Download citation
Download citation
link to html
Mol­ecules of the title compounds, C15H14N2O4S·H2O and C15H13BrN2O4S·H2O, adopt an E configuration about the azomethine C=N double bond. In both mol­ecules, the two benzene rings and the azomethine group are practically coplanar, as a result of intra­molecular hydrogen bonds involving the hydroxy O atom and azomethine N atom. The angular disposition of the bonds about the S atom deviates significantly from that of a regular tetra­hedron. In the crystal structures, both compounds form two-dimensional layers parallel to the (100) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105017853/hj1053sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105017853/hj1053Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105017853/hj1053IIsup3.hkl
Contains datablock II

CCDC references: 278576; 278577

Comment top

The sulfonamides constitute an important class of antimicrobial agents which exert antibacterial action by inhibiting the enzyme dihydropteroate synthase competitively towards the substrate p-aminobenzoate (PAB). This enzyme catalyses the formation of dihydropteroate from PAB and hydroxymethyldihydropteridine pyrophosphate (Brown, 1971), so its inhibition leads to bacteriostasis. It is known that N-acetyl-4-aminobenzenesulfonamide belongs to the class of sulfonamide drugs with short-term action and it is widely applied in medical practice for the treatment of diseases caused by various coccal infections. The presence of the amino group in this compound leads to condensation with aldehydes and ketones, thus enlarging the number of functional groups and changing its chemical and medicobiological properties. Detailed study of the structural features of inhibitors in relation to their biological activity is an important step towards the deduction of the interaction mechanisms of enzyme inhibition and provides useful knowledge for the design of the most suitable molecules according to the stereo-electronic requirements of the inhibitory interaction. Therefore, we report here the crystal structures of N-acetyl-4-[(2-hydroxybenzylidene)amino]benzenesulfonamide monohydrate, (I), and N-acetyl-4-[(5-bromo-2-hydroxybenzylidene)amino]benzenesulfonamide, (II).

The numbering schemes and views of the molecules of (I) and (II) are shown in Figs. 1 and 2, respectively. Both (I) and (II) adopt an E configuration about the azomethine CN double bond, with torsion angles of 180.0 (3) and 179.1 (2)°, respectively. The differences in the bond lengths and angles in (I) and (II) are within three times the combined values of their s.u.s. The S1—C11 distance of 1.760 (3) Å in (I) and (II) is a normal single-bond value and matches well with those observed in other sulfonamides (Singh et al., 1984; Abramenko & Sergienko, 2002). The S—N bond distances in (I) and (II) have a considerable amount of double-bond character. The S—O distances are similar to those found in analogous structures. These distances do not vary significantly in the sulfonamide structures, despite the differing intermolecular interaction patterns observed. The bond lengths and angles in the benzene rings have characteristic values. The angular disposition of the bonds about atom S1 deviates significantly from that of a regular tetrahedron, with the largest angle being O2—S1—O3 [120.0 (1)°] and the smallest being O3—S1—N2 [104.4 (1)°] in (I), and 120.0 (1) and 104.3 (1)°, respectively, in (II). These distortions of S bond angles may be caused by S1—O2···Cg (π-ring) interactions (Spek, 2003), where Cg is the centroid of the C8–C13 aromatic ring at symmetry position (x, y − 1, z) in (I) and that at (x, y + 1, z) in (II). The O2···Cg and S2···Cg separations for (I) are 3.142 and 3.137 Å, respectively, and for (II) are 3.802 and 3.804 Å, respectively, and the angles between the O2—Cg vectors and the normals to the C8–C13 phenyl rings are 8.3 and 9.06°, respectively, for (I) and (II).

The sulfonamide and acetyl moieties are capable of a variety of conformational states by means of rotations about the S1—N2 and N2—C14 bonds. The dihedral angles describing these conformations are 70.5 (3) and −176.6 (2)° in (I), and 70.9 (2) and −177.1 (1)° in (II). Fig 3 shows a superimposition of the molecules of (I) and (II), with a weighted r.m.s. deviation of 0.066 Å for atoms N1/C1–C13, illustrating the isostructural nature of these compounds.

In (I) and (II), in molecules related by a b-cell translation, short intermolecular contacts exist between carbonyl atom C14 and sulfonyl atom O2, of 2.99 and 2.95 Å, respectively. These molecules are linked by O1W—H1W···O4, O1W—H2W···O4 and O1W—H2W···O2 hydrogen bonds (Tables 2 and 4), which leads to the close approach of atoms O2 and C14 due to the rotation of the sulfonamide and acetyl moieties about the S1—N2 and N2—C14 bonds. In the related structures of 2[4-(acetylaminosulfonyl)phenylcarbamoyl]benzoic acid (phthalylsulfacetamide), (III) (Singh et al., 1984), and p-aminobenzene sulfonacetamide, (IV) (Basak & Mazumdar, 1982), where the water molecule is absent in the crystal packing, the O2—S1—N2—C14 and S1—N2—C14—O4 torsion angles are −53.2 and −61.5°, and 6.8 and 7.2°, respectively, whereas in (I) and (II), these angles are −46.0 (3) and −45.8 (2)°, and 4.3 (4) and 3.8 (4)°, respectively. In (III) and (IV), the above-mentioned intermolecular contacts between the carbonyl C atom and sulfonyl O atoms are 4.69 and 4.39 Å, respectively. A check of the Cambridge Structural Database [Version 5.25 (Allen, 2002); CONQUEST (Bruno et al., 2002)] for close contacts between such atoms has been carried out (R-factor less than 0.075) for compounds containing the benzoylsulfacetamide fragment and in which the given contact ranges from 2.9 to 3.22 Å. Only two such compounds were found, namely 2,8-dimethoxy-5,11-di-p-tosyl-5,6,11,12-tetrahydrodibenzo[b,f]diazocine-6,12-dione (Filipenko et al. 1988) and catena-[[µ3-N-(p-aminophenylsulfonyl)acetamide-O,O',N]silver] (Ghosh et al., 1990), for which the O···C separations are 3.13 and 3.05 Å, respectively. [Please check amended text.]

In the molecules of (I) and (II), the two benzene rings and the azomethine group are practically coplanar, due to intramolecular O1—H···N1 hydrogen bonds. The deviations of atoms N1/C1–C13 from the best-fit plane through them are between 0.043 and −0.042 Å in (I), and 0.098 and 0.096 Å in (II). In the structure of (III), where the above-mentioned intramolecular hydrogen bond is absent, the two benzene rings are rotated by 62.1° with respect to each other.

The molecular packings of (I) and (II) are shown in Figs. 4 and 5, viewed down the b axis. Both compounds and their associated water molecules are arranged in the form of infinite two-dimensional layers parallel to the (100) plane, due to N—H···O, C—H···O and O—H···O hydrogen bonds (Tables 2 and 4). Between the layers there are intermolecular van der Waals interactions.

Experimental top

Schiff bases (I) and (II) were prepared by condensation of salicylic acid and 5-bromosalicylic aldehyde with N-acetyl-4-amino-benzenesulfonamide in boiling ethanol. Please give brief details of quantities used, times etc.

Refinement top

Hydroxyl H atoms and all water H atoms were found in difference maps at an intermediate stage of the refinement and were refined subject to an O—H restraint of 0.84 (4). Please check added value. All other H atoms were placed in idealized positions, with C—H(aromatic) = 0.93 Å, CH(methyl) = 0.96 Å and N—H = 0.86 Å, and included in the refinement in the riding-model approximation, with Uiso(aromatic H) = 1.2Ueq(C), Uiso(methyl H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A view of (I), including the water molecule, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. A view of (II), including the water molecule, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.
[Figure 3] Fig. 3. A superimposition of the structures of (I) and (II).
[Figure 4] Fig. 4. Part of the crystal structure of (I), viewed along the b axis, showing the formation of the two-dimensional network. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5] Fig. 5. A packing diagram for (II), viewed along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) N-acetyl-4-[(2-hydroxybenzylidene)amino]benzensulfonamide monohydrate top
Crystal data top
C15H14N2O4S·H2ODx = 1.440 Mg m3
Mr = 336.37Melting point: 70 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 25.486 (3) ÅCell parameters from 4944 reflections
b = 4.8964 (13) Åθ = 3.3–28.3°
c = 12.605 (3) ŵ = 0.24 mm1
β = 99.44 (3)°T = 298 K
V = 1551.7 (6) Å3Prism, yellow
Z = 40.26 × 0.13 × 0.11 mm
F(000) = 704
Data collection top
Bruker SMART CCD area-detector
diffractometer
2696 independent reflections
Radiation source: fine-focus sealed tube1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.951, Tmax = 0.974k = 55
11981 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2401P]
where P = (Fo2 + 2Fc2)/3
2696 reflections(Δ/σ)max = 0.008
221 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H14N2O4S·H2OV = 1551.7 (6) Å3
Mr = 336.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 25.486 (3) ŵ = 0.24 mm1
b = 4.8964 (13) ÅT = 298 K
c = 12.605 (3) Å0.26 × 0.13 × 0.11 mm
β = 99.44 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2696 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1966 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.974Rint = 0.057
11981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
2696 reflectionsΔρmin = 0.30 e Å3
221 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15532 (3)0.33677 (14)0.23105 (6)0.0325 (2)
O10.35445 (12)0.7099 (6)0.0325 (2)0.0720 (11)
O20.14403 (8)0.5389 (4)0.14932 (15)0.0398 (7)
O30.16811 (8)0.4167 (4)0.34146 (15)0.0438 (7)
O40.08421 (8)0.0877 (4)0.04497 (15)0.0458 (7)
N10.31495 (10)0.4534 (5)0.11955 (19)0.0392 (8)
N20.10248 (9)0.1393 (5)0.22636 (17)0.0337 (8)
C10.38486 (13)0.8492 (7)0.0478 (3)0.0495 (11)
C20.42074 (15)1.0414 (8)0.0218 (3)0.0656 (16)
C30.45174 (14)1.1902 (8)0.1016 (4)0.0652 (14)
C40.44727 (13)1.1529 (7)0.2082 (3)0.0573 (14)
C50.41209 (12)0.9623 (7)0.2345 (3)0.0478 (11)
C60.38048 (11)0.8057 (6)0.1563 (2)0.0386 (10)
C70.34400 (12)0.6067 (6)0.1871 (2)0.0390 (10)
C80.27932 (11)0.2586 (6)0.1521 (2)0.0338 (9)
C90.24816 (11)0.1121 (6)0.0713 (2)0.0360 (9)
C100.21137 (11)0.0757 (6)0.0935 (2)0.0354 (9)
C110.20579 (10)0.1199 (5)0.2001 (2)0.0289 (8)
C120.23733 (12)0.0206 (6)0.2825 (2)0.0393 (10)
C130.27392 (12)0.2066 (6)0.2586 (2)0.0425 (10)
C140.07392 (11)0.0311 (6)0.1338 (2)0.0350 (10)
C150.02959 (12)0.1546 (7)0.1503 (3)0.0486 (11)
O1W0.08574 (14)0.0800 (6)0.4180 (2)0.0719 (12)
H1O0.3377 (18)0.596 (9)0.002 (4)0.099 (17)*
H2A0.423901.070100.049900.0790*
H2B0.092000.101300.286200.0400*
H3A0.475901.317000.083200.0780*
H4A0.467801.255600.261600.0690*
H5A0.409200.936800.306500.0570*
H7A0.341500.589300.259600.0470*
H9A0.252200.141600.000200.0430*
H10A0.190600.171600.038300.0420*
H12A0.233700.011300.353700.0470*
H13A0.295300.299000.314000.0510*
H15A0.029300.311100.104300.0730*
H15B0.034600.213000.224000.0730*
H15C0.003600.059400.133200.0730*
H1W0.095 (2)0.045 (7)0.463 (3)0.12 (2)*
H2W0.0917 (19)0.239 (5)0.443 (4)0.114 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0391 (4)0.0310 (4)0.0275 (4)0.0002 (3)0.0056 (3)0.0028 (3)
O10.089 (2)0.085 (2)0.0454 (15)0.0307 (17)0.0213 (14)0.0025 (14)
O20.0475 (13)0.0295 (10)0.0417 (12)0.0016 (9)0.0054 (9)0.0065 (9)
O30.0525 (13)0.0496 (12)0.0290 (11)0.0000 (11)0.0062 (9)0.0133 (9)
O40.0569 (14)0.0521 (13)0.0279 (11)0.0072 (11)0.0054 (10)0.0001 (10)
N10.0376 (14)0.0401 (14)0.0419 (15)0.0021 (12)0.0122 (11)0.0009 (12)
N20.0378 (13)0.0394 (14)0.0261 (12)0.0026 (11)0.0114 (10)0.0003 (11)
C10.052 (2)0.0466 (19)0.053 (2)0.0018 (17)0.0179 (16)0.0007 (17)
C20.068 (3)0.066 (2)0.070 (3)0.007 (2)0.033 (2)0.010 (2)
C30.049 (2)0.051 (2)0.100 (3)0.0098 (19)0.025 (2)0.008 (2)
C40.044 (2)0.046 (2)0.081 (3)0.0034 (18)0.0074 (18)0.001 (2)
C50.0429 (19)0.0454 (19)0.055 (2)0.0006 (16)0.0079 (16)0.0018 (16)
C60.0355 (16)0.0341 (17)0.0475 (19)0.0031 (14)0.0107 (14)0.0033 (14)
C70.0395 (17)0.0405 (18)0.0380 (17)0.0040 (15)0.0097 (14)0.0043 (14)
C80.0342 (16)0.0350 (16)0.0341 (17)0.0033 (13)0.0110 (13)0.0018 (13)
C90.0420 (17)0.0402 (17)0.0269 (15)0.0025 (15)0.0092 (13)0.0003 (13)
C100.0392 (17)0.0387 (17)0.0279 (15)0.0003 (14)0.0044 (13)0.0036 (12)
C110.0293 (14)0.0286 (15)0.0289 (15)0.0044 (12)0.0055 (12)0.0004 (12)
C120.0482 (19)0.0453 (18)0.0242 (16)0.0050 (15)0.0057 (13)0.0001 (13)
C130.0464 (18)0.0501 (19)0.0301 (17)0.0135 (16)0.0033 (14)0.0049 (14)
C140.0352 (16)0.0327 (16)0.0364 (18)0.0022 (14)0.0042 (13)0.0011 (13)
C150.0409 (18)0.054 (2)0.052 (2)0.0087 (17)0.0112 (15)0.0012 (17)
O1W0.133 (3)0.0493 (17)0.0335 (14)0.0079 (18)0.0140 (15)0.0050 (13)
Geometric parameters (Å, º) top
S1—O21.424 (2)C8—C91.385 (4)
S1—O31.431 (2)C8—C131.395 (4)
S1—N21.651 (3)C9—C101.374 (4)
S1—C111.760 (3)C10—C111.391 (4)
O1—C11.354 (5)C11—C121.387 (4)
O4—C141.223 (3)C12—C131.372 (4)
O1—H1O0.83 (5)C14—C151.491 (4)
O1W—H1W0.84 (4)C2—H2A0.9300
O1W—H2W0.84 (3)C3—H3A0.9300
N1—C81.423 (4)C4—H4A0.9300
N1—C71.277 (4)C5—H5A0.9300
N2—C141.376 (3)C7—H7A0.9300
N2—H2B0.8600C9—H9A0.9300
C1—C61.407 (4)C10—H10A0.9300
C1—C21.388 (5)C12—H12A0.9300
C2—C31.381 (6)C13—H13A0.9300
C3—C41.379 (6)C15—H15C0.9600
C4—C51.372 (5)C15—H15A0.9600
C5—C61.396 (4)C15—H15B0.9600
C6—C71.443 (4)
O1···N12.626 (4)C10···O43.199 (4)
O1W···O4i2.897 (4)C10···O2viii3.278 (4)
O1W···O4ii2.960 (4)C11···O43.386 (3)
O1W···N22.740 (4)C11···O2viii3.263 (3)
O1W···O2i3.054 (3)C12···O3viii3.418 (4)
O2···O42.877 (3)C14···O2viii2.987 (4)
O2···C10iii3.278 (4)C15···O2viii3.282 (4)
O2···C14iii2.987 (4)C4···H4Aix2.8900
O2···C15iii3.282 (4)C7···H13A2.6500
O2···O1Wiv3.054 (3)C7···H1O2.36 (5)
O2···C11iii3.263 (3)C13···H7A2.5400
O3···C10i3.188 (3)C14···H2Wv2.90 (4)
O3···C9i3.396 (3)H1O···N11.86 (5)
O3···C12iii3.418 (4)H1O···C72.36 (5)
O4···O22.877 (3)H1W···O4i2.11 (4)
O4···O1Wiv2.897 (4)H1W···H2B2.2300
O4···C103.199 (4)H1W···O2i2.51 (4)
O4···O1Wv2.960 (4)H2B···H2W2.5900
O4···C113.386 (3)H2B···H15B2.1800
O1···H7Avi2.7700H2B···H1W2.2300
O1···H5Avi2.7400H2B···O1W1.9100
O1W···H15B2.6600H2W···C14ii2.90 (4)
O1W···H2B1.9100H2W···H2B2.5900
O2···H10A2.6700H2W···O4ii2.16 (4)
O2···H2Wiv2.89 (5)H2W···O2i2.89 (5)
O2···H1Wiv2.51 (4)H4A···C4x2.8900
O3···H10Ai2.4900H5A···H7A2.4300
O3···H9Ai2.9000H5A···O1xi2.7400
O3···H12A2.5800H7A···C132.5400
O4···H15Cvii2.7900H7A···H13A2.0400
O4···H10A2.7600H7A···O1xi2.7700
O4···H1Wiv2.11 (4)H7A···H5A2.4300
O4···H2Wv2.16 (4)H9A···H12Av2.5700
N1···O12.626 (4)H9A···O3iv2.9000
N2···O1W2.740 (4)H10A···O42.7600
N1···H1O1.86 (5)H10A···O22.6700
C4···C7viii3.421 (5)H10A···O3iv2.4900
C6···C8viii3.395 (4)H12A···O32.5800
C7···C8viii3.586 (4)H12A···H9Aii2.5700
C7···C4iii3.421 (5)H13A···H7A2.0400
C8···C7iii3.586 (4)H13A···C72.6500
C8···C6iii3.395 (4)H15B···O1W2.6600
C9···O3iv3.396 (3)H15B···H2B2.1800
C10···O3iv3.188 (3)H15C···O4vii2.7900
O2—S1—O3120.03 (12)C10—C11—C12120.5 (2)
O2—S1—N2108.32 (13)C11—C12—C13119.7 (2)
O2—S1—C11109.11 (13)C8—C13—C12120.7 (3)
O3—S1—N2104.44 (12)O4—C14—C15123.2 (3)
O3—S1—C11108.81 (13)N2—C14—C15115.1 (2)
N2—S1—C11105.08 (13)O4—C14—N2121.7 (3)
C1—O1—H1O105 (3)C1—C2—H2A120.00
H1W—O1W—H2W114 (4)C3—C2—H2A120.00
C7—N1—C8122.0 (2)C4—C3—H3A120.00
S1—N2—C14124.81 (19)C2—C3—H3A120.00
S1—N2—H2B118.00C3—C4—H4A120.00
C14—N2—H2B118.00C5—C4—H4A120.00
O1—C1—C2118.9 (3)C6—C5—H5A119.00
O1—C1—C6121.6 (3)C4—C5—H5A119.00
C2—C1—C6119.5 (3)N1—C7—H7A118.00
C1—C2—C3120.4 (4)C6—C7—H7A118.00
C2—C3—C4120.7 (4)C10—C9—H9A119.00
C3—C4—C5119.2 (3)C8—C9—H9A119.00
C4—C5—C6121.8 (3)C9—C10—H10A121.00
C1—C6—C7121.4 (3)C11—C10—H10A121.00
C1—C6—C5118.4 (3)C13—C12—H12A120.00
C5—C6—C7120.2 (3)C11—C12—H12A120.00
N1—C7—C6123.1 (2)C8—C13—H13A120.00
N1—C8—C13124.6 (2)C12—C13—H13A120.00
N1—C8—C9116.8 (2)C14—C15—H15B109.00
C9—C8—C13118.6 (3)C14—C15—H15C109.00
C8—C9—C10121.7 (2)C14—C15—H15A109.00
C9—C10—C11118.8 (2)H15A—C15—H15C109.00
S1—C11—C10120.1 (2)H15B—C15—H15C110.00
S1—C11—C12119.2 (2)H15A—C15—H15B109.00
O2—S1—N2—C1446.0 (3)O1—C1—C2—C3179.0 (3)
O3—S1—N2—C14175.0 (2)C1—C2—C3—C40.7 (6)
C11—S1—N2—C1470.5 (3)C2—C3—C4—C51.0 (5)
O2—S1—C11—C1029.0 (3)C3—C4—C5—C60.3 (5)
O2—S1—C11—C12155.5 (2)C4—C5—C6—C10.7 (5)
O3—S1—C11—C10161.7 (2)C4—C5—C6—C7179.9 (3)
O3—S1—C11—C1222.8 (3)C1—C6—C7—N12.2 (5)
N2—S1—C11—C1087.0 (2)C5—C6—C7—N1178.4 (3)
N2—S1—C11—C1288.5 (2)N1—C8—C9—C10178.2 (3)
C7—N1—C8—C132.8 (5)C13—C8—C9—C101.9 (4)
C7—N1—C8—C9177.3 (3)C9—C8—C13—C122.1 (4)
C8—N1—C7—C6180.0 (3)N1—C8—C13—C12178.0 (3)
S1—N2—C14—C15176.6 (2)C8—C9—C10—C110.5 (4)
S1—N2—C14—O44.3 (4)C9—C10—C11—S1174.6 (2)
C6—C1—C2—C30.4 (5)C9—C10—C11—C120.9 (4)
O1—C1—C6—C5178.2 (3)C10—C11—C12—C130.7 (4)
O1—C1—C6—C71.2 (5)S1—C11—C12—C13174.8 (2)
C2—C1—C6—C51.1 (5)C11—C12—C13—C80.8 (4)
C2—C1—C6—C7179.6 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y1/2, z1/2; (v) x, y+1/2, z1/2; (vi) x, y+3/2, z1/2; (vii) x, y, z; (viii) x, y+1, z; (ix) x+1, y1/2, z+1/2; (x) x+1, y+1/2, z+1/2; (xi) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.83 (5)1.86 (5)2.626 (4)152 (4)
O1W—H1W···O2i0.84 (4)2.51 (4)3.054 (3)124 (3)
O1W—H1W···O4i0.84 (4)2.11 (4)2.897 (4)155 (5)
N2—H2B···O1W0.861.912.740 (4)161
O1W—H2W···O4ii0.84 (3)2.16 (4)2.960 (4)157 (4)
C10—H10A···O3iv0.932.493.188 (3)132
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2.
(II) N-acetyl-4-[(5-bromo-2-hydroxybenzylidene)amino]benzenesulfonamide monohydrate top
Crystal data top
C15H13BrN2O4S·H2ODx = 1.665 Mg m3
Mr = 415.26Melting point: 70 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 26.858 (3) ÅCell parameters from 8514 reflections
b = 4.855 (2) Åθ = 5.6–28.1°
c = 12.708 (3) ŵ = 2.64 mm1
β = 91.428 (12)°T = 298 K
V = 1656.6 (8) Å3Prism, yellow
Z = 40.24 × 0.23 × 0.11 mm
F(000) = 840
Data collection top
Bruker SMART CCD area-detector
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3131
Tmin = 0.549, Tmax = 0.748k = 55
13900 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6173P]
where P = (Fo2 + 2Fc2)/3
2892 reflections(Δ/σ)max = 0.043
230 parametersΔρmax = 0.57 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H13BrN2O4S·H2OV = 1656.6 (8) Å3
Mr = 415.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 26.858 (3) ŵ = 2.64 mm1
b = 4.855 (2) ÅT = 298 K
c = 12.708 (3) Å0.24 × 0.23 × 0.11 mm
β = 91.428 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2446 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.748Rint = 0.029
13900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0333 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
2892 reflectionsΔρmin = 0.42 e Å3
230 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47099 (1)1.29676 (7)0.15738 (3)0.0556 (1)
S10.14546 (2)0.34321 (13)0.18633 (5)0.0320 (2)
O10.32605 (10)0.7229 (6)0.13812 (18)0.0628 (9)
O20.13449 (7)0.5499 (4)0.10915 (15)0.0405 (6)
O30.15782 (8)0.4214 (4)0.29244 (14)0.0455 (7)
O40.07830 (8)0.0952 (4)0.02204 (14)0.0449 (7)
N10.29484 (8)0.4434 (5)0.02450 (18)0.0390 (8)
N20.09620 (8)0.1432 (4)0.19689 (16)0.0334 (7)
C10.35791 (11)0.8469 (6)0.0701 (2)0.0447 (10)
C20.39047 (12)1.0434 (8)0.1072 (2)0.0561 (11)
C30.42407 (12)1.1739 (7)0.0414 (3)0.0522 (11)
C40.42497 (10)1.1137 (6)0.0653 (2)0.0407 (9)
C50.39244 (10)0.9239 (6)0.1048 (2)0.0405 (9)
C60.35874 (10)0.7855 (6)0.0385 (2)0.0369 (9)
C70.32536 (10)0.5827 (6)0.0818 (2)0.0400 (9)
C80.26186 (10)0.2481 (5)0.0683 (2)0.0343 (8)
C90.23230 (10)0.0988 (6)0.0017 (2)0.0365 (8)
C100.19769 (10)0.0880 (6)0.0327 (2)0.0339 (8)
C110.19272 (10)0.1271 (5)0.1398 (2)0.0311 (8)
C120.22245 (10)0.0159 (6)0.2114 (2)0.0391 (9)
C130.25674 (11)0.2017 (6)0.1764 (2)0.0438 (10)
C140.06909 (10)0.0369 (6)0.1121 (2)0.0354 (9)
C150.02741 (11)0.1511 (7)0.1413 (3)0.0492 (11)
O1W0.08098 (12)0.0825 (6)0.39187 (18)0.0708 (12)
H10.3132 (15)0.595 (7)0.105 (3)0.088 (15)*
H2B0.086700.102200.259100.0400*
H2C0.389501.087800.178500.0670*
H3B0.446201.302100.068200.0630*
H5A0.392900.887300.176700.0490*
H7A0.326200.552900.154100.0480*
H9A0.235900.125000.073600.0440*
H10A0.178000.186400.015300.0410*
H12A0.219200.013800.283200.0470*
H13A0.276700.297600.224700.0530*
H15A0.027100.309000.095900.0740*
H15B0.032200.209800.213000.0740*
H15C0.003700.055000.133900.0740*
H1W0.091 (2)0.031 (10)0.439 (3)0.14 (2)*
H2W0.0948 (18)0.231 (7)0.411 (4)0.109 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0437 (2)0.0604 (2)0.0625 (2)0.0123 (2)0.0051 (2)0.0019 (2)
S10.0386 (4)0.0297 (4)0.0274 (3)0.0014 (3)0.0019 (3)0.0034 (3)
O10.0694 (16)0.0821 (18)0.0369 (13)0.0314 (14)0.0001 (11)0.0003 (12)
O20.0492 (12)0.0301 (10)0.0420 (11)0.0017 (9)0.0034 (9)0.0033 (8)
O30.0548 (13)0.0487 (12)0.0327 (11)0.0005 (10)0.0050 (9)0.0133 (9)
O40.0561 (13)0.0518 (12)0.0266 (11)0.0085 (10)0.0048 (9)0.0023 (9)
N10.0373 (13)0.0395 (13)0.0403 (13)0.0034 (11)0.0025 (10)0.0012 (11)
N20.0371 (12)0.0390 (13)0.0243 (11)0.0003 (10)0.0026 (9)0.0005 (9)
C10.0441 (17)0.0512 (19)0.0389 (17)0.0065 (14)0.0050 (13)0.0011 (14)
C20.062 (2)0.070 (2)0.0368 (17)0.0190 (18)0.0086 (15)0.0045 (16)
C30.0493 (19)0.056 (2)0.052 (2)0.0150 (15)0.0127 (15)0.0028 (15)
C40.0319 (15)0.0401 (16)0.0502 (18)0.0016 (12)0.0030 (13)0.0016 (13)
C50.0383 (16)0.0426 (16)0.0405 (16)0.0003 (13)0.0024 (12)0.0038 (13)
C60.0344 (15)0.0364 (15)0.0401 (16)0.0010 (12)0.0035 (12)0.0023 (12)
C70.0403 (16)0.0408 (16)0.0390 (16)0.0000 (13)0.0011 (13)0.0050 (13)
C80.0319 (14)0.0341 (14)0.0369 (15)0.0004 (11)0.0016 (12)0.0025 (11)
C90.0412 (15)0.0410 (15)0.0273 (14)0.0011 (13)0.0009 (12)0.0030 (12)
C100.0390 (15)0.0363 (14)0.0261 (14)0.0020 (12)0.0024 (11)0.0027 (11)
C110.0325 (14)0.0289 (13)0.0319 (14)0.0022 (11)0.0014 (11)0.0005 (11)
C120.0446 (16)0.0473 (17)0.0251 (14)0.0077 (13)0.0028 (12)0.0023 (12)
C130.0455 (17)0.0516 (18)0.0340 (16)0.0121 (14)0.0047 (13)0.0041 (13)
C140.0361 (15)0.0320 (15)0.0379 (16)0.0039 (12)0.0031 (12)0.0016 (12)
C150.0385 (17)0.055 (2)0.0541 (19)0.0079 (14)0.0014 (14)0.0007 (16)
O1W0.130 (3)0.0482 (15)0.0336 (13)0.0043 (17)0.0068 (14)0.0043 (12)
Geometric parameters (Å, º) top
Br1—C41.901 (3)C6—C71.449 (4)
S1—O21.429 (2)C8—C91.383 (4)
S1—O31.432 (2)C8—C131.402 (4)
S1—N21.649 (2)C9—C101.378 (4)
S1—C111.760 (3)C10—C111.384 (4)
O1—C11.344 (4)C11—C121.383 (4)
O4—C141.211 (3)C12—C131.371 (4)
O1—H10.83 (4)C14—C151.498 (4)
O1W—H2W0.84 (4)C2—H2C0.9300
O1W—H1W0.85 (4)C3—H3B0.9300
N1—C71.277 (4)C5—H5A0.9300
N1—C81.421 (3)C7—H7A0.9300
N2—C141.385 (3)C9—H9A0.9300
N2—H2B0.8600C10—H10A0.9300
C1—C61.412 (4)C12—H12A0.9300
C1—C21.385 (5)C13—H13A0.9300
C2—C31.370 (5)C15—H15C0.9600
C3—C41.387 (5)C15—H15A0.9600
C4—C51.373 (4)C15—H15B0.9600
C5—C61.394 (4)
Br1···Br1i3.6986 (16)C7···C4vii3.523 (4)
Br1···Br1ii3.6986 (16)C8···C6vii3.465 (4)
Br1···H3Biii3.1900C9···O3viii3.366 (4)
Br1···H2Civ3.1100C10···O2ix3.276 (4)
O1···N12.627 (4)C10···O3viii3.211 (3)
O1W···O2v3.085 (3)C10···O43.206 (4)
O1W···O4v2.889 (4)C11···O2ix3.228 (3)
O1W···O4vi2.991 (4)C11···O43.388 (4)
O1W···N22.749 (3)C12···O3ix3.410 (4)
O2···N2vii3.264 (3)C12···O2ix3.400 (4)
O2···C10vii3.276 (4)C14···O2ix2.946 (4)
O2···C12vii3.400 (4)C15···O2ix3.256 (4)
O2···C14vii2.946 (4)C7···H13A2.6500
O2···C15vii3.256 (4)C7···H12.39 (4)
O2···O4vii3.229 (3)C13···H7A2.5500
O2···O1Wviii3.085 (3)C14···H2Wx3.05 (5)
O2···O42.880 (3)H1···N11.88 (4)
O2···C11vii3.228 (3)H1···C72.39 (4)
O3···C12vii3.410 (4)H1W···H2B2.3100
O3···C10v3.211 (3)H1W···O4v2.13 (5)
O3···C9v3.366 (4)H1W···O2v2.46 (4)
O4···C103.206 (4)H2B···H1W2.3100
O4···O2ix3.229 (3)H2B···H2W2.5200
O4···O1Wviii2.889 (4)H2B···O1W1.9200
O4···C113.388 (4)H2B···H15B2.1800
O4···O22.880 (3)H2C···Br1xiii3.1100
O4···O1Wx2.991 (4)H2W···C14vi3.05 (5)
O1···H7Axi2.8600H2W···O3ix2.85 (4)
O1W···H2B1.9200H2W···H2B2.5200
O1W···H15B2.6700H2W···O2v2.85 (5)
O2···H1Wviii2.46 (4)H2W···O4vi2.31 (4)
O2···H10A2.6600H3B···Br1iii3.1900
O2···H2Wviii2.85 (5)H5A···H7A2.4300
O3···H12A2.5800H7A···H5A2.4300
O3···H9Av2.8500H7A···C132.5500
O3···H2Wvii2.85 (4)H7A···H13A2.0400
O3···H10Av2.5400H7A···O1xiv2.8600
O4···H1Wviii2.13 (5)H9A···O3viii2.8500
O4···H15Cxii2.7900H10A···O22.6600
O4···H10A2.7700H10A···O42.7700
O4···H2Wx2.31 (4)H10A···O3viii2.5400
N1···O12.627 (4)H12A···O32.5800
N2···O2ix3.264 (3)H13A···C72.6500
N2···O1W2.749 (3)H13A···H7A2.0400
N1···H11.88 (4)H15B···H2B2.1800
C4···C7ix3.523 (4)H15B···O1W2.6700
C6···C8ix3.465 (4)H15C···O4xii2.7900
O2—S1—O3119.95 (12)C10—C11—C12120.7 (2)
O2—S1—N2108.50 (11)S1—C11—C12119.2 (2)
O2—S1—C11109.03 (12)S1—C11—C10120.0 (2)
O3—S1—N2104.31 (11)C11—C12—C13119.9 (2)
O3—S1—C11108.79 (12)C8—C13—C12120.4 (2)
N2—S1—C11105.25 (11)O4—C14—C15123.2 (3)
C1—O1—H1106 (3)N2—C14—C15114.6 (2)
H1W—O1W—H2W103 (5)O4—C14—N2122.2 (3)
C7—N1—C8121.9 (2)C3—C2—H2C119.00
S1—N2—C14124.28 (18)C1—C2—H2C119.00
C14—N2—H2B118.00C2—C3—H3B120.00
S1—N2—H2B118.00C4—C3—H3B120.00
O1—C1—C6121.9 (3)C6—C5—H5A120.00
C2—C1—C6118.9 (3)C4—C5—H5A120.00
O1—C1—C2119.2 (2)N1—C7—H7A119.00
C1—C2—C3121.5 (3)C6—C7—H7A119.00
C2—C3—C4119.6 (3)C10—C9—H9A119.00
C3—C4—C5120.2 (3)C8—C9—H9A119.00
Br1—C4—C5119.90 (19)C9—C10—H10A120.00
Br1—C4—C3119.9 (2)C11—C10—H10A121.00
C4—C5—C6120.8 (2)C13—C12—H12A120.00
C1—C6—C5118.9 (3)C11—C12—H12A120.00
C1—C6—C7121.3 (2)C8—C13—H13A120.00
C5—C6—C7119.8 (2)C12—C13—H13A120.00
N1—C7—C6122.5 (2)C14—C15—H15B109.00
N1—C8—C13124.6 (2)C14—C15—H15C109.00
C9—C8—C13118.5 (2)C14—C15—H15A109.00
N1—C8—C9116.8 (2)H15A—C15—H15C110.00
C8—C9—C10121.5 (2)H15B—C15—H15C109.00
C9—C10—C11119.0 (2)H15A—C15—H15B109.00
O2—S1—N2—C1445.8 (2)C1—C2—C3—C41.5 (5)
O3—S1—N2—C14174.7 (2)C2—C3—C4—C50.1 (5)
C11—S1—N2—C1470.8 (2)C2—C3—C4—Br1179.3 (3)
O2—S1—C11—C1028.6 (3)Br1—C4—C5—C6179.4 (2)
O2—S1—C11—C12155.6 (2)C3—C4—C5—C61.2 (4)
O3—S1—C11—C10161.1 (2)C4—C5—C6—C11.1 (4)
O3—S1—C11—C1223.1 (3)C4—C5—C6—C7179.0 (3)
N2—S1—C11—C1087.6 (2)C1—C6—C7—N12.3 (4)
N2—S1—C11—C1288.2 (2)C5—C6—C7—N1177.7 (3)
C7—N1—C8—C134.6 (4)N1—C8—C9—C10177.4 (3)
C8—N1—C7—C6179.1 (2)C13—C8—C9—C101.3 (4)
C7—N1—C8—C9176.7 (3)C9—C8—C13—C121.2 (4)
S1—N2—C14—O43.8 (4)N1—C8—C13—C12177.5 (3)
S1—N2—C14—C15177.1 (2)C8—C9—C10—C110.3 (4)
O1—C1—C6—C5179.4 (3)C9—C10—C11—S1174.9 (2)
O1—C1—C2—C3179.3 (3)C9—C10—C11—C120.9 (4)
O1—C1—C6—C70.6 (4)C10—C11—C12—C131.0 (4)
C2—C1—C6—C50.2 (4)S1—C11—C12—C13174.8 (2)
C2—C1—C6—C7179.7 (3)C11—C12—C13—C80.1 (4)
C6—C1—C2—C31.6 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+3, z; (iv) x, y+5/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y1, z; (viii) x, y1/2, z1/2; (ix) x, y+1, z; (x) x, y+1/2, z1/2; (xi) x, y+3/2, z1/2; (xii) x, y, z; (xiii) x, y+5/2, z1/2; (xiv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (4)1.88 (4)2.627 (4)149 (3)
O1W—H1W···O2v0.85 (4)2.46 (4)3.085 (3)130 (4)
O1W—H1W···O4v0.85 (4)2.13 (5)2.889 (4)148 (5)
N2—H2B···O1W0.861.922.749 (3)161
O1W—H2W···O4vi0.84 (4)2.31 (4)2.991 (4)138 (4)
C10—H10A···O3viii0.932.543.211 (3)129
C12—H12A···O30.932.582.945 (4)104
Symmetry codes: (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (viii) x, y1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H14N2O4S·H2OC15H13BrN2O4S·H2O
Mr336.37415.26
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)25.486 (3), 4.8964 (13), 12.605 (3)26.858 (3), 4.855 (2), 12.708 (3)
β (°) 99.44 (3) 91.428 (12)
V3)1551.7 (6)1656.6 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.242.64
Crystal size (mm)0.26 × 0.13 × 0.110.24 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.9740.549, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
11981, 2696, 1966 13900, 2893, 2446
Rint0.0570.029
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.113, 1.06 0.033, 0.085, 1.03
No. of reflections26962892
No. of parameters221230
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.300.57, 0.42

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) for (I) top
S1—O21.424 (2)O4—C141.223 (3)
S1—O31.431 (2)N1—C81.423 (4)
S1—N21.651 (3)N1—C71.277 (4)
S1—C111.760 (3)N2—C141.376 (3)
O1—C11.354 (5)
O2—S1—O3120.03 (12)O1—C1—C6121.6 (3)
O2—S1—N2108.32 (13)N1—C7—C6123.1 (2)
O2—S1—C11109.11 (13)N1—C8—C13124.6 (2)
O3—S1—N2104.44 (12)N1—C8—C9116.8 (2)
O3—S1—C11108.81 (13)S1—C11—C10120.1 (2)
N2—S1—C11105.08 (13)S1—C11—C12119.2 (2)
C7—N1—C8122.0 (2)O4—C14—C15123.2 (3)
S1—N2—C14124.81 (19)N2—C14—C15115.1 (2)
O1—C1—C2118.9 (3)O4—C14—N2121.7 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.83 (5)1.86 (5)2.626 (4)152 (4)
O1W—H1W···O2i0.84 (4)2.51 (4)3.054 (3)124 (3)
O1W—H1W···O4i0.84 (4)2.11 (4)2.897 (4)155 (5)
N2—H2B···O1W0.861.912.740 (4)161
O1W—H2W···O4ii0.84 (3)2.16 (4)2.960 (4)157 (4)
C10—H10A···O3iii0.932.493.188 (3)132
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
Br1—C41.901 (3)O1—C11.344 (4)
S1—O21.429 (2)O4—C141.211 (3)
S1—O31.432 (2)N1—C71.277 (4)
S1—N21.649 (2)N1—C81.421 (3)
S1—C111.760 (3)N2—C141.385 (3)
O2—S1—O3119.95 (12)Br1—C4—C5119.90 (19)
O2—S1—N2108.50 (11)Br1—C4—C3119.9 (2)
O2—S1—C11109.03 (12)N1—C7—C6122.5 (2)
O3—S1—N2104.31 (11)N1—C8—C13124.6 (2)
O3—S1—C11108.79 (12)N1—C8—C9116.8 (2)
N2—S1—C11105.25 (11)S1—C11—C12119.2 (2)
C7—N1—C8121.9 (2)S1—C11—C10120.0 (2)
S1—N2—C14124.28 (18)O4—C14—C15123.2 (3)
O1—C1—C6121.9 (3)N2—C14—C15114.6 (2)
O1—C1—C2119.2 (2)O4—C14—N2122.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.83 (4)1.88 (4)2.627 (4)149 (3)
O1W—H1W···O2i0.85 (4)2.46 (4)3.085 (3)130 (4)
O1W—H1W···O4i0.85 (4)2.13 (5)2.889 (4)148 (5)
N2—H2B···O1W0.861.922.749 (3)161
O1W—H2W···O4ii0.84 (4)2.31 (4)2.991 (4)138 (4)
C10—H10A···O3iii0.932.543.211 (3)129
C12—H12A···O30.932.582.945 (4)104
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds