2)
O30.045 (3)0.051 (3)0.026 (2)0.002 (2)0.0086 (19)0.0175 (19)
O40.070 (3)0.026 (2)0.035 (2)0.011 (2)0.003 (2)0.0014 (18)
O50.051 (3)0.024 (2)0.037 (2)0.0006 (19)0.016 (2)0.0049 (17)
O60.040 (2)0.030 (2)0.028 (2)0.0034 (19)0.0047 (19)0.0062 (17)
O70.033 (3)0.048 (3)0.033 (2)0.000 (2)0.0053 (19)0.008 (2)
O80.045 (3)0.044 (3)0.041 (2)0.016 (2)0.009 (2)0.004 (2)
O9W0.143 (19)0.22 (3)0.14 (2)0.036 (16)0.044 (15)0.014 (16)
Geometric parameters (Å, º) top
Cd1—O4i2.206 (3)C19—C201.392 (7)
Cd1—O3ii2.266 (4)C19—C241.477 (6)
Cd1—N22.312 (4)C20—C211.363 (7)
Cd1—O62.330 (3)C20—H200.9300
Cd1—N32.404 (4)C21—N21.345 (6)
Cd1—O52.466 (4)C21—H210.9300
C1—C21.378 (7)C22—N11.327 (7)
C1—C61.424 (6)C22—C231.377 (7)
C1—C131.503 (7)C22—H220.9300
C2—C31.393 (7)C23—C241.382 (7)
C2—H20.9300C23—H230.9300
C3—C41.390 (6)C24—C251.369 (7)
C3—H30.9300C25—C261.391 (7)
C4—C51.384 (6)C25—H250.9300
C4—C71.482 (6)C26—N11.325 (7)
C5—C61.389 (6)C26—H260.9300
C5—H50.9300C27—N31.330 (6)
C6—C141.497 (7)C27—C281.384 (7)
C7—C121.384 (6)C27—H270.9300
C7—C81.405 (7)C28—C291.407 (7)
C8—C91.389 (6)C28—H280.9300
C8—H80.9300C29—C301.382 (7)
C9—C101.395 (6)C29—C341.484 (7)
C9—H90.9300C30—C311.372 (6)
C10—C111.387 (6)C30—H300.9300
C10—C161.502 (6)C31—N31.366 (6)
C11—C121.378 (6)C31—H310.9300
C11—C151.484 (7)C32—N41.329 (7)
C12—H120.9300C32—C331.373 (7)
C13—O21.180 (6)C32—H320.9300
C13—O11.330 (6)C33—C341.381 (7)
C14—O31.238 (6)C33—H330.9300
C14—O41.284 (6)C34—C351.381 (7)
C15—O51.238 (6)C35—C361.377 (8)
C15—O61.277 (6)C35—H350.9300
C16—O81.208 (6)C36—N41.313 (8)
C16—O71.310 (6)C36—H360.9300
C17—N21.343 (6)O1—H10.8200
C17—C181.366 (6)O3—Cd1iii2.266 (4)
C17—H170.9300O4—Cd1i2.206 (3)
C18—C191.371 (7)O7—H70.8200
C18—H180.9300
O4i—Cd1—O3ii109.54 (14)C18—C19—C20116.3 (5)
O4i—Cd1—N2110.63 (14)C18—C19—C24122.3 (5)
O3ii—Cd1—N287.58 (15)C20—C19—C24121.4 (5)
O4i—Cd1—O6139.04 (14)C21—C20—C19120.3 (5)
O3ii—Cd1—O6107.63 (13)C21—C20—H20119.9
N2—Cd1—O687.38 (13)C19—C20—H20119.9
O4i—Cd1—N388.09 (15)N2—C21—C20123.1 (5)
O3ii—Cd1—N382.34 (15)N2—C21—H21118.4
N2—Cd1—N3160.90 (15)C20—C21—H21118.4
O6—Cd1—N380.33 (13)N1—C22—C23123.6 (6)
O4i—Cd1—O585.14 (14)N1—C22—H22118.2
O3ii—Cd1—O5158.62 (12)C23—C22—H22118.2
N2—Cd1—O5102.03 (15)C24—C23—C22120.0 (6)
O6—Cd1—O554.60 (12)C24—C23—H23120.0
N3—Cd1—O582.73 (14)C22—C23—H23120.0
C2—C1—C6117.8 (5)C25—C24—C23116.3 (5)
C2—C1—C13118.7 (5)C25—C24—C19121.6 (5)
C6—C1—C13123.3 (5)C23—C24—C19122.1 (5)
C1—C2—C3122.0 (5)C24—C25—C26120.5 (6)
C1—C2—H2119.0C24—C25—H25119.8
C3—C2—H2119.0C26—C25—H25119.8
C4—C3—C2120.8 (5)N1—C26—C25122.8 (6)
C4—C3—H3119.6N1—C26—H26118.6
C2—C3—H3119.6C25—C26—H26118.6
C5—C4—C3117.4 (5)N3—C27—C28122.4 (5)
C5—C4—C7119.8 (5)N3—C27—H27118.8
C3—C4—C7122.8 (5)C28—C27—H27118.8
C4—C5—C6123.1 (5)C27—C28—C29120.7 (5)
C4—C5—H5118.5C27—C28—H28119.6
C6—C5—H5118.5C29—C28—H28119.6
C5—C6—C1118.9 (5)C30—C29—C28116.2 (5)
C5—C6—C14117.9 (5)C30—C29—C34123.5 (5)
C1—C6—C14122.8 (4)C28—C29—C34120.2 (5)
C12—C7—C8118.3 (5)C31—C30—C29120.2 (5)
C12—C7—C4121.6 (5)C31—C30—H30119.9
C8—C7—C4120.1 (5)C29—C30—H30119.9
C9—C8—C7118.8 (5)N3—C31—C30123.2 (5)
C9—C8—H8120.6N3—C31—H31118.4
C7—C8—H8120.6C30—C31—H31118.4
C8—C9—C10122.2 (5)N4—C32—C33123.5 (6)
C8—C9—H9118.9N4—C32—H32118.2
C10—C9—H9118.9C33—C32—H32118.2
C9—C10—C11118.4 (4)C32—C33—C34119.8 (6)
C9—C10—C16118.0 (5)C32—C33—H33120.1
C11—C10—C16123.6 (5)C34—C33—H33120.1
C12—C11—C10119.6 (4)C35—C34—C33116.6 (5)
C12—C11—C15114.6 (4)C35—C34—C29121.7 (5)
C10—C11—C15125.6 (4)C33—C34—C29121.6 (5)
C11—C12—C7122.7 (5)C36—C35—C34119.1 (6)
C11—C12—H12118.7C36—C35—H35120.5
C7—C12—H12118.7C34—C35—H35120.5
O2—C13—O1124.9 (6)N4—C36—C35124.5 (6)
O2—C13—C1124.0 (6)N4—C36—H36117.8
O1—C13—C1111.0 (5)C35—C36—H36117.8
O3—C14—O4124.7 (5)C26—N1—C22116.8 (5)
O3—C14—C6120.3 (5)C17—N2—C21116.3 (4)
O4—C14—C6114.9 (5)C17—N2—Cd1119.8 (3)
O5—C15—O6122.3 (5)C21—N2—Cd1123.7 (4)
O5—C15—C11122.1 (5)C27—N3—C31117.1 (4)
O6—C15—C11115.0 (5)C27—N3—Cd1116.7 (3)
O8—C16—O7124.5 (5)C31—N3—Cd1124.9 (4)
O8—C16—C10123.0 (5)C36—N4—C32116.4 (5)
O7—C16—C10112.5 (5)C13—O1—H1109.5
N2—C17—C18123.1 (5)C14—O3—Cd1iii138.0 (3)
N2—C17—H17118.4C14—O4—Cd1i113.4 (3)
C18—C17—H17118.4C15—O5—Cd188.6 (3)
C17—C18—C19120.8 (5)C15—O6—Cd193.9 (3)
C17—C18—H18119.6C16—O7—H7109.5
C19—C18—H18119.6
C6—C1—C2—C33.2 (9)C27—C28—C29—C34177.3 (5)
C13—C1—C2—C3171.1 (6)C28—C29—C30—C312.1 (8)
C1—C2—C3—C40.4 (10)C34—C29—C30—C31178.1 (5)
C2—C3—C4—C52.1 (9)C29—C30—C31—N32.3 (9)
C2—C3—C4—C7179.8 (6)N4—C32—C33—C340.3 (10)
C3—C4—C5—C61.9 (9)C32—C33—C34—C353.5 (9)
C7—C4—C5—C6180.0 (5)C32—C33—C34—C29175.4 (6)
C4—C5—C6—C11.0 (9)C30—C29—C34—C3527.7 (9)
C4—C5—C6—C14172.2 (5)C28—C29—C34—C35148.2 (6)
C2—C1—C6—C53.5 (8)C30—C29—C34—C33153.5 (6)
C13—C1—C6—C5170.6 (5)C28—C29—C34—C3330.6 (9)
C2—C1—C6—C14169.4 (5)C33—C34—C35—C364.5 (10)
C13—C1—C6—C1416.5 (9)C29—C34—C35—C36174.4 (6)
C5—C4—C7—C1233.1 (8)C34—C35—C36—N42.6 (11)
C3—C4—C7—C12148.8 (6)C25—C26—N1—C221.9 (9)
C5—C4—C7—C8145.4 (6)C23—C22—N1—C261.8 (9)
C3—C4—C7—C832.6 (8)C18—C17—N2—C212.2 (9)
C12—C7—C8—C92.7 (8)C18—C17—N2—Cd1177.5 (4)
C4—C7—C8—C9175.9 (5)C20—C21—N2—C171.4 (9)
C7—C8—C9—C101.6 (8)C20—C21—N2—Cd1176.6 (4)
C8—C9—C10—C110.3 (8)O4i—Cd1—N2—C17159.2 (4)
C8—C9—C10—C16177.6 (5)O3ii—Cd1—N2—C1790.9 (4)
C9—C10—C11—C121.0 (7)O6—Cd1—N2—C1716.9 (4)
C16—C10—C11—C12176.7 (5)N3—Cd1—N2—C1732.8 (8)
C9—C10—C11—C15174.4 (5)O5—Cd1—N2—C1769.9 (4)
C16—C10—C11—C158.0 (8)O4i—Cd1—N2—C2125.8 (5)
C10—C11—C12—C70.2 (8)O3ii—Cd1—N2—C2184.1 (5)
C15—C11—C12—C7176.0 (5)O6—Cd1—N2—C21168.1 (5)
C8—C7—C12—C112.1 (8)N3—Cd1—N2—C21142.1 (5)
C4—C7—C12—C11176.5 (5)O5—Cd1—N2—C21115.1 (4)
C2—C1—C13—O229.8 (9)C28—C27—N3—C310.3 (9)
C6—C1—C13—O2156.2 (6)C28—C27—N3—Cd1168.1 (4)
C2—C1—C13—O1146.5 (6)C30—C31—N3—C271.3 (9)
C6—C1—C13—O127.5 (8)C30—C31—N3—Cd1168.0 (4)
C5—C6—C14—O3125.5 (6)O4i—Cd1—N3—C27177.1 (4)
C1—C6—C14—O347.5 (8)O3ii—Cd1—N3—C2767.1 (4)
C5—C6—C14—O450.9 (7)N2—Cd1—N3—C278.3 (8)
C1—C6—C14—O4136.2 (5)O6—Cd1—N3—C2742.4 (4)
C12—C11—C15—O573.8 (7)O5—Cd1—N3—C2797.6 (4)
C10—C11—C15—O5110.6 (6)O4i—Cd1—N3—C3116.2 (5)
C12—C11—C15—O696.8 (5)O3ii—Cd1—N3—C31126.2 (5)
C10—C11—C15—O678.8 (7)N2—Cd1—N3—C31175.1 (4)
C9—C10—C16—O87.1 (8)O6—Cd1—N3—C31124.4 (5)
C11—C10—C16—O8175.2 (5)O5—Cd1—N3—C3169.2 (5)
C9—C10—C16—O7170.8 (5)C35—C36—N4—C320.7 (11)
C11—C10—C16—O76.9 (7)C33—C32—N4—C361.9 (10)
N2—C17—C18—C191.0 (9)O4—C14—O3—Cd1iii105.3 (6)
C17—C18—C19—C200.9 (8)C6—C14—O3—Cd1iii70.7 (7)
C17—C18—C19—C24179.6 (5)O3—C14—O4—Cd1i9.4 (7)
C18—C19—C20—C211.6 (9)C6—C14—O4—Cd1i166.8 (3)
C24—C19—C20—C21178.9 (5)O6—C15—O5—Cd18.3 (5)
C19—C20—C21—N20.5 (10)C11—C15—O5—Cd1161.6 (4)
N1—C22—C23—C240.3 (9)O4i—Cd1—O5—C15167.3 (3)
C22—C23—C24—C252.4 (8)O3ii—Cd1—O5—C1532.5 (5)
C22—C23—C24—C19177.1 (5)N2—Cd1—O5—C1582.6 (3)
C18—C19—C24—C25154.9 (6)O6—Cd1—O5—C154.7 (3)
C20—C19—C24—C2524.5 (8)N3—Cd1—O5—C1578.6 (3)
C18—C19—C24—C2325.7 (8)O5—C15—O6—Cd18.8 (5)
C20—C19—C24—C23154.9 (6)C11—C15—O6—Cd1161.8 (4)
C23—C24—C25—C262.3 (9)O4i—Cd1—O6—C157.7 (4)
C19—C24—C25—C26177.2 (5)O3ii—Cd1—O6—C15162.1 (3)
C24—C25—C26—N10.2 (10)N2—Cd1—O6—C15111.3 (3)
N3—C27—C28—C290.2 (9)N3—Cd1—O6—C1583.4 (3)
C27—C28—C29—C301.1 (9)O5—Cd1—O6—C154.6 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y, z1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1iv0.822.042.677 (6)134
O7—H7···N4v0.821.802.590 (6)163
Symmetry codes: (iv) x+1, y, z+2; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C16H8O8)(C10H8N2)2]·0.35H2O
Mr759.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.101 (5), 24.379 (5), 10.679 (5)
β (°) 105.413 (5)
V3)3037 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.35 × 0.26 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.784, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
18797, 7162, 3097
Rint0.084
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 0.96
No. of reflections7162
No. of parameters454
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.64

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.042.677 (6)134
O7—H7···N4ii0.821.802.590 (6)163
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds