Download citation
Download citation
link to html
The title cadmium(II) polymer, catena-poly[[[bis­(4-amino­pyridine-κN)­aqua­cadmium(II)]-μ-1,4-phenyl­enediacetato-κ4O,O′:O′′,O′′′] dihydrate], {[Cd(C10H8O4)(C5H6N2)2(H2O)]·2H2O}n, comprises one-dimensional wave-like chains, in which the Cd atom is coordinated by 1,4-phenyl­enediacetate and 4-amino­pyridine molecules. The 1,4-phenylenediacetate ligands lie about inversion centres. Extensive hydrogen-bonding inter­actions between the chains lead to a three-dimensional structure. Free water mol­ecules form chains in the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105007274/hj1044sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105007274/hj1044Isup2.hkl
Contains datablock I

CCDC reference: 275502

Comment top

Various rigid benzenedicarboxylic acids, such as 1,2-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid, which have been demonstrated to be excellent candidates for bridging metal centers and metal clusters and form architectures of various dimensions, have been used in numerous reactions to produce metal-organic frameworks (Li et al., 2004). However, phenylenediacetic acids, for example, 1,4-phenylenediacetic acid (H2PDA), derived from benzenedicarboxylic acid, have more flexible carboxylic acid groups which do not tend to take part in reactions; hence, there are only a few examples of polymeric compounds containing these acids (Pan et al., 2003). In this context, we introduced a secondary building unit (4-aminopyridine) for the design of metal-organic carboxylate frameworks, to improve the activity of the carboxylate group coordination with transition metal ions. Remarkably and fortunately, a three-dimensional complex was obtained containing the two ligands. The other significant observation is that free water molecules form hydrogen-bonded chains in the structure, a phenomenon that is of current interest (Ghosh & Bharadwaj, 2004).

As shown in Fig. 1, the chain consists of [CdII(4-aminopyridine)(PDA)H2O] building blocks that are linked head-to-tail by PDA2− ligands through M—O bonds. The Cd atom has a distorted decahedral environment, with the equatorial plane occupied by five O atoms, four (O1, O2, O3 and O4) from two deprotonated PDA2− molecules and one (O5) from the coordinated water molecule. Two N atoms from two 4-aminopyridine molecules fill the two axial positions, with bond lengths of 2.276 (3) Å (Cd—N3) and 2.296 (3) Å (Cd—N2). The 4-aminopyridine ligand uses its pyridine ring N atom to coordinate with the metal ion and its amine N atom is uncoordinated. The two deprotonated PDA2− moieties act as bridges, linking three CdII ions through carboxylate groups and using their carboxylate groups to chelate with CdII ions. The M—O(PDA2−) distances range from 2.378 (2) to 2.651 (3) Å. The M—Owater distance is 2.335 (3) Å. Hence, each metal centre connects two PDA2− ligands to form a one-dimensional chain in a step-like shape with metal–metal distances of 11.644 (s.u.?) Å.

In the structure, different kinds of hydrogen bonds are observed: (i) hydrogen bonds between free water molecules [O6···O7 = 2.827 (5) Å], (ii) hydrogen bonding of free water and carboxyl O atoms [O7···O4 = 2.771 (5) Å], (iii) hydrogen bonding of coordinated water and carboxyl O atoms [O5···O2 = 2.745 (4) Å and O5···O3 = 2.780 (4) Å], (iv) hydrogen bonding between the amine N atoms in the 4-aminopyridine molecules and free water molecules [N4···O7 = 3.178 (5) Å and N1···O6 = 3.020 (6) Å], and (v) hydrogen bonding betweem the amine N atoms and carboxyl O atoms [N4···O4 = 3.234 (5) Å]. Through these hydrogen-bonding interactions, each CdII polymer chain links to other chains to form a three-dimensional structure (Fig. 2a) in a layer-chain grid construction (for clarity, 4-aminopyridine molecules were omitted from the plot). These central parts are linked by hydrogen bonds to form two-dimensional layers (Fig. 2b). The supramolecular layers are connected by the PDA2− molecules of the step-like chains (Fig. 2a) to form the final three-dimensional supramolecular structure. Moreover, the uncoordinated amine N atoms of 4-aminepyridine molecules are hydrogen-bonded to O atoms of water molecules and carboxyl groups to stabilize the conformation.

Free water molecules play an interesting role in the structure, forming infinite chains by supramolecular assembly (Fig. 3). Through hydrogen bonds, the water chains further organize the coordination polymer chains to distribute alternately side by side and constitute the two-dimensional structure (Fig. 2b).

Experimental top

The title compound, (I), was produced in hydrothermal conditions. Cadmium nitrate tetrahydrate (0.119 g), 1,4-phenylenediacetic acid (97%, 0.040 g), 4-aminopyridine (98%, 0.020 g) and H2O (15 ml) were added to a teflon-lined steel autoclave vessel. The mixture was heated at 438 K for 3 d and then slowly cooled over a period of 2 d to room temperature. The resulting product consisted of white crystals of the title complex in 40% yield.

Refinement top

H atoms were included in calculated positions and their parameters were refined isotropically [C—H = 0.87 (5)–1.07 (5) Å, O—H = 0.71 (5)–0.94 (6) Å and N—H = 0.78 (6)–0.96 (6) Å].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994)?; software used to prepare material for publication: SHELXTL?.

Figures top
[Figure 1] Fig. 1. The one-dimensional chain structure of the title compound, showing the local coordination environment around the CdII ions; H atoms have been omitted for clarity.
[Figure 2] Fig. 2. (a) The two-dimensional layer in the title compound, showing hydrogen-bonding interactions along the b axis. H atoms and 4-aminopyridine molecules have been omitted. (b) The two-dimensional layer of the title compound, showing hydrogen-bond interactions along the a axis. Phenyl rings and 4-aminopyridine molecules have been omitted.
[Figure 3] Fig. 3. The chain of water molecules in the title structure.
catena-Poly[[[bis(4-aminopyridine-κN)aquacadmium(II)]-µ-1,4- phenylenediacetato-κ4O,O':O'',O'''] dihydrate] top
Crystal data top
[Cd(C10H8O4)(C5H6N2)2(H2O)]·2H2ODx = 1.624 Mg m3
Mr = 546.85Melting point: not measured K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.1668 (12) ÅCell parameters from 5000 reflections
b = 13.6273 (10) Åθ = 3.1–27.5°
c = 9.2692 (7) ŵ = 1.03 mm1
β = 102.998 (3)°T = 293 K
V = 2235.9 (3) Å3Prism, white
Z = 40.30 × 0.16 × 0.15 mm
F(000) = 1112
Data collection top
Mercury 70 (2x2 bin mode)
diffractometer
5117 independent reflections
Radiation source: fine-focus sealed tube4579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.1°
dtprofit.ref scansh = 2323
Absorption correction: multi-scan
[empirical (using intensity measurements) from equivalent reflections (XEMP in SHELXTL; Siemens, 1994)]
k = 817
Tmin = 0.757, Tmax = 0.857l = 1212
16963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5117 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.60 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(C10H8O4)(C5H6N2)2(H2O)]·2H2OV = 2235.9 (3) Å3
Mr = 546.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.1668 (12) ŵ = 1.03 mm1
b = 13.6273 (10) ÅT = 293 K
c = 9.2692 (7) Å0.30 × 0.16 × 0.15 mm
β = 102.998 (3)°
Data collection top
Mercury 70 (2x2 bin mode)
diffractometer
5117 independent reflections
Absorption correction: multi-scan
[empirical (using intensity measurements) from equivalent reflections (XEMP in SHELXTL; Siemens, 1994)]
4579 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.857Rint = 0.030
16963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.148All H-atom parameters refined
S = 1.07Δρmax = 0.60 e Å3
5117 reflectionsΔρmin = 0.51 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.246375 (13)0.88862 (2)0.22610 (3)0.03511 (14)
O10.28542 (18)1.0281 (2)0.1002 (4)0.0549 (8)
O20.27566 (18)0.8925 (2)0.0260 (4)0.0489 (7)
O30.22066 (18)0.8988 (2)0.4661 (3)0.0480 (7)
O40.19881 (18)1.0415 (2)0.3567 (3)0.0547 (8)
O50.2493 (3)0.7174 (3)0.2193 (4)0.0823 (15)
H210.257 (3)0.673 (5)0.293 (6)0.064 (16)*
H220.241 (3)0.684 (4)0.159 (6)0.059 (17)*
O60.3027 (2)1.2222 (3)0.1582 (4)0.0623 (8)
H250.281 (2)1.237 (4)0.223 (4)0.063 (15)*
H260.310 (4)1.1630 (13)0.156 (9)0.11 (3)*
O70.2138 (2)1.2438 (3)0.3700 (4)0.0614 (8)
H230.190 (4)1.182 (4)0.353 (7)0.081 (19)*
H240.238 (2)1.253 (4)0.455 (2)0.10 (3)*
N10.6044 (3)0.8491 (5)0.4997 (6)0.0743 (14)
H30.620 (4)0.865 (5)0.587 (8)0.09 (2)*
H40.628 (3)0.817 (4)0.457 (7)0.075 (19)*
N20.37255 (19)0.8706 (3)0.3327 (4)0.0426 (8)
N30.12142 (19)0.8709 (2)0.1194 (4)0.0407 (7)
N40.1115 (2)0.8605 (4)0.0467 (6)0.0650 (12)
H90.128 (3)0.888 (3)0.126 (7)0.054 (16)*
H100.137 (3)0.835 (4)0.025 (6)0.066 (15)*
C10.4039 (3)0.8931 (4)0.4729 (5)0.0541 (12)
H10.371 (3)0.919 (4)0.521 (6)0.069 (16)*
C20.4798 (3)0.8870 (4)0.5325 (6)0.0594 (13)
H20.496 (4)0.916 (5)0.629 (8)0.10 (2)*
C30.5285 (2)0.8540 (4)0.4464 (5)0.0498 (10)
C40.4954 (2)0.8293 (3)0.3006 (4)0.0444 (9)
H50.527 (2)0.811 (3)0.237 (5)0.053 (12)*
C50.4196 (2)0.8374 (3)0.2509 (5)0.0470 (9)
H60.395 (3)0.814 (4)0.158 (6)0.065 (14)*
C60.0899 (3)0.8946 (3)0.0212 (5)0.0455 (10)
H70.124 (3)0.916 (4)0.077 (7)0.080 (18)*
C70.0133 (3)0.8916 (3)0.0813 (5)0.0508 (11)
H80.004 (3)0.924 (4)0.179 (6)0.055 (13)*
C80.0360 (2)0.8630 (3)0.0060 (5)0.0426 (9)
C90.0034 (2)0.8360 (3)0.1506 (5)0.0445 (9)
H110.035 (2)0.816 (3)0.209 (5)0.041 (11)*
C100.0734 (2)0.8418 (3)0.2014 (4)0.0436 (9)
H120.096 (2)0.816 (3)0.290 (4)0.030 (9)*
C110.29581 (18)0.9796 (3)0.0079 (4)0.0368 (8)
C120.3380 (2)1.0270 (3)0.1144 (4)0.0411 (8)
H130.327 (3)1.104 (3)0.118 (6)0.062 (16)*
H140.321 (2)0.995 (3)0.221 (5)0.040 (10)*
C130.42261 (18)1.0132 (3)0.0560 (4)0.0347 (7)
C140.4643 (2)1.0835 (3)0.0360 (5)0.0409 (8)
H160.438 (2)1.145 (3)0.062 (4)0.038 (10)*
C150.4583 (2)0.9310 (3)0.0902 (4)0.0401 (8)
H150.431 (3)0.884 (3)0.138 (6)0.052 (15)*
C160.19790 (18)0.9855 (3)0.4623 (4)0.0373 (8)
C170.1642 (2)1.0220 (3)0.5897 (4)0.0406 (8)
H170.179 (3)1.095 (3)0.607 (6)0.053 (14)*
H180.184 (3)0.981 (4)0.684 (6)0.069 (15)*
C180.07845 (18)1.0109 (3)0.5448 (3)0.0345 (7)
C190.0331 (2)1.0905 (3)0.4921 (5)0.0429 (9)
H190.061 (3)1.149 (4)0.489 (5)0.052 (13)*
C200.0449 (2)0.9202 (3)0.5525 (4)0.0406 (8)
H200.083 (2)0.865 (3)0.590 (4)0.029 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03007 (19)0.0407 (2)0.0359 (2)0.00054 (9)0.01040 (12)0.00076 (10)
O10.0634 (19)0.0514 (17)0.0618 (18)0.0035 (15)0.0389 (15)0.0013 (15)
O20.0490 (17)0.0545 (18)0.0439 (16)0.0100 (13)0.0116 (14)0.0004 (12)
O30.0426 (16)0.0612 (18)0.0425 (16)0.0138 (13)0.0146 (13)0.0010 (12)
O40.0632 (19)0.0601 (19)0.0460 (15)0.0098 (15)0.0235 (13)0.0009 (14)
O50.150 (5)0.0380 (19)0.046 (2)0.0062 (19)0.006 (2)0.0016 (16)
O60.067 (2)0.063 (2)0.062 (2)0.0102 (18)0.0255 (17)0.0078 (18)
O70.062 (2)0.065 (2)0.058 (2)0.0025 (17)0.0158 (16)0.0074 (18)
N10.040 (2)0.106 (4)0.072 (3)0.018 (2)0.001 (2)0.011 (3)
N20.0312 (16)0.056 (2)0.0416 (18)0.0051 (14)0.0097 (13)0.0024 (15)
N30.0320 (16)0.0498 (18)0.0407 (18)0.0088 (14)0.0092 (13)0.0007 (14)
N40.038 (2)0.086 (3)0.065 (3)0.010 (2)0.0020 (19)0.009 (3)
C10.037 (2)0.085 (4)0.042 (2)0.009 (2)0.0123 (18)0.005 (2)
C20.044 (3)0.089 (4)0.044 (2)0.009 (2)0.009 (2)0.006 (2)
C30.038 (2)0.056 (2)0.054 (2)0.0126 (19)0.0070 (17)0.005 (2)
C40.0405 (19)0.053 (2)0.043 (2)0.0119 (18)0.0174 (16)0.0094 (19)
C50.040 (2)0.059 (3)0.043 (2)0.0092 (19)0.0109 (16)0.001 (2)
C60.044 (2)0.058 (3)0.037 (2)0.0078 (18)0.0122 (17)0.0002 (17)
C70.048 (2)0.062 (3)0.039 (2)0.0081 (19)0.0024 (18)0.0046 (18)
C80.0347 (19)0.045 (2)0.045 (2)0.0081 (16)0.0034 (16)0.0056 (17)
C90.0392 (19)0.049 (2)0.048 (2)0.0115 (18)0.0177 (16)0.0041 (19)
C100.043 (2)0.051 (2)0.0353 (19)0.0084 (18)0.0050 (15)0.0039 (17)
C110.0261 (15)0.047 (2)0.0382 (18)0.0026 (15)0.0089 (13)0.0067 (16)
C120.0285 (16)0.057 (2)0.0402 (19)0.0005 (16)0.0117 (14)0.0103 (17)
C130.0260 (15)0.0459 (19)0.0360 (17)0.0004 (14)0.0151 (13)0.0046 (15)
C140.0347 (19)0.044 (2)0.048 (2)0.0030 (16)0.0179 (16)0.0071 (17)
C150.0334 (18)0.044 (2)0.0439 (19)0.0041 (16)0.0101 (15)0.0121 (17)
C160.0222 (15)0.056 (2)0.0359 (17)0.0018 (15)0.0101 (12)0.0042 (16)
C170.0318 (17)0.053 (2)0.0384 (18)0.0005 (16)0.0116 (14)0.0029 (17)
C180.0310 (16)0.048 (2)0.0277 (15)0.0031 (15)0.0127 (12)0.0011 (14)
C190.0350 (19)0.042 (2)0.054 (2)0.0019 (16)0.0165 (17)0.0009 (18)
C200.0326 (18)0.043 (2)0.048 (2)0.0109 (16)0.0129 (15)0.0103 (17)
Geometric parameters (Å, º) top
Cd1—O12.418 (3)C4—C51.356 (6)
Cd1—O22.511 (3)C4—H50.95 (4)
Cd1—O32.378 (3)C5—H60.93 (5)
Cd1—O42.651 (3)C6—C71.378 (7)
Cd1—O52.334 (4)C6—H70.93 (6)
Cd1—N22.296 (3)C7—C81.391 (6)
Cd1—N32.276 (3)C7—H80.99 (5)
O1—C111.250 (5)C8—C91.388 (6)
O2—C111.243 (5)C9—C101.371 (5)
O3—C161.250 (5)C9—H110.92 (4)
O4—C161.244 (5)C10—H120.91 (4)
O5—H210.90 (6)C11—C121.523 (5)
O5—H220.71 (5)C12—C131.521 (5)
O6—H250.814 (10)C12—H131.07 (5)
O6—H260.819 (10)C12—H141.06 (4)
O7—H230.94 (6)C13—C141.388 (5)
O7—H240.819 (10)C13—C151.367 (5)
N1—C31.356 (6)C14—C15i1.395 (5)
N1—H30.82 (7)C14—H161.02 (4)
N1—H40.78 (6)C15—C14i1.395 (5)
N2—C11.332 (6)C15—H150.87 (5)
N2—C51.342 (5)C16—C171.529 (5)
N3—C61.340 (6)C17—C181.527 (5)
N3—C101.340 (5)C17—H171.04 (5)
N4—C81.348 (6)C17—H181.03 (5)
N4—H90.82 (6)C18—C191.383 (5)
N4—H100.96 (6)C18—C201.387 (5)
C1—C21.367 (7)C19—C20ii1.391 (5)
C1—H10.89 (5)C19—H190.95 (5)
C2—C31.394 (7)C20—C19ii1.391 (5)
C2—H20.96 (7)C20—H201.03 (4)
C3—C41.391 (6)
N3—Cd1—N2167.79 (14)N2—C5—C4124.3 (4)
N3—Cd1—O584.77 (14)N2—C5—H6114 (3)
N2—Cd1—O583.02 (14)C4—C5—H6121 (3)
N3—Cd1—O391.49 (12)N3—C6—C7123.9 (4)
N2—Cd1—O389.47 (12)N3—C6—H7115 (4)
O5—Cd1—O395.40 (12)C7—C6—H7121 (4)
N3—Cd1—O1104.22 (12)C6—C7—C8119.8 (4)
N2—Cd1—O185.35 (12)C6—C7—H8116 (3)
O5—Cd1—O1139.58 (13)C8—C7—H8123 (3)
O3—Cd1—O1123.10 (10)N4—C8—C9121.4 (4)
N3—Cd1—O289.84 (12)N4—C8—C7122.1 (4)
N2—Cd1—O290.16 (12)C9—C8—C7116.5 (4)
O5—Cd1—O289.13 (12)C10—C9—C8119.7 (4)
O3—Cd1—O2175.37 (10)C10—C9—H11123 (3)
O1—Cd1—O252.27 (9)C8—C9—H11118 (3)
N3—Cd1—O483.45 (11)N3—C10—C9124.4 (4)
N2—Cd1—O4106.49 (11)N3—C10—H12114 (2)
O5—Cd1—O4144.06 (13)C9—C10—H12121 (2)
O3—Cd1—O451.23 (9)O2—C11—O1121.3 (3)
O1—Cd1—O476.34 (11)O2—C11—C12119.6 (3)
O2—Cd1—O4124.60 (9)O1—C11—C12119.0 (4)
C11—O1—Cd194.9 (2)C13—C12—C11109.5 (3)
C11—O2—Cd190.7 (2)C13—C12—H13107 (3)
C16—O3—Cd199.3 (2)C11—C12—H13109 (3)
C16—O4—Cd186.6 (2)C13—C12—H14110 (2)
Cd1—O5—H21131 (4)C11—C12—H14110 (2)
Cd1—O5—H22132 (4)H13—C12—H14111 (4)
H21—O5—H2298 (6)C15—C13—C14119.0 (3)
H25—O6—H26112 (6)C15—C13—C12120.8 (3)
H23—O7—H24115 (6)C14—C13—C12120.2 (3)
C3—N1—H3116 (5)C13—C14—C15i119.4 (3)
C3—N1—H4118 (5)C13—C14—H16119 (2)
H3—N1—H4123 (7)C15i—C14—H16121 (2)
C1—N2—C5116.2 (4)C13—C15—C14i121.6 (4)
C1—N2—Cd1124.2 (3)C13—C15—H15118 (3)
C5—N2—Cd1119.6 (3)C14i—C15—H15120 (3)
C6—N3—C10115.6 (4)O4—C16—O3122.6 (3)
C6—N3—Cd1124.3 (3)O4—C16—C17119.1 (4)
C10—N3—Cd1119.9 (3)O3—C16—C17118.2 (3)
C8—N4—H9117 (4)C18—C17—C16108.6 (3)
C8—N4—H10111 (3)C18—C17—H17110 (3)
H9—N4—H10131 (5)C16—C17—H17108 (3)
N2—C1—C2123.5 (4)C18—C17—H18109 (3)
N2—C1—H1113 (4)C16—C17—H18111 (3)
C2—C1—H1123 (4)H17—C17—H18111 (4)
C1—C2—C3120.1 (5)C19—C18—C20118.9 (3)
C1—C2—H2115 (4)C19—C18—C17120.6 (4)
C3—C2—H2124 (4)C20—C18—C17120.5 (3)
N1—C3—C4121.6 (4)C18—C19—C20ii120.6 (4)
N1—C3—C2122.1 (5)C18—C19—H19113 (3)
C4—C3—C2116.3 (4)C20ii—C19—H19127 (3)
C5—C4—C3119.6 (4)C18—C20—C19ii120.5 (4)
C5—C4—H5122 (3)C18—C20—H20113 (2)
C3—C4—H5119 (3)C19ii—C20—H20126 (2)
N3—Cd1—O3—C1677.8 (2)Cd1—O4—C16—O34.4 (4)
N2—Cd1—O3—C16114.3 (2)Cd1—O4—C16—C17172.6 (3)
O5—Cd1—O3—C16162.7 (2)Cd1—O3—C16—O45.0 (4)
O1—Cd1—O3—C1630.2 (3)Cd1—O3—C16—C17172.0 (3)
O2—Cd1—O3—C1628.8 (11)C1—N2—C5—C42.6 (7)
O4—Cd1—O3—C162.5 (2)Cd1—N2—C5—C4176.1 (4)
N3—Cd1—O2—C11113.2 (2)O2—C11—O1—Cd19.4 (4)
N2—Cd1—O2—C1179.0 (2)C12—C11—O1—Cd1167.1 (3)
O5—Cd1—O2—C11162.0 (2)N3—Cd1—O1—C1183.5 (2)
O3—Cd1—O2—C116.5 (12)N2—Cd1—O1—C1188.8 (2)
O1—Cd1—O2—C115.0 (2)O5—Cd1—O1—C1115.3 (3)
O4—Cd1—O2—C1131.3 (3)O3—Cd1—O1—C11175.1 (2)
N2—Cd1—N3—C6110.2 (6)O2—Cd1—O1—C115.0 (2)
O5—Cd1—N3—C6109.3 (4)O4—Cd1—O1—C11163.0 (3)
O3—Cd1—N3—C6155.4 (3)C6—N3—C10—C90.5 (6)
O1—Cd1—N3—C630.6 (4)Cd1—N3—C10—C9174.9 (3)
O2—Cd1—N3—C620.2 (3)C5—N2—C1—C22.4 (7)
O4—Cd1—N3—C6104.7 (3)Cd1—N2—C1—C2176.3 (4)
N2—Cd1—N3—C1074.8 (6)N3—C10—C9—C81.2 (7)
O5—Cd1—N3—C1075.6 (3)N3—C6—C7—C80.2 (7)
O3—Cd1—N3—C1019.6 (3)O2—C11—C12—C1390.7 (4)
O1—Cd1—N3—C10144.4 (3)O1—C11—C12—C1385.9 (4)
O2—Cd1—N3—C10164.8 (3)C10—C9—C8—N4178.4 (5)
O4—Cd1—N3—C1070.3 (3)C10—C9—C8—C72.3 (6)
Cd1—O2—C11—O19.0 (4)C6—C7—C8—N4178.9 (5)
Cd1—O2—C11—C12167.4 (3)C6—C7—C8—C91.8 (6)
N3—Cd1—O4—C1694.7 (2)N2—C1—C2—C31.4 (8)
N2—Cd1—O4—C1678.0 (2)N1—C3—C2—C1178.4 (5)
O5—Cd1—O4—C1623.1 (3)C4—C3—C2—C10.4 (8)
O3—Cd1—O4—C162.5 (2)N2—C5—C4—C31.7 (7)
O1—Cd1—O4—C16158.9 (3)N1—C3—C4—C5178.6 (5)
O2—Cd1—O4—C16180.0 (2)C2—C3—C4—C50.5 (7)
C10—N3—C6—C71.1 (6)C19ii—C20—C18—C190.0 (6)
Cd1—N3—C6—C7174.1 (3)C19ii—C20—C18—C17178.3 (3)
N3—Cd1—N2—C1111.8 (6)C11—C12—C13—C1587.7 (4)
O5—Cd1—N2—C1112.7 (4)C11—C12—C13—C1490.8 (4)
O3—Cd1—N2—C117.2 (4)C20—C18—C19—C20ii0.0 (6)
O1—Cd1—N2—C1106.1 (4)C17—C18—C19—C20ii178.3 (3)
O2—Cd1—N2—C1158.2 (4)C14—C13—C15—C14i0.6 (6)
O4—Cd1—N2—C131.8 (4)C12—C13—C15—C14i179.1 (3)
N3—Cd1—N2—C569.6 (6)C15—C13—C14—C15i0.5 (6)
O5—Cd1—N2—C568.7 (3)C12—C13—C14—C15i179.1 (3)
O3—Cd1—N2—C5164.2 (3)C19—C18—C17—C1699.2 (4)
O1—Cd1—N2—C572.5 (3)C20—C18—C17—C1679.1 (4)
O2—Cd1—N2—C520.4 (3)O4—C16—C17—C1882.0 (4)
O4—Cd1—N2—C5146.8 (3)O3—C16—C17—C1895.1 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O4iii0.82 (6)2.44 (6)3.241 (6)170 (5)
O5—H21···O2iv0.90 (6)1.86 (5)2.745 (5)166 (5)
O5—H22···O3v0.71 (5)2.07 (5)2.782 (5)172 (6)
N4—H10···O7vi0.96 (6)2.25 (6)3.168 (6)161 (5)
N1—H4···O6vii0.78 (6)2.23 (6)3.015 (7)178 (6)
O6—H26···O10.82 (1)1.94 (3)2.703 (5)156 (8)
O6—H25···O70.81 (1)2.03 (2)2.825 (6)166 (5)
O7—H23···O40.94 (6)1.92 (6)2.770 (5)149 (6)
O7—H24···O6viii0.82 (1)2.01 (1)2.832 (6)177 (5)
Symmetry codes: (iii) x, y+2, z; (iv) x, y+3/2, z+1/2; (v) x, y+3/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C10H8O4)(C5H6N2)2(H2O)]·2H2O
Mr546.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.1668 (12), 13.6273 (10), 9.2692 (7)
β (°) 102.998 (3)
V3)2235.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.30 × 0.16 × 0.15
Data collection
DiffractometerMercury 70 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
[empirical (using intensity measurements) from equivalent reflections (XEMP in SHELXTL; Siemens, 1994)]
Tmin, Tmax0.757, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
16963, 5117, 4579
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.148, 1.07
No. of reflections5117
No. of parameters393
No. of restraints3
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.60, 0.51

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994)?, SHELXTL?.

Selected geometric parameters (Å, º) top
Cd1—O12.418 (3)Cd1—N32.276 (3)
Cd1—O22.511 (3)O1—C111.250 (5)
Cd1—O32.378 (3)O2—C111.243 (5)
Cd1—O42.651 (3)O3—C161.250 (5)
Cd1—O52.334 (4)O4—C161.244 (5)
Cd1—N22.296 (3)
N3—Cd1—O391.49 (12)O5—Cd1—O289.13 (12)
N2—Cd1—O389.47 (12)O1—Cd1—O252.27 (9)
O5—Cd1—O395.40 (12)O3—Cd1—O451.23 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O4i0.82 (6)2.44 (6)3.241 (6)170 (5)
O5—H21···O2ii0.90 (6)1.86 (5)2.745 (5)166 (5)
O5—H22···O3iii0.71 (5)2.07 (5)2.782 (5)172 (6)
N4—H10···O7iv0.96 (6)2.25 (6)3.168 (6)161 (5)
N1—H4···O6v0.78 (6)2.23 (6)3.015 (7)178 (6)
O6—H26···O10.819 (10)1.94 (3)2.703 (5)156 (8)
O6—H25···O70.814 (10)2.028 (17)2.825 (6)166 (5)
O7—H23···O40.94 (6)1.92 (6)2.770 (5)149 (6)
O7—H24···O6vi0.819 (10)2.014 (12)2.832 (6)177 (5)
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y+5/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds