Download citation
Download citation
link to html
The title compounds, a hydrogen-bonded linear chain, [Mn(C18H18N2O4)(H2O)2]ClO4, (I), a hydrogen-bonded pseudo-dimer, [Mn(C16H10Cl4N2O2)(CH4O)(H2O)]ClO4, (II), and a dimer, [Mn2(C18H18N2O4)2(CH4O)2](ClO4)2, (III), respectively, have been structurally characterized. The three complexes are completely different in their structural features, despite identical counter-anions and only slight modification of the substituents in the ligands. Complex (I) affords an elongated octa­hedral coordination environment, with axial Mn—O(water) distances of 2.259 (3) and 2.313 (3) Å, which forms hydrogen-bonded linear chains along the crystallographic c axis. Hydrogen-bonded pseudo-dimeric compound (II) also affords an elongated octa­hedral coordination environment, with axial Mn—O(CH3OH) = 2.222 (3) Å and Mn—O(water) = 2.266 (3) Å. Dimeric complex (III) is centrosymmetric and consists of distorted octa­hedral Mn atoms, with axial Mn—O(CH3OH) = 2.242 (2) Å and Mn—O(phenolate) = 2.348 (1) Å, connected via bridging O atoms from one of the ligands. The magnetic properties of the three complexes are described.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105013545/hj1056sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013545/hj1056Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013545/hj1056IIsup3.hkl
Contains datablocks II, vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105013545/hj1056IIIsup4.hkl
Contains datablocks III, vcif WARNING: Line 0: length exceeds internal buffer size (4096) - rest discarded

CCDC references: 278534; 278535; 278536

Comment top

Recently, photomagnetic functional complexes have been studied widely (Sato, 2003; Sato et al., 2003). One of the hypotheses for the discovery of such materials is to examine complexes which exhibit ready structural changes and valence or spin transitions. For example, a certain FeII complex exhibits spin-crossover due to Jahn–Teller distortion (Marchivie et al., 2003; Kambara, 1979). Schiff base MnIII complexes have attracted considerable attention due to their catalysis and magnetism. Chiral catalysts are often employed for Kochi–Jacobsen–Katsuki enantioselective epoxidation (Korendovych & Rybak-Akimova, 2004; Martinez et al., 2002; Reger & Janda, 2000; Khavrutskii et al., 2003a,b Which one?). Various photocatalytic reactions, including photocleavage of DNA (Sakamoto et al., 1998), photophysical properties (Cozzi et al., 2003) and photosystem II models (Ashmawy et al., 1985; Aurangzeb et al., 1994; Bermejo et al., 1996), have been studied for many years. On the other hand, numerous dimeric high-spin Schiff base MnIII complexes exhibit ferromagnetism (Miyasaka et al., 2002). These building blocks have potential in the design of new single-molecule magnets (Choi et al., 2004), hydrogen-bonded assemblies (Wernsdorfer et al., 2002) or multi-nuclear clusters (Mukhopadhyay et al., 2004). However, axially compressed complexes undergoing the Jahn–Teller effect are rare for analogous MnIII complexes (Shongwe et al., 2001). The 5D ground state may split into 5T2 g and 5Eg terms, and Jahn–Teller distortion removes the orbital degeneracy of the 5Eg ground state to give the orbital singlet lowest in energy, either 5A1 g or 5B1 g (Kennedy & Murray, 1985). The spin degeneracy of the 5A1 g or 5B1 g states is further removed by spin-orbit coupling, which gives rise to zero-field splitting, D. Axial elongation results in the 5B1 g level lying lowest with negative D, while axial compression leads to 5A1 g with positive D. Here, we present three new Schiff base MnIII complexes, the title compounds, (I)–(III). Despite only slight modification of the substituents and identical counteranions, they are different in their dimeric features involving the axial coordination bonds. The three complexes are a hydrogen-bonded chain of pseudo-dimers, (I), a pseudo-dimer, (II), and a dimer, (III).

In complex (I) (Fig. 1), the central MnIII ion adopts an elongated octahedral coordination geometry, with the displacement of the Mn1 ion from the O1/N1/N2/O2 least-squares plane being 0.012 (2) Å. Both axial sites are occupied by water ligands with a T value of 0.842, where T = RS/RL denotes the ratio of equatorial and axial mean bond lengths undergoing the Jahn–Teller effect (Hathaway & Billing, 1970). The ethylenediamine moiety adopts a λ conformation, with an N1—C8A—C16A—N2 torsion angle of 48.3 (10)° [or N1—C8B—C16B—N2 = 46.0 (12)°]. The angle between the least-squares planes of the aromatic rings of the ligands is 4.43 (13) °, which indicates near planarity of the overall molecular structure.

In the crystal of (I), adjacent molecules are linked by hydrogen bonds [O5···O3i = 2.929 (3) Å, O5···O1i = 2.928 (3) Å, O5···O4i = 2.984 (3) Å, and O5···O2i = 2.949 (3) Å; symmetry code: (i) 1 − x, 1 − y, 1 − z] to form hydrogen-bonded pseudo-dimers, with additional face-to-face ππ stacking interactions between the phenyl groups (C5···C9 = 3.54 Å and C4···C10 = 3.56 Å). Furthermore, intermolecular hydrogen bonds [O6···O8 = 3.029 (6) Å and O6···O8ii = 2.839 (6) Å; symmetry code: (ii) 1 − x, 1 − y, 2 − z] between these pseudo-dimers and perchlorate counter-ions result in hydrogen-bonded linear chains along the crystallographic c axis. Finally, there is an additional edge-to-face interaction to the phenyl group of a molecule adjacent to the linear chain (symmetry code: 1 − x, y − 1/2, 3/2 − z), with C4···C10 = 3.30 Å.

In pseudo-dimeric complex, (II) (Fig. 2), the central MnIII ion also adopts an elongated octahedral coordination geometry, in which the displacement of the Mn1 ion from the O1/N1/N2/O2 least-squares plane is 0.029 (2) Å. The two axial ligands are water and methanol, and the mean T value is 0.866. The ethylenediamine moiety again adopts a λ conformation, with an N1—C8—C16—N2 torsion angle of 44.4 (4)°. Although the angle between the least-squares planes of the aromatic rings on both sides of the ligand is 3.00 (18)°, the overall molecular shape is a stepped conformation.

In the crystal of (II), adjacent molecules form centrosymmetric hydrogen-bonded pseudo-dimers [O4···O1iii = 2.845 (3) Å, O4···O2iii = 2.970 (4) Å, O4···Cl2iii = 3.270 (1) Å and O4···Cl3iii = 3.246 (3) Å; symmetry code: (iii) 1 − x, 1 − y, −z], with the shortest ππ stacking interaction between the phenyl groups, C4···C13 = 3.42 Å. Moreover, hydrogen bonds [O3···O7 = 2.834 (6) Å] are formed between the axial methanol and the perchlorate ion.

As observed for (I) and (II), the MnIII ion of the dimeric complex, (III) (Fig. 3), shows an elongated octahedral coordination geometry, which comprises the tetradentate Schiff base ligand. A methanol ligand occupies the outer axial site, while the phenolate O atom of the adjacent monomer occupies the inner axial site. The geometric parameters of the bridging moiety are O1—Mn1iv = 2.348 (1) Å, O1—Mn1—O1iv = 80.26 (5)°, Mn1—O1—Mn1iv = 99.74 (5)° and Mn1···Mn1iv = 3.275 (1) Å [symmetry code: (iv) 1 − x, 1 − y, 1 − z]. The displacement of the Mn1 ion from the O1/N1/N2/O2 least-squares plane is 0.055 (1) Å. The T values are 0.865 and 0.826 (average 0.846) for the methanol and phenolate O atoms, respectively. It should be noted that the in-plane coordination bond distance [Mn1—O1 = 1.921 (1) Å] is considerably longer than usual, because the phenolate atom O1 also takes part in bridging, forming the dimers. The ethylenediamine moiety adopts a λ conformation, with an N1—C8—C16—N2 torsion angle of 44.9 (2)°. The angle between the least-squares planes of the aromatic rings of the ligands is 18.70 (7)°, which results from an overall stepped conformation.

In the crystal of (III), the perchlorate anions and dimers are packed alternately, with the shortest ππ stacking distance being between atom C1 and atom C14 in the adjacent phenyl group (symmetry code: 1 − x, 1 − y, 1 − z), of about 3.33 Å. An intramolecular hydrogen bond [O5···O8 = 2.767 (3) Å] is formed between the axial methanol and the perchlorate ion.

The three complexes are quite different in their structural features. It is likely that substitution of the aromatic ring at the 5-position by methoxy in (I) and Cl in (II) prevents the formation of dimers, as seen for (III), and instead hydrogen-bonded pseudo-dimeric systems are formed. Indeed, both the steric and electronic features of Schiff base ligands, namely the electron-donating methoxy group and the electron-withdrawing Cl group, considerably influence the Jahn–Teller distortion of the axial Mn—O bonds. It is expected that electron-donating substituent groups result in a large Jahn–Teller elongation and ferromagnetism, due to the orthogonal eg and dπ orbitals of the MnIII ion.

The structural differences reflect the overall magnetic properties for compounds (I)–(III). The variable-temperature magnetic susceptibility was measured in the range 2–300 K, and the plot of effective magnetic moment versus T is given in Fig. 4. On lowering the temperature to about 50 K, the magnetic moment was kept almost constant for (I)–(III). It then gradually increased to more than 6 BM at 8 K and then decreased for (I), while (II) and (III) showed a decrease at about 20 K and reached less than 2 BM at 2 K. By analogy with related complexes (Saha et al., 2004), the overall magnetic interaction of (I) is ferromagnetic, obeying χ = [Ng2β2/k(T-α)][A/B], where A = 30 + 14exp(−8 J/kT) + 5exp(−14 J/kT) + exp(−18 J/kT), B = 9 + 7exp(−8 J/kT) + 5exp(−14 J/kT) + 3exp(−18 K/kT) + exp(−10 J/kT), with the best-fit parameters of J,K = 1.25 K, g = 1.99, and α = −0.2 K. Suitable geometry of one-dimensional hydrogen-bonded chains of (I) results in a positive J value, which indicates ferromagnetic interaction. On the other hand, compounds (II) and (III) show antiferromagnetic interaction, indicating typical Curie–Weiss behaviour. The Weiss constants for (II) and (III) are −9.04 K and −0.37 K, respectively. We attempted to analyse the data for (III) to obtain J. However, in contrast with many dimers, it is difficult to fit, because there is no inflection point in the plot of ueff versus T. Also, the treatment of the molecular field approximation is unclear. The diffuse reflectance spectra at 294 K support the 5B1 g ground state of the MnIII ion (S = 2) for (I)–(III).

In addition, we irradiated the crystals with UV and visible light at 8 K, which resulted in a reversible change of the IR band intensity around 3100 cm−1 (O—H band) for the axial ligands for (I)–(III). In contrast with the analogous CuII complex (Akitsu & Einaga, 2004), photo-irradiation did not affect the axial Jahn–Teller distortion for the three rigid MnIII complexes, (I)–(III).

Experimental top

For (I), treatment of equimolar quantities of 5-methoxysalicylaldehyde (0.30 g, 2.00 mmol), ethylenediamine (0.30 g, 0.50 mmol) and manganese(III) acetate dihydrate (0.27 g, 1.00 mmol) in methanol (50 ml) at 323 K for 2 h gave a brown solution. After adding sodium perchlorate hydrate (0.70 g, 5.00 mmol) and stirring for 323 K for 1 h, the resulting solution was filtered and allowed to stand for two weeks at 298 K. Brown crystals of (I) suitable for X-ray crystallography were obtained from the filtrate. Analysis, found: C 41.50, H 4.29, N 5.17%; calculated for C18H22ClMnN2O10: C 41.84, H 4.29, N 5.42%; IR (KBr): 1627 cm−1 (CN band); m.p. 604 K (decomposition); UV–vis (diffuse reflectance): 13300, 16700 and 18300 cm−1; magnetic moment 4.77 BM at 294 K. For (II), the same preparation procedure was employed as given for (I), using 3,5-dichlorosalicylaldehyde (0.38 g, 2.00 mmol) instead of 5-methoxysalicylaldehyde. Analysis, found: C 33.60, H 2.60, N 4.55%.; calculated for C34H36CuN2O4: C 68.04, H 6.05, N 4.67%; IR (KBr): 1636 cm−1 (CN); m.p. 542 K (decomposition); UV–vis (diffuse reflectance): 13200 and 16700 cm−1; magnetic moment 4.54 BM at 294 K. For (III), the same preparation procedure was employed as given for (I), with 3-methoxysalicylaldehyde (0.30 g, 2.00 mmol) instead of 5-methoxysalicylaldehyde. Analysis found: C 44.50, H 4.29, N 5.17%; calculated for C19H22ClMnN2O9: C 44.50, H 4.32, N 5.46%; IR (KBr): 1621 cm−1 (CN); m.p. 560 K (decomposition); UV–vis (diffuse reflectance): 18300 cm−1; magnetic moment 4.48 BM at 294 K.

Refinement top

For (I), all H atoms were located in a difference Fourier map and refined using a riding model, with O—H = 0.96 Å and Uiso(H) = 1.2Ueq(O), and C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). There is positional disorder of atoms C8 and C16 over two equally occupied sites. It was assumed that the ethylenediamine moiety has two possible conformations, namely N1—C8A(H8A1/H8A2)—C16A(H16A/H16B)—N2 and N1—C8B(H8B1/H8B2)—C16B(H16C/H16D)—N2. For (II), H atoms were placed in geometrically calculated positions and refined using a riding model, with O—H = 0.84 Å and Uiso(H) = 1.2Ueq(O), and C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C). Atoms H17AC and H17DF, bound to the methyl group C17, were modelled as idealized disordered groups with equal occupancy factors. For (III), H atoms were located in a difference Fourier map and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C), except for atom H5, which was fixed in its difference map position. Atoms H19AC and H19DF, bound to methyl group C19, were modelled as idealized disordered groups with equal occupancy factors.

Computing details top

For all compounds, data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin lines indicate possible hydrogen bonds.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin lines indicate possible hydrogen bonds.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin lines indicate possible hydrogen bonds.
[Figure 4] Fig. 4. Plot of the effective magnetic moment versus T for (I)–(III), measured under 5000 G.
(I) Diaqua[N,N'-bis(5-methoxysalicylidene)ethylenediaminato- κ4O,N,N',O']manganese(III) perchlorate top
Crystal data top
[Mn(C18H18N2O4)(H2O)2]ClO4F(000) = 2128
Mr = 516.77Dx = 1.611 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 22.751 (9) Åθ = 10.2–14.0°
b = 14.016 (6) ŵ = 0.80 mm1
c = 13.36 (1) ÅT = 297 K
V = 4260 (4) Å3Plate, brown
Z = 80.46 × 0.46 × 0.10 mm
Data collection top
Rigaku AFC-7R
diffractometer
3324 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.000
Graphite monochromatorθmax = 27.5°
ω/2θ scansh = 029
Absorption correction: ψ scan
(North et al., 1968)
k = 718
Tmin = 0.698, Tmax = 0.923l = 177
4892 measured reflections3 standard reflections every 150 reflections
4892 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.174H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1051P)2 + 1.1428P]
where P = (Fo2 + 2Fc2)/3
3324 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[Mn(C18H18N2O4)(H2O)2]ClO4V = 4260 (4) Å3
Mr = 516.77Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 22.751 (9) ŵ = 0.80 mm1
b = 14.016 (6) ÅT = 297 K
c = 13.36 (1) Å0.46 × 0.46 × 0.10 mm
Data collection top
Rigaku AFC-7R
diffractometer
3324 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.698, Tmax = 0.9233 standard reflections every 150 reflections
4892 measured reflections intensity decay: 0.3%
4892 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 0.96 e Å3
3324 reflectionsΔρmin = 0.39 e Å3
311 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.47722 (2)0.56188 (3)0.66443 (4)0.04181 (18)
O10.44546 (9)0.44564 (15)0.62138 (19)0.0482 (5)
O20.55420 (9)0.52355 (16)0.63654 (19)0.0499 (5)
O30.42953 (10)0.27573 (15)0.55799 (19)0.0507 (5)
O40.64807 (10)0.43386 (16)0.5844 (2)0.0537 (6)
O50.46361 (10)0.62901 (16)0.51244 (16)0.0464 (5)
H5A0.50070.63360.47840.070*
H5B0.43720.59030.47390.070*
O60.48747 (18)0.4948 (3)0.8217 (2)0.0879 (11)
H6A0.47200.53770.87110.132*
H6B0.52830.48330.83500.132*
N10.39890 (14)0.61118 (19)0.7031 (2)0.0556 (7)
N20.50266 (14)0.6890 (2)0.7112 (2)0.0566 (7)
C10.34305 (14)0.4696 (3)0.6610 (3)0.0498 (7)
C20.28576 (16)0.4295 (3)0.6580 (3)0.0623 (10)
H20.25390.46500.68070.075*
C30.27681 (17)0.3400 (3)0.6226 (3)0.0661 (10)
H30.23900.31480.62140.079*
C40.32373 (16)0.2854 (3)0.5878 (3)0.0580 (9)
H40.31710.22410.56380.070*
C50.37984 (13)0.3218 (2)0.5887 (2)0.0434 (7)
C60.39050 (13)0.4152 (2)0.6240 (2)0.0421 (7)
C70.35010 (17)0.5652 (3)0.6966 (3)0.0573 (9)
H70.31630.59700.71690.069*
C8A0.3956 (5)0.7166 (5)0.7182 (10)0.061 (3)0.50
H8A10.36250.73390.76030.073*0.50
H8A20.39250.75010.65480.073*0.50
C8B0.4067 (6)0.7048 (6)0.7568 (10)0.075 (4)0.50
H8B10.41300.69240.82750.091*0.50
H8B20.37090.74190.75030.091*0.50
C90.60684 (16)0.6684 (2)0.6754 (2)0.0463 (7)
C100.66191 (17)0.7149 (3)0.6779 (3)0.0539 (9)
H100.66400.77860.69720.065*
C110.71160 (18)0.6676 (3)0.6526 (3)0.0602 (9)
H110.74770.69860.65590.072*
C120.70908 (15)0.5724 (3)0.6215 (3)0.0526 (8)
H120.74350.54060.60440.063*
C130.65611 (13)0.5253 (2)0.6161 (2)0.0446 (7)
C140.60343 (14)0.5723 (2)0.6438 (2)0.0429 (7)
C150.55579 (17)0.7212 (2)0.7069 (3)0.0539 (8)
H150.56160.78430.72580.065*
C16A0.4539 (3)0.7378 (5)0.7697 (6)0.0475 (16)0.50
H16A0.46060.80610.77170.057*0.50
H16B0.45310.71410.83790.057*0.50
C16B0.4581 (4)0.7629 (6)0.7167 (8)0.067 (2)0.50
H16C0.44950.78980.65140.080*0.50
H16D0.46920.81350.76240.080*0.50
C170.4245 (2)0.1767 (2)0.5324 (3)0.0617 (9)
H17A0.41340.14090.59070.093*
H17B0.46160.15380.50800.093*
H17C0.39510.16900.48150.093*
C180.70024 (16)0.3802 (3)0.5601 (4)0.0691 (11)
H18A0.72140.41210.50770.104*
H18B0.68930.31740.53820.104*
H18C0.72480.37530.61840.104*
Cl10.62535 (4)0.43152 (7)0.98279 (9)0.0634 (3)
O70.6351 (3)0.4513 (4)0.8850 (5)0.175 (3)
O80.56508 (16)0.4420 (3)0.9973 (4)0.1180 (15)
O90.64602 (19)0.3415 (3)1.0081 (4)0.1219 (16)
O100.6543 (3)0.5000 (4)1.0367 (7)0.206 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0414 (3)0.0333 (3)0.0507 (3)0.00330 (18)0.00026 (19)0.00596 (19)
O10.0376 (11)0.0361 (11)0.0709 (15)0.0011 (9)0.0068 (10)0.0036 (10)
O20.0368 (11)0.0381 (11)0.0750 (15)0.0014 (9)0.0062 (10)0.0137 (10)
O30.0499 (12)0.0346 (11)0.0675 (14)0.0036 (9)0.0043 (11)0.0037 (10)
O40.0385 (11)0.0406 (12)0.0820 (17)0.0011 (9)0.0039 (11)0.0091 (11)
O50.0446 (12)0.0430 (12)0.0518 (12)0.0036 (9)0.0011 (9)0.0059 (9)
O60.116 (3)0.089 (2)0.0592 (18)0.033 (2)0.0061 (16)0.0072 (15)
N10.0575 (18)0.0400 (15)0.0692 (18)0.0105 (13)0.0185 (15)0.0011 (13)
N20.0577 (17)0.0425 (15)0.0696 (19)0.0093 (14)0.0129 (15)0.0202 (13)
C10.0420 (16)0.0559 (19)0.0514 (18)0.0040 (15)0.0018 (14)0.0082 (15)
C20.0362 (16)0.086 (3)0.064 (2)0.0068 (17)0.0020 (15)0.012 (2)
C30.0449 (19)0.081 (3)0.072 (2)0.0141 (19)0.0097 (17)0.012 (2)
C40.0512 (19)0.064 (2)0.059 (2)0.0181 (17)0.0099 (16)0.0054 (17)
C50.0438 (16)0.0455 (17)0.0408 (15)0.0037 (13)0.0058 (12)0.0077 (13)
C60.0392 (15)0.0432 (16)0.0439 (15)0.0009 (13)0.0022 (12)0.0074 (12)
C70.0485 (19)0.057 (2)0.067 (2)0.0134 (16)0.0095 (16)0.0070 (17)
C8A0.053 (5)0.033 (5)0.097 (9)0.012 (4)0.010 (5)0.005 (4)
C8B0.087 (10)0.030 (4)0.109 (11)0.019 (5)0.039 (8)0.005 (5)
C90.0583 (19)0.0411 (16)0.0395 (16)0.0095 (14)0.0101 (13)0.0027 (12)
C100.068 (2)0.0448 (17)0.0492 (18)0.0150 (16)0.0089 (15)0.0025 (14)
C110.061 (2)0.057 (2)0.062 (2)0.0253 (18)0.0092 (17)0.0041 (17)
C120.0431 (17)0.055 (2)0.0600 (19)0.0087 (15)0.0046 (14)0.0060 (15)
C130.0411 (16)0.0411 (16)0.0515 (17)0.0029 (13)0.0043 (13)0.0038 (13)
C140.0452 (16)0.0373 (15)0.0463 (16)0.0039 (12)0.0107 (13)0.0003 (12)
C150.069 (2)0.0386 (16)0.0544 (19)0.0001 (15)0.0183 (17)0.0127 (14)
C16A0.056 (4)0.032 (3)0.055 (4)0.010 (3)0.000 (4)0.014 (3)
C16B0.087 (6)0.046 (5)0.067 (6)0.017 (4)0.004 (5)0.008 (4)
C170.077 (2)0.0347 (17)0.073 (2)0.0053 (17)0.0101 (19)0.0050 (16)
C180.051 (2)0.048 (2)0.108 (3)0.0124 (16)0.005 (2)0.007 (2)
Cl10.0501 (5)0.0553 (5)0.0848 (7)0.0129 (4)0.0008 (4)0.0054 (5)
O70.204 (6)0.184 (6)0.137 (4)0.082 (5)0.083 (4)0.071 (4)
O80.057 (2)0.136 (4)0.161 (4)0.029 (2)0.006 (2)0.010 (3)
O90.098 (3)0.069 (2)0.199 (5)0.033 (2)0.017 (3)0.045 (3)
O100.170 (5)0.097 (3)0.351 (10)0.039 (3)0.163 (6)0.058 (5)
Geometric parameters (Å, º) top
Mn1—O21.870 (2)C7—H70.9300
Mn1—O11.873 (2)C8A—C16A1.523 (8)
Mn1—N21.975 (3)C8A—H8A10.9700
Mn1—N11.980 (3)C8A—H8A20.9700
Mn1—O52.259 (3)C8B—C16B1.521 (9)
Mn1—O62.313 (3)C8B—H8B10.9700
O1—C61.322 (4)C8B—H8B20.9700
O2—C141.316 (4)C9—C141.413 (4)
O3—C51.365 (4)C9—C101.413 (5)
O3—C171.434 (4)C9—C151.440 (5)
O4—C131.362 (4)C10—C111.353 (6)
O4—C181.442 (4)C10—H100.9300
O5—H5A0.9600C11—C121.399 (5)
O5—H5B0.9600C11—H110.9300
O6—H6A0.9600C12—C131.376 (4)
O6—H6B0.9600C12—H120.9300
N1—C71.287 (5)C13—C141.417 (5)
N1—C8A1.494 (8)C15—H150.9300
N1—C8B1.506 (8)C16A—H16A0.9700
N2—C151.292 (5)C16A—H16B0.9700
N2—C16B1.452 (7)C16B—H16C0.9700
N2—C16A1.520 (6)C16B—H16D0.9700
C1—C61.411 (5)C17—H17A0.9600
C1—C21.420 (5)C17—H17B0.9600
C1—C71.431 (6)C17—H17C0.9600
C2—C31.356 (6)C18—H18A0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.393 (6)C18—H18C0.9600
C3—H30.9300Cl1—O71.354 (6)
C4—C51.375 (4)Cl1—O101.370 (5)
C4—H40.9300Cl1—O91.388 (3)
C5—C61.412 (5)Cl1—O81.393 (4)
O2—Mn1—O192.88 (10)C16A—C8A—H8A2111.4
O2—Mn1—N292.73 (11)H8A1—C8A—H8A2109.2
O1—Mn1—N2174.36 (11)N1—C8B—C16B112.9 (8)
O2—Mn1—N1174.58 (12)N1—C8B—H8B1109.0
O1—Mn1—N192.10 (11)C16B—C8B—H8B1109.0
N2—Mn1—N182.32 (13)N1—C8B—H8B2109.0
O2—Mn1—O593.95 (10)C16B—C8B—H8B2109.0
O1—Mn1—O591.92 (10)H8B1—C8B—H8B2107.8
N2—Mn1—O587.08 (12)C14—C9—C10119.7 (3)
N1—Mn1—O588.04 (11)C14—C9—C15122.2 (3)
O2—Mn1—O688.27 (13)C10—C9—C15118.1 (3)
O1—Mn1—O687.95 (13)C11—C10—C9120.5 (3)
N2—Mn1—O692.83 (14)C11—C10—H10119.7
N1—Mn1—O689.75 (14)C9—C10—H10119.7
O5—Mn1—O6177.78 (11)C10—C11—C12120.5 (3)
C6—O1—Mn1129.6 (2)C10—C11—H11119.8
C14—O2—Mn1129.3 (2)C12—C11—H11119.8
C5—O3—C17117.6 (3)C13—C12—C11120.6 (4)
C13—O4—C18116.7 (3)C13—C12—H12119.7
Mn1—O5—H5A109.5C11—C12—H12119.7
Mn1—O5—H5B109.5O4—C13—C12125.8 (3)
H5A—O5—H5B109.5O4—C13—C14113.9 (3)
Mn1—O6—H6A109.5C12—C13—C14120.2 (3)
Mn1—O6—H6B109.5O2—C14—C9124.3 (3)
H6A—O6—H6B109.5O2—C14—C13117.3 (3)
C7—N1—C8A117.5 (5)C9—C14—C13118.4 (3)
C7—N1—C8B124.8 (6)N2—C15—C9126.0 (3)
C7—N1—Mn1125.7 (2)N2—C15—H15117.0
C8A—N1—Mn1115.2 (5)C9—C15—H15117.0
C8B—N1—Mn1108.8 (5)N2—C16A—C8A108.4 (7)
C15—N2—C16B114.0 (5)N2—C16A—H16A110.0
C15—N2—C16A123.3 (4)C8A—C16A—H16A110.0
C15—N2—Mn1125.1 (2)N2—C16A—H16B110.0
C16B—N2—Mn1117.1 (4)C8A—C16A—H16B110.0
C16A—N2—Mn1110.8 (4)H16A—C16A—H16B108.4
C6—C1—C2118.6 (3)N2—C16B—C8B99.9 (8)
C6—C1—C7122.5 (3)N2—C16B—H16C111.8
C2—C1—C7118.9 (3)C8B—C16B—H16C111.8
C3—C2—C1120.9 (4)N2—C16B—H16D111.8
C3—C2—H2119.5C8B—C16B—H16D111.8
C1—C2—H2119.5H16C—C16B—H16D109.5
C2—C3—C4120.6 (4)O3—C17—H17A109.5
C2—C3—H3119.7O3—C17—H17B109.5
C4—C3—H3119.7H17A—C17—H17B109.5
C5—C4—C3120.3 (4)O3—C17—H17C109.5
C5—C4—H4119.9H17A—C17—H17C109.5
C3—C4—H4119.9H17B—C17—H17C109.5
O3—C5—C4126.2 (3)O4—C18—H18A109.5
O3—C5—C6113.4 (3)O4—C18—H18B109.5
C4—C5—C6120.5 (3)H18A—C18—H18B109.5
O1—C6—C1123.9 (3)O4—C18—H18C109.5
O1—C6—C5117.0 (3)H18A—C18—H18C109.5
C1—C6—C5119.1 (3)H18B—C18—H18C109.5
N1—C7—C1126.0 (3)O7—Cl1—O10106.6 (5)
N1—C7—H7117.0O7—Cl1—O9111.5 (3)
C1—C7—H7117.0O10—Cl1—O9110.2 (3)
N1—C8A—C16A102.1 (6)O7—Cl1—O8105.9 (4)
N1—C8A—H8A1111.4O10—Cl1—O8109.0 (4)
C16A—C8A—H8A1111.4O9—Cl1—O8113.3 (3)
N1—C8A—H8A2111.4
O2—Mn1—O1—C6175.4 (3)O3—C5—C6—O10.9 (4)
N1—Mn1—O1—C62.4 (3)C4—C5—C6—O1179.1 (3)
O5—Mn1—O1—C690.5 (3)O3—C5—C6—C1178.0 (3)
O6—Mn1—O1—C687.3 (3)C4—C5—C6—C11.9 (4)
O1—Mn1—O2—C14176.4 (3)C8A—N1—C7—C1165.4 (7)
N2—Mn1—O2—C143.0 (3)C8B—N1—C7—C1169.0 (7)
O5—Mn1—O2—C1484.2 (3)Mn1—N1—C7—C10.5 (6)
O6—Mn1—O2—C1495.8 (3)C6—C1—C7—N12.8 (6)
O1—Mn1—N1—C71.7 (3)C2—C1—C7—N1179.6 (4)
N2—Mn1—N1—C7179.2 (4)C7—N1—C8A—C16A154.4 (6)
O5—Mn1—N1—C793.5 (3)C8B—N1—C8A—C16A39.5 (17)
O6—Mn1—N1—C786.3 (3)Mn1—N1—C8A—C16A39.1 (10)
O1—Mn1—N1—C8A163.6 (6)C7—N1—C8B—C16B154.9 (7)
N2—Mn1—N1—C8A15.6 (6)C8A—N1—C8B—C16B76 (2)
O5—Mn1—N1—C8A71.7 (6)Mn1—N1—C8B—C16B34.2 (11)
O6—Mn1—N1—C8A108.5 (6)C14—C9—C10—C111.6 (5)
O1—Mn1—N1—C8B172.5 (6)C15—C9—C10—C11177.6 (3)
N2—Mn1—N1—C8B8.3 (6)C9—C10—C11—C121.3 (5)
O5—Mn1—N1—C8B95.6 (6)C10—C11—C12—C130.1 (6)
O6—Mn1—N1—C8B84.6 (6)C18—O4—C13—C123.9 (5)
O2—Mn1—N2—C155.8 (3)C18—O4—C13—C14176.8 (3)
N1—Mn1—N2—C15176.4 (3)C11—C12—C13—O4178.1 (3)
O5—Mn1—N2—C1588.0 (3)C11—C12—C13—C141.2 (5)
O6—Mn1—N2—C1594.2 (3)Mn1—O2—C14—C90.4 (5)
O2—Mn1—N2—C16B162.4 (5)Mn1—O2—C14—C13179.2 (2)
N1—Mn1—N2—C16B19.8 (5)C10—C9—C14—O2178.3 (3)
O5—Mn1—N2—C16B68.6 (5)C15—C9—C14—O22.5 (5)
O6—Mn1—N2—C16B109.2 (5)C10—C9—C14—C130.5 (4)
O2—Mn1—N2—C16A164.3 (4)C15—C9—C14—C13178.7 (3)
N1—Mn1—N2—C16A13.5 (4)O4—C13—C14—O20.4 (4)
O5—Mn1—N2—C16A101.9 (4)C12—C13—C14—O2179.8 (3)
O6—Mn1—N2—C16A75.9 (4)O4—C13—C14—C9178.4 (3)
C6—C1—C2—C31.5 (5)C12—C13—C14—C90.9 (5)
C7—C1—C2—C3178.4 (4)C16B—N2—C15—C9162.8 (5)
C1—C2—C3—C40.3 (6)C16A—N2—C15—C9163.3 (5)
C2—C3—C4—C50.2 (6)Mn1—N2—C15—C95.6 (5)
C17—O3—C5—C47.4 (5)C14—C9—C15—N20.8 (5)
C17—O3—C5—C6172.5 (3)C10—C9—C15—N2178.4 (3)
C3—C4—C5—O3179.2 (3)C15—N2—C16A—C8A150.3 (6)
C3—C4—C5—C60.7 (5)C16B—N2—C16A—C8A68.9 (11)
Mn1—O1—C6—C11.0 (5)Mn1—N2—C16A—C8A39.4 (8)
Mn1—O1—C6—C5177.9 (2)N1—C8A—C16A—N248.3 (10)
C2—C1—C6—O1178.9 (3)C15—N2—C16B—C8B161.1 (7)
C7—C1—C6—O12.1 (5)C16A—N2—C16B—C8B45.9 (9)
C2—C1—C6—C52.3 (5)Mn1—N2—C16B—C8B39.7 (9)
C7—C1—C6—C5179.0 (3)N1—C8B—C16B—N246.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.962.092.929 (3)145
O5—H5A···O1i0.962.122.928 (3)140
O5—H5B···O4i0.962.122.984 (3)150
O5—H5B···O2i0.962.182.949 (3)136
O6—H6A···O8ii0.961.972.839 (6)150
O6—H6B···O80.962.403.029 (6)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
(II) aqua[N,N'-bis(3,5-dichlorosalicylidene)ethylendiaminato- κ4O,N,N',O'](methanol-κO)manganese(III) perchlorate top
Crystal data top
[Mn(C16H10Cl4N2O2)(CH4O)(H2O)]ClO4F(000) = 1224
Mr = 608.51Dx = 1.786 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.072 (5) Åθ = 10.0–14.4°
b = 21.27 (1) ŵ = 1.22 mm1
c = 13.712 (7) ÅT = 297 K
β = 106.01 (6)°Prism, brown
V = 2263 (2) Å30.60 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
4367 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.072
Graphite monochromatorθmax = 27.5°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 027
Tmin = 0.651, Tmax = 0.693l = 017
5879 measured reflections3 standard reflections every 150 reflections
5194 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0722P)2 + 2.6279P]
where P = (Fo2 + 2Fc2)/3
5194 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.24 e Å3
1 restraintΔρmin = 0.99 e Å3
Crystal data top
[Mn(C16H10Cl4N2O2)(CH4O)(H2O)]ClO4V = 2263 (2) Å3
Mr = 608.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.072 (5) ŵ = 1.22 mm1
b = 21.27 (1) ÅT = 297 K
c = 13.712 (7) Å0.60 × 0.30 × 0.30 mm
β = 106.01 (6)°
Data collection top
Rigaku AFC-7R
diffractometer
4367 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.651, Tmax = 0.6933 standard reflections every 150 reflections
5879 measured reflections intensity decay: 0.2%
5194 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 1.24 e Å3
5194 reflectionsΔρmin = 0.99 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.68517 (5)0.519425 (18)0.17247 (3)0.03100 (14)
Cl10.63138 (12)0.85813 (3)0.10842 (7)0.0519 (2)
Cl20.21479 (9)0.65680 (4)0.03931 (7)0.0445 (2)
Cl30.18402 (10)0.38958 (4)0.09674 (7)0.0487 (2)
Cl40.57509 (14)0.18117 (4)0.17422 (7)0.0552 (2)
O10.5340 (2)0.58409 (9)0.10597 (16)0.0354 (4)
O20.5120 (3)0.45682 (9)0.15883 (16)0.0369 (4)
O30.6572 (3)0.54904 (11)0.32249 (17)0.0474 (5)
H30.71180.58090.35010.057*
O40.7327 (3)0.48859 (10)0.02433 (17)0.0423 (5)
H4A0.67080.45720.00140.051*
H4B0.70790.51810.01790.051*
N10.8870 (3)0.57626 (11)0.18980 (19)0.0339 (5)
N20.8676 (3)0.45896 (11)0.24102 (19)0.0366 (5)
C10.7274 (3)0.67300 (12)0.1419 (2)0.0318 (5)
C20.5617 (3)0.64553 (12)0.1093 (2)0.0299 (5)
C30.4216 (3)0.68738 (13)0.0773 (2)0.0319 (5)
C40.4414 (4)0.75180 (13)0.0763 (2)0.0359 (6)
H40.34590.77790.05490.043*
C50.6066 (4)0.77698 (13)0.1079 (2)0.0368 (6)
C60.7478 (4)0.73888 (13)0.1398 (2)0.0364 (6)
H60.85750.75640.16020.044*
C70.8817 (3)0.63602 (13)0.1767 (2)0.0337 (6)
H70.98640.65720.19090.040*
C81.0535 (4)0.54315 (15)0.2209 (3)0.0443 (7)
H8A1.14370.57160.25690.053*
H8B1.08380.52710.16190.053*
C90.6933 (4)0.36482 (13)0.2023 (2)0.0358 (6)
C100.5327 (4)0.39496 (12)0.1655 (2)0.0327 (5)
C110.3871 (4)0.35535 (13)0.1359 (2)0.0352 (6)
C120.3983 (4)0.29024 (14)0.1384 (2)0.0400 (6)
H120.29960.26560.11760.048*
C130.5588 (4)0.26275 (13)0.1724 (2)0.0407 (7)
C140.7049 (4)0.29855 (14)0.2055 (2)0.0412 (7)
H140.81160.27920.23000.049*
C150.8523 (4)0.39903 (14)0.2430 (2)0.0382 (6)
H150.95090.37580.27280.046*
C161.0343 (4)0.48957 (15)0.2893 (3)0.0451 (8)
H16A1.12800.45980.29680.054*
H16B1.03580.50530.35590.054*
C170.5917 (8)0.5136 (2)0.3903 (4)0.0807 (15)
H17A0.59510.53840.44930.121*0.50
H17B0.66050.47650.41010.121*0.50
H17C0.47480.50170.35770.121*0.50
H17D0.55840.47270.36210.121*0.50
H17E0.49310.53460.40130.121*0.50
H17F0.67880.50930.45370.121*0.50
Cl51.01104 (12)0.64470 (5)0.47254 (7)0.0608 (3)
O51.0463 (5)0.68547 (16)0.5564 (2)0.0798 (10)
O60.9708 (10)0.5828 (2)0.5067 (5)0.146 (2)
O70.8489 (8)0.6578 (2)0.4037 (4)0.140 (2)
O81.1459 (9)0.6347 (4)0.4364 (6)0.215 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0246 (2)0.0249 (2)0.0377 (2)0.00169 (14)0.00118 (16)0.00047 (15)
Cl10.0618 (5)0.0262 (3)0.0628 (5)0.0026 (3)0.0089 (4)0.0002 (3)
Cl20.0274 (3)0.0405 (4)0.0603 (5)0.0006 (3)0.0035 (3)0.0004 (3)
Cl30.0329 (4)0.0449 (4)0.0640 (5)0.0084 (3)0.0063 (3)0.0026 (4)
Cl40.0789 (6)0.0276 (4)0.0571 (5)0.0038 (4)0.0155 (4)0.0007 (3)
O10.0276 (9)0.0269 (9)0.0447 (11)0.0019 (7)0.0019 (8)0.0006 (8)
O20.0314 (10)0.0269 (9)0.0468 (11)0.0041 (8)0.0016 (8)0.0001 (8)
O30.0549 (14)0.0405 (12)0.0447 (12)0.0126 (10)0.0099 (10)0.0077 (10)
O40.0427 (12)0.0357 (11)0.0421 (11)0.0042 (9)0.0010 (9)0.0028 (9)
N10.0252 (10)0.0315 (11)0.0405 (12)0.0030 (9)0.0015 (9)0.0020 (9)
N20.0292 (11)0.0319 (11)0.0416 (13)0.0004 (9)0.0019 (10)0.0035 (10)
C10.0300 (13)0.0280 (12)0.0348 (13)0.0018 (10)0.0045 (10)0.0009 (10)
C20.0309 (13)0.0273 (12)0.0298 (12)0.0003 (10)0.0053 (10)0.0004 (10)
C30.0281 (12)0.0319 (13)0.0329 (13)0.0002 (10)0.0038 (10)0.0003 (10)
C40.0380 (14)0.0315 (13)0.0356 (14)0.0060 (11)0.0057 (11)0.0018 (11)
C50.0458 (16)0.0260 (12)0.0385 (15)0.0025 (11)0.0114 (12)0.0002 (11)
C60.0353 (14)0.0302 (13)0.0405 (15)0.0054 (11)0.0051 (11)0.0008 (11)
C70.0260 (12)0.0311 (13)0.0397 (14)0.0042 (10)0.0021 (10)0.0004 (11)
C80.0252 (13)0.0362 (15)0.065 (2)0.0001 (11)0.0023 (13)0.0001 (14)
C90.0383 (15)0.0297 (13)0.0362 (14)0.0023 (11)0.0049 (11)0.0017 (11)
C100.0375 (14)0.0280 (12)0.0305 (13)0.0046 (11)0.0059 (11)0.0010 (10)
C110.0355 (14)0.0339 (14)0.0342 (14)0.0068 (11)0.0062 (11)0.0014 (11)
C120.0521 (17)0.0323 (14)0.0355 (14)0.0120 (13)0.0117 (13)0.0037 (11)
C130.0600 (19)0.0264 (13)0.0353 (15)0.0034 (12)0.0125 (13)0.0001 (11)
C140.0477 (17)0.0308 (14)0.0412 (15)0.0025 (12)0.0059 (13)0.0038 (12)
C150.0335 (14)0.0316 (13)0.0431 (15)0.0039 (11)0.0001 (12)0.0057 (11)
C160.0279 (14)0.0358 (15)0.0593 (19)0.0004 (11)0.0086 (13)0.0029 (14)
C170.115 (4)0.070 (3)0.066 (3)0.031 (3)0.040 (3)0.006 (2)
Cl50.0460 (5)0.0799 (7)0.0531 (5)0.0148 (4)0.0081 (4)0.0233 (5)
O50.087 (2)0.088 (2)0.0622 (18)0.0322 (18)0.0157 (16)0.0275 (17)
O60.214 (7)0.078 (3)0.148 (5)0.037 (4)0.052 (5)0.016 (3)
O70.153 (4)0.101 (3)0.111 (3)0.035 (3)0.055 (3)0.029 (3)
O80.143 (5)0.339 (10)0.205 (7)0.102 (6)0.119 (5)0.159 (7)
Geometric parameters (Å, º) top
Mn1—O11.897 (2)C6—H60.93
Mn1—O21.902 (2)C7—H70.93
Mn1—N21.985 (3)C8—C161.511 (5)
Mn1—N11.990 (2)C8—H8A0.97
Mn1—O32.222 (3)C8—H8B0.97
Mn1—O42.266 (3)C9—C101.409 (4)
Cl1—C51.737 (3)C9—C141.412 (4)
Cl2—C31.732 (3)C9—C151.447 (4)
Cl3—C111.738 (3)C10—C111.412 (4)
Cl4—C131.740 (3)C11—C121.388 (4)
O1—C21.324 (3)C12—C131.380 (5)
O2—C101.326 (3)C12—H120.93
O3—C171.409 (5)C13—C141.371 (5)
O3—H30.84C14—H140.93
O4—H4A0.84C15—H150.93
O4—H4B0.84C16—H16A0.97
N1—C71.283 (4)C16—H16B0.97
N1—C81.473 (4)C17—H17A0.96
N2—C151.282 (4)C17—H17B0.96
N2—C161.477 (4)C17—H17C0.96
C1—C61.412 (4)C17—H17D0.96
C1—C21.414 (4)C17—H17E0.96
C1—C71.438 (4)C17—H17F0.96
C2—C31.411 (4)Cl5—O81.332 (5)
C3—C41.380 (4)Cl5—O51.406 (3)
C4—C51.391 (4)Cl5—O71.414 (5)
C4—H40.93Cl5—O61.463 (5)
C5—C61.368 (4)
O1—Mn1—O295.89 (10)H8A—C8—H8B108.5
O1—Mn1—N2172.73 (10)C10—C9—C14120.8 (3)
O2—Mn1—N291.25 (11)C10—C9—C15122.7 (3)
O1—Mn1—N190.79 (10)C14—C9—C15116.5 (3)
O2—Mn1—N1172.96 (9)O2—C10—C9124.2 (3)
N2—Mn1—N182.02 (11)O2—C10—C11119.5 (3)
O1—Mn1—O391.34 (10)C9—C10—C11116.2 (3)
O2—Mn1—O391.72 (10)C12—C11—C10123.0 (3)
N2—Mn1—O389.81 (11)C12—C11—Cl3118.4 (2)
N1—Mn1—O390.35 (11)C10—C11—Cl3118.6 (2)
O1—Mn1—O491.41 (10)C13—C12—C11118.7 (3)
O2—Mn1—O490.62 (10)C13—C12—H12120.7
N2—Mn1—O487.14 (11)C11—C12—H12120.7
N1—Mn1—O486.98 (10)C14—C13—C12121.2 (3)
O3—Mn1—O4176.20 (9)C14—C13—Cl4119.6 (3)
C2—O1—Mn1128.22 (17)C12—C13—Cl4119.2 (2)
C10—O2—Mn1127.78 (19)C13—C14—C9120.0 (3)
C17—O3—Mn1127.7 (2)C13—C14—H14120.0
C17—O3—H3112.3C9—C14—H14120.0
Mn1—O3—H3118.2N2—C15—C9124.9 (3)
Mn1—O4—H4A109.5N2—C15—H15117.5
Mn1—O4—H4B109.5C9—C15—H15117.5
H4A—O4—H4B109.4N2—C16—C8106.9 (2)
C7—N1—C8120.5 (2)N2—C16—H16A110.3
C7—N1—Mn1126.2 (2)C8—C16—H16A110.3
C8—N1—Mn1113.34 (19)N2—C16—H16B110.3
C15—N2—C16120.7 (2)C8—C16—H16B110.3
C15—N2—Mn1126.2 (2)H16A—C16—H16B108.6
C16—N2—Mn1113.06 (19)O3—C17—H17A109.5
C6—C1—C2120.6 (3)O3—C17—H17B109.5
C6—C1—C7117.0 (2)H17A—C17—H17B109.5
C2—C1—C7122.4 (2)O3—C17—H17C109.5
O1—C2—C3119.9 (2)H17A—C17—H17C109.5
O1—C2—C1123.7 (2)H17B—C17—H17C109.5
C3—C2—C1116.4 (2)O3—C17—H17D109.5
C4—C3—C2123.0 (3)H17A—C17—H17D141.1
C4—C3—Cl2118.3 (2)H17B—C17—H17D56.3
C2—C3—Cl2118.7 (2)H17C—C17—H17D56.3
C3—C4—C5118.9 (3)O3—C17—H17E109.5
C3—C4—H4120.6H17A—C17—H17E56.3
C5—C4—H4120.6H17B—C17—H17E141.1
C6—C5—C4120.9 (3)H17C—C17—H17E56.3
C6—C5—Cl1120.2 (2)H17D—C17—H17E109.5
C4—C5—Cl1118.9 (2)O3—C17—H17F109.5
C5—C6—C1120.2 (3)H17A—C17—H17F56.3
C5—C6—H6119.9H17B—C17—H17F56.3
C1—C6—H6119.9H17C—C17—H17F141.1
N1—C7—C1125.5 (2)H17D—C17—H17F109.5
N1—C7—H7117.2H17E—C17—H17F109.5
C1—C7—H7117.2O8—Cl5—O5113.7 (3)
N1—C8—C16107.4 (3)O8—Cl5—O7119.0 (5)
N1—C8—H8A110.2O5—Cl5—O7111.5 (3)
C16—C8—H8A110.2O8—Cl5—O6104.6 (5)
N1—C8—H8B110.2O5—Cl5—O6107.8 (3)
C16—C8—H8B110.2O7—Cl5—O698.3 (4)
O2—Mn1—O1—C2162.0 (2)Cl2—C3—C4—C5179.2 (2)
N1—Mn1—O1—C220.3 (2)C3—C4—C5—C60.2 (4)
O3—Mn1—O1—C270.1 (2)C3—C4—C5—Cl1179.1 (2)
O4—Mn1—O1—C2107.3 (2)C4—C5—C6—C10.5 (5)
O1—Mn1—O2—C10160.7 (2)Cl1—C5—C6—C1178.4 (2)
N2—Mn1—O2—C1018.0 (2)C2—C1—C6—C51.2 (4)
O3—Mn1—O2—C10107.8 (2)C7—C1—C6—C5179.8 (3)
O4—Mn1—O2—C1069.2 (2)C8—N1—C7—C1176.9 (3)
O1—Mn1—O3—C17118.9 (4)Mn1—N1—C7—C13.3 (4)
O2—Mn1—O3—C1723.0 (4)C6—C1—C7—N1175.2 (3)
N2—Mn1—O3—C1768.3 (4)C2—C1—C7—N15.8 (5)
N1—Mn1—O3—C17150.3 (4)C7—N1—C8—C16145.5 (3)
O1—Mn1—N1—C713.0 (3)Mn1—N1—C8—C1634.4 (3)
N2—Mn1—N1—C7168.1 (3)Mn1—O2—C10—C912.0 (4)
O3—Mn1—N1—C778.3 (3)Mn1—O2—C10—C11169.0 (2)
O4—Mn1—N1—C7104.4 (3)C14—C9—C10—O2178.9 (3)
O1—Mn1—N1—C8167.2 (2)C15—C9—C10—O24.1 (5)
N2—Mn1—N1—C811.7 (2)C14—C9—C10—C112.0 (4)
O3—Mn1—N1—C8101.5 (2)C15—C9—C10—C11175.0 (3)
O4—Mn1—N1—C875.8 (2)O2—C10—C11—C12178.4 (3)
O2—Mn1—N2—C1514.8 (3)C9—C10—C11—C122.5 (4)
N1—Mn1—N2—C15163.1 (3)O2—C10—C11—Cl32.8 (4)
O3—Mn1—N2—C15106.5 (3)C9—C10—C11—Cl3176.3 (2)
O4—Mn1—N2—C1575.7 (3)C10—C11—C12—C130.7 (5)
O2—Mn1—N2—C16167.5 (2)Cl3—C11—C12—C13178.1 (2)
N1—Mn1—N2—C1614.6 (2)C11—C12—C13—C141.5 (5)
O3—Mn1—N2—C1675.8 (2)C11—C12—C13—Cl4179.1 (2)
O4—Mn1—N2—C16102.0 (2)C12—C13—C14—C91.9 (5)
Mn1—O1—C2—C3163.5 (2)Cl4—C13—C14—C9178.7 (2)
Mn1—O1—C2—C117.9 (4)C10—C9—C14—C130.0 (5)
C6—C1—C2—O1177.6 (3)C15—C9—C14—C13177.3 (3)
C7—C1—C2—O11.4 (4)C16—N2—C15—C9176.9 (3)
C6—C1—C2—C31.1 (4)Mn1—N2—C15—C95.6 (5)
C7—C1—C2—C3179.9 (3)C10—C9—C15—N27.1 (5)
O1—C2—C3—C4178.3 (3)C14—C9—C15—N2175.8 (3)
C1—C2—C3—C40.4 (4)C15—N2—C16—C8141.2 (3)
O1—C2—C3—Cl22.8 (4)Mn1—N2—C16—C836.6 (3)
C1—C2—C3—Cl2178.5 (2)N1—C8—C16—N244.4 (4)
C2—C3—C4—C50.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O70.842.002.834 (6)174
O3—H3···Cl50.842.873.645 (3)154
O4—H4A···O1i0.842.082.845 (3)151
O4—H4B···O2i0.842.302.970 (4)137
O4—H4A···Cl2i0.842.713.270 (1)126
O4—H4B···Cl3i0.842.513.246 (3)147
C4—H4···O5ii0.932.553.398 (5)153
C12—H12···O7iii0.932.573.408 (6)151
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+1/2.
(III) bis[µ-N,N'-bis(3-methoxysalicylidene)ethylenediaminato- κ5O,N,N',O':O]bis[(methanol-κO)manganese(III)] diperchlorate top
Crystal data top
[Mn2(C18H18N2O4)2(CH4O)2](ClO4)2F(000) = 1056
Mr = 1025.55Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 15.226 (6) Åθ = 10.3–12.9°
b = 13.026 (4) ŵ = 0.80 mm1
c = 10.865 (4) ÅT = 297 K
β = 99.58 (3)°Prism, brown
V = 2124.9 (13) Å30.72 × 0.56 × 0.31 mm
Z = 2
Data collection top
Rigaku AFC-7R
diffractometer
4252 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.000
Graphite monochromatorθmax = 27.5°
ω/2θ scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.589, Tmax = 0.780l = 014
4865 measured reflections3 standard reflections every 150 reflections
4865 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.9717P]
where P = (Fo2 + 2Fc2)/3
4865 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Mn2(C18H18N2O4)2(CH4O)2](ClO4)2V = 2124.9 (13) Å3
Mr = 1025.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.226 (6) ŵ = 0.80 mm1
b = 13.026 (4) ÅT = 297 K
c = 10.865 (4) Å0.72 × 0.56 × 0.31 mm
β = 99.58 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
4252 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.589, Tmax = 0.7803 standard reflections every 150 reflections
4865 measured reflections intensity decay: 0.2%
4865 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.65 e Å3
4865 reflectionsΔρmin = 0.58 e Å3
291 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.522542 (17)0.614641 (19)0.55873 (2)0.02823 (9)
O10.43146 (8)0.55761 (9)0.43384 (11)0.0307 (3)
O20.60197 (8)0.64808 (10)0.45183 (11)0.0345 (3)
O30.06956 (10)0.58154 (16)0.44222 (16)0.0596 (4)
O40.95299 (10)0.77380 (16)0.52765 (16)0.0612 (5)
O50.46142 (11)0.77152 (11)0.53550 (17)0.0545 (4)
H50.40760.78940.54380.065*
N10.44963 (10)0.58114 (12)0.68903 (13)0.0315 (3)
N20.60945 (10)0.65668 (12)0.70712 (13)0.0321 (3)
C10.30857 (12)0.57650 (14)0.54929 (17)0.0332 (4)
C20.21636 (13)0.58002 (16)0.54605 (18)0.0393 (4)
H20.19390.58370.62050.047*
C30.15805 (13)0.57813 (16)0.4340 (2)0.0413 (4)
C40.19217 (13)0.57331 (16)0.32306 (19)0.0405 (4)
H40.15350.57240.24710.049*
C50.28344 (12)0.56976 (14)0.32491 (17)0.0352 (4)
H5A0.30510.56710.24980.042*
C60.34330 (11)0.57008 (12)0.43647 (16)0.0301 (3)
C70.36462 (12)0.57159 (14)0.67056 (17)0.0345 (4)
H70.33710.56080.73980.041*
C80.50368 (13)0.57091 (16)0.81409 (16)0.0385 (4)
H8A0.53230.50420.82340.046*
H8B0.46660.57840.87800.046*
C90.73346 (12)0.69305 (13)0.60029 (17)0.0334 (4)
C100.82402 (13)0.72350 (15)0.62019 (19)0.0395 (4)
H100.85460.73200.70110.047*
C110.86669 (13)0.74052 (17)0.5202 (2)0.0436 (4)
C120.82055 (14)0.72511 (18)0.3996 (2)0.0466 (5)
H120.84970.73580.33200.056*
C130.73308 (13)0.69451 (16)0.37838 (18)0.0409 (4)
H130.70410.68470.29690.049*
C140.68671 (12)0.67776 (13)0.47837 (16)0.0322 (3)
C150.69133 (12)0.68172 (14)0.70879 (16)0.0348 (4)
H150.72620.69350.78630.042*
C160.57279 (13)0.65548 (17)0.82511 (17)0.0398 (4)
H16A0.54570.72120.83800.048*
H16B0.61980.64240.89520.048*
C170.00726 (15)0.5540 (2)0.3358 (3)0.0614 (6)
H17A0.05100.54900.35810.092*
H17B0.02360.48900.30460.092*
H17C0.00690.60550.27240.092*
C181.00918 (16)0.7713 (2)0.6445 (3)0.0652 (7)
H18A1.01450.70190.67460.098*
H18B0.98430.81330.70270.098*
H18C1.06700.79690.63600.098*
C190.5013 (2)0.85512 (19)0.4826 (3)0.0687 (7)
H19A0.46400.91460.48150.103*0.50
H19B0.50850.83820.39880.103*0.50
H19C0.55860.86920.53150.103*0.50
H19D0.55670.83340.45970.103*0.50
H19E0.51220.90980.54240.103*0.50
H19F0.46220.87890.40970.103*0.50
Cl10.27822 (4)0.95224 (5)0.56401 (5)0.05215 (15)
O60.2918 (2)0.9810 (3)0.4462 (2)0.1214 (11)
O70.18749 (14)0.9636 (2)0.5787 (2)0.0967 (8)
O80.2990 (2)0.8455 (2)0.5788 (4)0.1327 (13)
O90.33274 (19)1.0075 (3)0.6563 (2)0.1174 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02978 (15)0.02986 (15)0.02698 (14)0.00265 (9)0.01038 (10)0.00302 (9)
O10.0299 (6)0.0341 (6)0.0295 (6)0.0001 (5)0.0093 (5)0.0031 (5)
O20.0342 (6)0.0400 (7)0.0312 (6)0.0047 (5)0.0109 (5)0.0017 (5)
O30.0308 (7)0.0914 (13)0.0572 (10)0.0038 (8)0.0092 (7)0.0038 (9)
O40.0375 (8)0.0884 (13)0.0600 (10)0.0158 (8)0.0153 (7)0.0122 (9)
O50.0513 (9)0.0331 (7)0.0838 (12)0.0065 (6)0.0250 (8)0.0067 (7)
N10.0354 (7)0.0329 (7)0.0277 (7)0.0022 (6)0.0099 (6)0.0019 (6)
N20.0355 (7)0.0345 (7)0.0285 (7)0.0022 (6)0.0116 (6)0.0053 (6)
C10.0329 (8)0.0327 (8)0.0359 (9)0.0004 (7)0.0116 (7)0.0005 (7)
C20.0346 (9)0.0446 (10)0.0415 (10)0.0009 (8)0.0148 (8)0.0015 (8)
C30.0318 (9)0.0433 (10)0.0499 (11)0.0034 (8)0.0100 (8)0.0019 (9)
C40.0371 (9)0.0439 (10)0.0391 (9)0.0036 (8)0.0022 (7)0.0025 (8)
C50.0364 (9)0.0361 (9)0.0339 (9)0.0024 (7)0.0080 (7)0.0025 (7)
C60.0314 (8)0.0261 (7)0.0342 (8)0.0010 (6)0.0097 (6)0.0006 (6)
C70.0367 (9)0.0371 (9)0.0332 (8)0.0020 (7)0.0159 (7)0.0020 (7)
C80.0409 (10)0.0469 (10)0.0289 (8)0.0029 (8)0.0098 (7)0.0023 (7)
C90.0340 (9)0.0308 (8)0.0378 (9)0.0019 (7)0.0128 (7)0.0018 (7)
C100.0362 (9)0.0420 (10)0.0415 (10)0.0059 (8)0.0099 (7)0.0001 (8)
C110.0341 (9)0.0465 (11)0.0529 (11)0.0048 (8)0.0150 (8)0.0041 (9)
C120.0426 (10)0.0553 (12)0.0465 (11)0.0047 (9)0.0212 (9)0.0070 (9)
C130.0398 (10)0.0503 (11)0.0348 (9)0.0043 (8)0.0127 (7)0.0012 (8)
C140.0351 (8)0.0281 (8)0.0357 (9)0.0009 (7)0.0124 (7)0.0002 (7)
C150.0368 (9)0.0364 (9)0.0319 (8)0.0039 (7)0.0084 (7)0.0038 (7)
C160.0400 (9)0.0533 (11)0.0282 (8)0.0061 (9)0.0119 (7)0.0070 (8)
C170.0375 (11)0.0767 (17)0.0674 (15)0.0034 (11)0.0010 (10)0.0023 (13)
C180.0415 (12)0.0852 (19)0.0672 (16)0.0173 (12)0.0045 (11)0.0088 (14)
C190.0873 (19)0.0361 (11)0.090 (2)0.0029 (12)0.0361 (16)0.0104 (12)
Cl10.0518 (3)0.0646 (3)0.0410 (3)0.0081 (2)0.0106 (2)0.0028 (2)
O60.123 (2)0.191 (3)0.0552 (13)0.022 (2)0.0298 (14)0.0378 (17)
O70.0596 (12)0.130 (2)0.1043 (17)0.0112 (13)0.0236 (12)0.0452 (15)
O80.125 (2)0.0745 (17)0.224 (4)0.0305 (16)0.101 (2)0.025 (2)
O90.0959 (18)0.164 (3)0.0822 (16)0.0116 (19)0.0143 (14)0.0355 (18)
Geometric parameters (Å, º) top
Mn1—O21.862 (1)C8—H8A0.9700
Mn1—O11.921 (1)C8—H8B0.9700
Mn1—N21.985 (2)C9—C141.410 (3)
Mn1—N11.987 (2)C9—C101.416 (3)
Mn1—O52.242 (2)C9—C151.440 (2)
Mn1—O1i2.348 (1)C10—C111.373 (3)
Mn1—Mn1i3.275 (1)C10—H100.9300
O1—C61.357 (2)C11—C121.394 (3)
O1—Mn1i2.348 (1)C12—C131.372 (3)
O2—C141.332 (2)C12—H120.9300
O3—C31.366 (2)C13—C141.408 (2)
O3—C171.414 (3)C13—H130.9300
O4—C111.373 (2)C15—H150.9300
O4—C181.409 (3)C16—H16A0.9700
O5—C191.415 (3)C16—H16B0.9700
O5—H50.8717C17—H17A0.9600
N1—C71.282 (2)C17—H17B0.9600
N1—C81.473 (2)C17—H17C0.9600
N2—C151.286 (2)C18—H18A0.9600
N2—C161.481 (2)C18—H18B0.9600
C1—C21.399 (2)C18—H18C0.9600
C1—C61.416 (2)C19—H19A0.9600
C1—C71.447 (3)C19—H19B0.9600
C2—C31.383 (3)C19—H19C0.9600
C2—H20.9300C19—H19D0.9600
C3—C41.391 (3)C19—H19E0.9600
C4—C51.387 (3)C19—H19F0.9600
C4—H40.9300Cl1—O61.382 (2)
C5—C61.390 (3)Cl1—O91.392 (3)
C5—H5A0.9300Cl1—O71.425 (2)
C7—H70.9300Cl1—O81.429 (3)
C8—C161.514 (3)
O2—Mn1—O196.74 (6)C10—C9—C15117.30 (17)
O2—Mn1—N291.59 (6)C11—C10—C9120.07 (19)
O1—Mn1—N2170.31 (6)C11—C10—H10120.0
O2—Mn1—N1173.31 (6)C9—C10—H10120.0
O1—Mn1—N189.72 (6)O4—C11—C10125.3 (2)
N2—Mn1—N181.83 (7)O4—C11—C12115.37 (18)
O2—Mn1—O590.98 (6)C10—C11—C12119.29 (18)
O1—Mn1—O592.04 (6)C13—C12—C11121.54 (18)
N2—Mn1—O592.76 (7)C13—C12—H12119.2
N1—Mn1—O590.55 (6)C11—C12—H12119.2
O2—Mn1—O1i91.38 (5)C12—C13—C14120.83 (18)
O1—Mn1—O1i80.26 (5)C12—C13—H13119.6
N2—Mn1—O1i94.65 (6)C14—C13—H13119.6
N1—Mn1—O1i87.96 (5)O2—C14—C13118.05 (16)
O5—Mn1—O1i172.17 (5)O2—C14—C9124.33 (15)
O2—Mn1—Mn1i94.94 (4)C13—C14—C9117.62 (17)
O1—Mn1—Mn1i44.95 (4)N2—C15—C9125.25 (17)
N2—Mn1—Mn1i129.51 (5)N2—C15—H15117.4
N1—Mn1—Mn1i88.38 (5)C9—C15—H15117.4
O5—Mn1—Mn1i136.97 (5)N2—C16—C8107.23 (15)
O1i—Mn1—Mn1i35.31 (3)N2—C16—H16A110.3
C6—O1—Mn1122.62 (11)C8—C16—H16A110.3
C6—O1—Mn1i113.83 (10)N2—C16—H16B110.3
Mn1—O1—Mn1i99.74 (5)C8—C16—H16B110.3
C14—O2—Mn1129.73 (11)H16A—C16—H16B108.5
C3—O3—C17118.22 (19)O3—C17—H17A109.5
C11—O4—C18118.52 (17)O3—C17—H17B109.5
C19—O5—Mn1123.29 (15)H17A—C17—H17B109.5
C19—O5—H5108.1O3—C17—H17C109.5
Mn1—O5—H5127.7H17A—C17—H17C109.5
C7—N1—C8122.01 (15)H17B—C17—H17C109.5
C7—N1—Mn1125.36 (13)O4—C18—H18A109.5
C8—N1—Mn1112.61 (11)O4—C18—H18B109.5
C15—N2—C16119.65 (15)H18A—C18—H18B109.5
C15—N2—Mn1126.52 (12)O4—C18—H18C109.5
C16—N2—Mn1113.82 (12)H18A—C18—H18C109.5
C2—C1—C6119.86 (17)H18B—C18—H18C109.5
C2—C1—C7117.49 (16)O5—C19—H19A109.5
C6—C1—C7122.47 (16)O5—C19—H19B109.5
C3—C2—C1121.07 (17)H19A—C19—H19B109.5
C3—C2—H2119.5O5—C19—H19C109.5
C1—C2—H2119.5H19A—C19—H19C109.5
O3—C3—C2115.94 (18)H19B—C19—H19C109.5
O3—C3—C4124.97 (19)O5—C19—H19D109.5
C2—C3—C4119.10 (18)H19A—C19—H19D141.1
C5—C4—C3120.44 (18)H19B—C19—H19D56.3
C5—C4—H4119.8H19C—C19—H19D56.3
C3—C4—H4119.8O5—C19—H19E109.5
C4—C5—C6121.49 (17)H19A—C19—H19E56.3
C4—C5—H5A119.3H19B—C19—H19E141.1
C6—C5—H5A119.3H19C—C19—H19E56.3
O1—C6—C5119.24 (15)H19D—C19—H19E109.5
O1—C6—C1122.58 (16)O5—C19—H19F109.5
C5—C6—C1118.03 (16)H19A—C19—H19F56.3
N1—C7—C1124.42 (16)H19B—C19—H19F56.3
N1—C7—H7117.8H19C—C19—H19F141.1
C1—C7—H7117.8H19D—C19—H19F109.5
N1—C8—C16106.34 (15)H19E—C19—H19F109.5
N1—C8—H8A110.5O6—Cl1—O9111.4 (2)
C16—C8—H8A110.5O6—Cl1—O7111.88 (18)
N1—C8—H8B110.5O9—Cl1—O7109.80 (16)
C16—C8—H8B110.5O6—Cl1—O8107.7 (2)
H8A—C8—H8B108.7O9—Cl1—O8109.1 (2)
C14—C9—C10120.63 (16)O7—Cl1—O8106.79 (17)
C14—C9—C15122.05 (16)
O2—Mn1—O1—C6143.12 (12)C1—C2—C3—C40.4 (3)
N1—Mn1—O1—C638.65 (13)O3—C3—C4—C5179.8 (2)
O5—Mn1—O1—C651.90 (13)C2—C3—C4—C50.4 (3)
O1i—Mn1—O1—C6126.63 (14)C3—C4—C5—C60.5 (3)
Mn1i—Mn1—O1—C6126.63 (14)Mn1—O1—C6—C5151.41 (13)
O2—Mn1—O1—Mn1i90.25 (6)Mn1i—O1—C6—C588.44 (16)
N1—Mn1—O1—Mn1i87.98 (6)Mn1—O1—C6—C133.0 (2)
O5—Mn1—O1—Mn1i178.53 (5)Mn1i—O1—C6—C187.12 (17)
O1i—Mn1—O1—Mn1i0.0C4—C5—C6—O1174.36 (17)
O1—Mn1—O2—C14169.01 (15)C4—C5—C6—C11.4 (3)
N2—Mn1—O2—C146.03 (16)C2—C1—C6—O1174.22 (17)
O5—Mn1—O2—C1498.82 (16)C7—C1—C6—O10.8 (3)
O1i—Mn1—O2—C1488.65 (15)C2—C1—C6—C51.4 (3)
Mn1i—Mn1—O2—C14123.85 (15)C7—C1—C6—C5176.44 (17)
O2—Mn1—O5—C1914.2 (2)C8—N1—C7—C1177.25 (17)
O1—Mn1—O5—C19111.0 (2)Mn1—N1—C7—C14.7 (3)
N2—Mn1—O5—C1977.4 (2)C2—C1—C7—N1170.69 (18)
N1—Mn1—O5—C19159.3 (2)C6—C1—C7—N114.2 (3)
Mn1i—Mn1—O5—C19112.5 (2)C7—N1—C8—C16137.90 (18)
O1—Mn1—N1—C725.45 (16)Mn1—N1—C8—C1640.40 (18)
N2—Mn1—N1—C7159.30 (16)C14—C9—C10—C111.3 (3)
O5—Mn1—N1—C766.59 (16)C15—C9—C10—C11176.80 (19)
O1i—Mn1—N1—C7105.71 (16)C18—O4—C11—C1013.6 (4)
Mn1i—Mn1—N1—C770.39 (15)C18—O4—C11—C12167.4 (2)
O1—Mn1—N1—C8156.32 (13)C9—C10—C11—O4177.5 (2)
N2—Mn1—N1—C818.93 (13)C9—C10—C11—C121.5 (3)
O5—Mn1—N1—C8111.63 (13)O4—C11—C12—C13178.3 (2)
O1i—Mn1—N1—C876.06 (12)C10—C11—C12—C130.8 (3)
Mn1i—Mn1—N1—C8111.39 (12)C11—C12—C13—C140.1 (3)
O2—Mn1—N2—C157.91 (17)Mn1—O2—C14—C13177.49 (13)
N1—Mn1—N2—C15170.87 (17)Mn1—O2—C14—C92.1 (3)
O5—Mn1—N2—C1598.97 (17)C12—C13—C14—O2179.96 (19)
O1i—Mn1—N2—C1583.60 (16)C12—C13—C14—C90.3 (3)
Mn1i—Mn1—N2—C1589.82 (17)C10—C9—C14—O2179.21 (17)
O2—Mn1—N2—C16173.41 (13)C15—C9—C14—O22.7 (3)
N1—Mn1—N2—C167.81 (13)C10—C9—C14—C130.4 (3)
O5—Mn1—N2—C1682.36 (14)C15—C9—C14—C13177.65 (17)
O1i—Mn1—N2—C1695.07 (13)C16—N2—C15—C9175.34 (18)
Mn1i—Mn1—N2—C1688.86 (13)Mn1—N2—C15—C96.1 (3)
C6—C1—C2—C30.5 (3)C14—C9—C15—N20.4 (3)
C7—C1—C2—C3175.80 (19)C10—C9—C15—N2178.56 (18)
C17—O3—C3—C2164.3 (2)C15—N2—C16—C8147.28 (18)
C17—O3—C3—C415.9 (3)Mn1—N2—C16—C831.50 (19)
C1—C2—C3—O3179.76 (19)N1—C8—C16—N244.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O80.871.902.767 (3)171

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Mn(C18H18N2O4)(H2O)2]ClO4[Mn(C16H10Cl4N2O2)(CH4O)(H2O)]ClO4[Mn2(C18H18N2O4)2(CH4O)2](ClO4)2
Mr516.77608.511025.55
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)297297297
a, b, c (Å)22.751 (9), 14.016 (6), 13.36 (1)8.072 (5), 21.27 (1), 13.712 (7)15.226 (6), 13.026 (4), 10.865 (4)
α, β, γ (°)90, 90, 9090, 106.01 (6), 9090, 99.58 (3), 90
V3)4260 (4)2263 (2)2124.9 (13)
Z842
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.801.220.80
Crystal size (mm)0.46 × 0.46 × 0.100.60 × 0.30 × 0.300.72 × 0.56 × 0.31
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.698, 0.9230.651, 0.6930.589, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
4892, 4892, 3324 5879, 5194, 4367 4865, 4865, 4252
Rint0.0000.0720.000
(sin θ/λ)max1)0.6500.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.02 0.046, 0.137, 1.04 0.035, 0.101, 1.04
No. of reflections332451944865
No. of parameters311298291
No. of restraints110
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.391.24, 0.990.65, 0.58

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), WinAFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
Mn1—O21.870 (2)O2—C141.316 (4)
Mn1—O11.873 (2)O3—C51.365 (4)
Mn1—N21.975 (3)O4—C131.362 (4)
Mn1—N11.980 (3)N1—C71.287 (5)
Mn1—O52.259 (3)N2—C151.292 (5)
Mn1—O62.313 (3)C1—C71.431 (6)
O1—C61.322 (4)C9—C151.440 (5)
O2—Mn1—O192.88 (10)N1—Mn1—O588.04 (11)
O2—Mn1—N292.73 (11)O2—Mn1—O688.27 (13)
O1—Mn1—N2174.36 (11)O1—Mn1—O687.95 (13)
O2—Mn1—N1174.58 (12)N2—Mn1—O692.83 (14)
O1—Mn1—N192.10 (11)N1—Mn1—O689.75 (14)
N2—Mn1—N182.32 (13)O5—Mn1—O6177.78 (11)
O2—Mn1—O593.95 (10)N1—C7—C1126.0 (3)
O1—Mn1—O591.92 (10)N2—C15—C9126.0 (3)
N2—Mn1—O587.08 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.962.092.929 (3)145
O5—H5A···O1i0.962.122.928 (3)140
O5—H5B···O4i0.962.122.984 (3)150
O5—H5B···O2i0.962.182.949 (3)136
O6—H6A···O8ii0.961.972.839 (6)150
O6—H6B···O80.962.403.029 (6)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
Selected geometric parameters (Å, º) for (II) top
Mn1—O11.897 (2)O1—C21.324 (3)
Mn1—O21.902 (2)O2—C101.326 (3)
Mn1—N21.985 (3)N1—C71.283 (4)
Mn1—N11.990 (2)N2—C151.282 (4)
Mn1—O32.222 (3)C1—C71.438 (4)
Mn1—O42.266 (3)C9—C151.447 (4)
O1—Mn1—O295.89 (10)N1—Mn1—O390.35 (11)
O1—Mn1—N2172.73 (10)O1—Mn1—O491.41 (10)
O2—Mn1—N291.25 (11)O2—Mn1—O490.62 (10)
O1—Mn1—N190.79 (10)N2—Mn1—O487.14 (11)
O2—Mn1—N1172.96 (9)N1—Mn1—O486.98 (10)
N2—Mn1—N182.02 (11)O3—Mn1—O4176.20 (9)
O1—Mn1—O391.34 (10)N1—C7—C1125.5 (2)
O2—Mn1—O391.72 (10)N2—C15—C9124.9 (3)
N2—Mn1—O389.81 (11)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O70.842.002.834 (6)174
O4—H4A···O1i0.842.082.845 (3)151
O4—H4B···O2i0.842.302.970 (4)137
O4—H4A···Cl2i0.842.713.270 (1)126
O4—H4B···Cl3i0.842.513.246 (3)147
Symmetry code: (i) x+1, y+1, z.
Selected geometric parameters (Å, º) for (III) top
Mn1—O21.862 (1)O2—C141.332 (2)
Mn1—O11.921 (1)O3—C31.366 (2)
Mn1—N21.985 (2)O4—C111.373 (2)
Mn1—N11.987 (2)N1—C71.282 (2)
Mn1—O52.242 (2)N2—C151.286 (2)
Mn1—O1i2.348 (1)C1—C71.447 (3)
Mn1—Mn1i3.275 (1)C9—C151.440 (2)
O1—C61.357 (2)
O2—Mn1—O196.74 (6)N1—Mn1—O590.55 (6)
O2—Mn1—N291.59 (6)O2—Mn1—O1i91.38 (5)
O1—Mn1—N2170.31 (6)O1—Mn1—O1i80.26 (5)
O2—Mn1—N1173.31 (6)N2—Mn1—O1i94.65 (6)
O1—Mn1—N189.72 (6)N1—Mn1—O1i87.96 (5)
N2—Mn1—N181.83 (7)O5—Mn1—O1i172.17 (5)
O2—Mn1—O590.98 (6)Mn1—O1—Mn1i99.74 (5)
O1—Mn1—O592.04 (6)N1—C7—C1124.42 (16)
N2—Mn1—O592.76 (7)N2—C15—C9125.25 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O80.871.902.767 (3)171
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds