Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The cyano-bridged heteronuclear coordination polymer poly[tris[(5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclo­tetra­deca-4,11-diene)copper(II)]-hexa-μ-cyano-bis[tricyano­cobalt(III)] di­methyl­formamide solvate trihydrate], {[Cu3Co2(CN)12(C24H32N4)3]·C3H7NO·3H2O}n, was synthesized by the assembly reaction of [CuL]2+ (L is 5,12-dimethyl-7,14-di­phenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) and [Co(CN)6]3− in a dimethyl­formamide–water solution. The structure consists of neutral cyano-bridged Cu3Co2 units with the unique Co atom in a general position and all three Cu atoms on independent inversion centres. Each [Co(CN)6]3− ion connects three CuII ions via three cyano groups to form a novel cyano-bridged two-dimensional stair-shaped-layer structure. The water and dimethyl­formamide molecules are situated in the inter-fragment spaces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104033943/hj1035sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104033943/hj1035Isup2.hkl
Contains datablock I

CCDC reference: 268078

Comment top

For many years, chemists have devoted their efforts to assembling compounds by connecting building units to give supramolecular structures. Successful recent examples of this process are the cyano-bridged complexes (Misayaka et al., 1998, Re et al., 1998, Fujita et al., 1998, Ohba et al., 1999, Ohba et al., 1997) in which a cyanometallate anion serves as the bridging moiety to build a multidimensional structure with a second coordination center. When the cyanometallate building block is paramagnetic, molecular-based magnetic materials can be formed, and these have attracted considerable interest. A few high-temperature molecular magnets based on cyanide building blocks have been reported (Gadet et al., 1992, Entley et al., 1995, Mallah et al., 1993). The work of these authors shows that transition metal cyanides are good candidates for a system of molecule-based magnetic materials. However, the use of [Co(CN)6]3− as the bridging moiety in a multidimensional structure has never been reported. We have designed and synthesized a novel coordination polymer, {(CuL)3[Co(CN)6]2·DMF·3H2O}n, (I), and its structure is reported here.

Details of the molecular geometry are given in Table 1 and the asymmetric unit is shown in Fig.1. The title crystal structure consists of a neutral stair-shaped-layer network with the stoichiometry [CuL]3[Co(CN)6]2, together with water and DMF molecules. Unlike some complexes (Ferlay et al., 1996, Colacio et al., 1999, Kou et al., 1999), in which three [Ni(cyclam)] (cyclam is 1,4,8,11-tetraazacyclotetradecane) or [NiL] (L is 3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane) groups connect three cyanide groups in a fac arrangement at an iron(III) or chromium(III) cation, in the title complex, each [Co(CN)6]3− unit uses three cyanide groups in a meridional arrangement to connect three [CuL]2+ units at the trans positions, and this particular local molecular disposition leads to a two-dimensional honeycomb network structure (Fig. 2a and Fig. 2b). This disposition is similar to that of {(NiL)3[Fe(CN)6]2.12H2O}n (L is 3,10-diethyl-1,3,5,8,10,12-hexaazacyclotetradecane; Kou, et al., 2000), but this compound has a brick-wall-like structure. The existance of a different structure with the same molecular disposition may be the result of the steric hindrance of the macrocycle ligands with the benzene groups in the title complex. The distances between adjacent Co and Cu atoms are 5.141 (2) Å for Co···Cu1, 5.179 (2) Å for Co···Cu2 and 5.150 (2) Å for Co···Cu3. Each CuL unit is linked to two hexacyanocobalt(III) ions. The coordination environment around the CuII ion in (CuL)2+ is an elongated octahedron, with short bonds formed by four N atoms from the ligand L [Cu—N = 1.982 (4)–2.037 (4) Å], The axial coordination sites are occupied by two N atoms from the cyanide group [Cu—N = 2.511 (5) and 2.553 (5) Å]. The CuII ion lies at the center of the elongated octahedron. The Cu—N distances are similar to those found in {[Cu(cyclam)]3[Cr(CN)6]2·4H2O}n [Cu—Ncyclam = 1.981 (8)–2.012 (8) Å and Cu—NCN = 2.474 (9)–2.638 (8) Å; cyclam is 1,4,8,11-tetraazacyclotetradecane; Salah El Fallah et al., 2003). The Co—C distances in (I) range from 1.893 (6) to 1.907 (6) Å. As expected, the Co—C—N bond angles vary only over a small range, 172.9 (6)–179.8 (7)°, whereas the corresponding Cu—N—C bond angles deviate significantly from linearity [Cu1—N41—C41 = 135.2 (5)°, Cu2—N42—C42 = 139.3 (5)° and Cu3—N43—C43 = 138.8 (5)°, respectively.

The structure is further stabilized by several hydrogen-bonding interactions (Table.2).

Experimental top

All chemicals were of reagent grade, commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. The ligand L (5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetracyclotetradiene) was synthesized according to the method of Li (1987). To a mixed solution of cyclohexane (150 ml) and ether (300 ml) containing benzoyl acetone (32.4 g, 0.2 mol) and ethylenediamine (12 g, 0.2 mol) was added anhydrous K2CO3 (41.4 g, 0.3 mol). The solution was stirred and refluxed for 5 h, and then filtered. The filtrate was evaporated, and the remains obtained were diffused with ether and refrigerated over night. The resulting light-yellow solid was filtered and washed with ether. Recrystallization of the solid from petroleum ether yielded white flaky crystals (yield 55%). L (1.9 g, 5 mmol) and Cu(ClO4)2·6H2O (1.9 g, 5 mmol) were dissolved in methanol (75 ml), and the solution was stirred and refluxed for 2 h. The red solid that precipitated was filtered and recrystallized from methanol. Red crystals of CuL(ClO4)2 were obtained. To a solution of CuL(ClO4)2 (0.6 mmol) in DMF/water (30 ml) was added K3[Co(CN)6] (0.4 mmol) in DMF/water (10 ml). Purple microcrystals precipitated from the resulting purple solution after 10 min, and these were collected by suction filtration, thoroughly washed with water and dried in air. Well shaped purple–brown crystals suitable for X-ray structure analysis were grown at room temperture by the slow diffusion of solutions of CuL(ClO4)2 and K3[Co(CN)6] in DMF/water in an H-tube. Analysis calculated for C87H109Co2Cu3N25O4: C 54.42, H 6.05, N 18.34%; found (%): C 54.58, H 6.34, N 18.43%.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms [Csp3—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C); for H atoms in phenyl, methene (–CH2–) and methine groups C—H = 0.93, 0.97 or 0.98 Å, with Uiso(H) = 1.2Ueq(C); N—H = 0.91 Å, with Uiso(H) = 1.2Ueq(N). H atoms attached to water O atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(O). The O—H distances are in the range 0.7704–0.9705 Å. The DMF molecule was included with an occupancy of 0.5.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with 30% probability displacement ellipsoids. H atoms have been omitted and atoms labeled with the suffx `A' are related by the symmetry code (1 − x, −y, 1 − z). The water molecules and DMF molecules have been omitted for clarity.
[Figure 2] Fig. 2. (a) Projection along the c axis, showing the polymeric layer containing Co6Cu6 hexagons. (b). The bimetallic hexagon rings derived from the linkage of six CoIII centers and six CuII centers via 12 cyanide groups.
poly[[tris[(5,12-dimethyl-7,14-diphenyl-1,4,8,11- tetracyclotetradiene)copper(II)]-tri-µ-cyamo-bis[tricyanocobalt(III)]] dimethylformamide solvate trihydrate] top
Crystal data top
[Cu3Co2(CN)6(C26H32N6)3]·C3H7NO·3H2OZ = 1
Mr = 1877.47F(000) = 979
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2510 (3) ÅCell parameters from 5807 reflections
b = 16.4054 (5) Åθ = 2.3–25.1°
c = 17.8005 (5) ŵ = 1.05 mm1
α = 113.016 (1)°T = 293 K
β = 93.684 (1)°Block, purple
γ = 101.966 (1)°0.56 × 0.42 × 0.26 mm
V = 2400.55 (13) Å3
Data collection top
Siemens SMART CCD
diffractometer
8189 independent reflections
Radiation source: fine-focus sealed tube6842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
h = 1110
Tmin = 0.590, Tmax = 0.772k = 1917
12146 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0864P)2 + 7.5968P]
where P = (Fo2 + 2Fc2)/3
8189 reflections(Δ/σ)max < 0.001
557 parametersΔρmax = 1.10 e Å3
2 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu3Co2(CN)6(C26H32N6)3]·C3H7NO·3H2Oγ = 101.966 (1)°
Mr = 1877.47V = 2400.55 (13) Å3
Triclinic, P1Z = 1
a = 9.2510 (3) ÅMo Kα radiation
b = 16.4054 (5) ŵ = 1.05 mm1
c = 17.8005 (5) ÅT = 293 K
α = 113.016 (1)°0.56 × 0.42 × 0.26 mm
β = 93.684 (1)°
Data collection top
Siemens SMART CCD
diffractometer
8189 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
6842 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.772Rint = 0.030
12146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0762 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.09Δρmax = 1.10 e Å3
8189 reflectionsΔρmin = 0.76 e Å3
557 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.55270 (8)0.17831 (5)0.31724 (4)0.0357 (2)
Cu10.50000.00000.50000.0449 (3)
Cu20.50000.00000.00000.0447 (3)
Cu30.50000.50000.50000.0409 (3)
N10.3508 (5)0.0635 (3)0.5583 (3)0.0433 (10)
N20.6667 (5)0.1146 (3)0.5373 (3)0.0435 (10)
H2C0.66140.13780.49870.052*
N30.3584 (5)0.0793 (3)0.0303 (3)0.0420 (10)
N40.6787 (5)0.1021 (3)0.0155 (3)0.0458 (11)
H4D0.72330.12440.06910.055*
N50.2875 (5)0.4346 (3)0.4527 (3)0.0426 (10)
N60.5587 (5)0.4978 (3)0.3910 (3)0.0447 (10)
H6B0.58830.44540.36570.054*
N410.4186 (7)0.0344 (4)0.3781 (4)0.0631 (14)
N420.5705 (7)0.0346 (4)0.1499 (3)0.0620 (14)
N430.5426 (7)0.3435 (4)0.4715 (3)0.0674 (16)
N440.8571 (6)0.1742 (4)0.3889 (4)0.0624 (14)
N450.7111 (7)0.3306 (5)0.2726 (4)0.0719 (17)
N460.2397 (7)0.1708 (5)0.2461 (4)0.0705 (16)
C10.1936 (6)0.0843 (4)0.4645 (4)0.0526 (14)
H1A0.10970.13330.46010.063*
H1B0.17610.06860.41810.063*
C20.2070 (7)0.0024 (4)0.5440 (4)0.0560 (15)
H2A0.12560.02580.54120.067*
H2B0.20090.02100.58940.067*
C30.3665 (6)0.1481 (4)0.5995 (3)0.0462 (13)
C40.2457 (8)0.1917 (5)0.6368 (5)0.0693 (19)
H4A0.16720.14640.64170.104*
H4B0.20580.21670.60190.104*
H4C0.28680.23980.69060.104*
C50.5127 (7)0.2159 (4)0.6132 (5)0.0593 (16)
H5A0.51870.26850.66460.071*
H5B0.51020.23660.56920.071*
C60.6565 (6)0.1855 (4)0.6172 (4)0.0507 (14)
H6A0.65460.15900.65790.061*
C70.7881 (7)0.2700 (4)0.6487 (4)0.0520 (14)
C80.8736 (8)0.2989 (5)0.7255 (4)0.0664 (18)
H8A0.85660.26400.75600.080*
C90.9853 (9)0.3808 (6)0.7568 (5)0.077 (2)
H9A1.04480.39910.80760.092*
C101.0084 (8)0.4338 (5)0.7146 (5)0.071 (2)
H10A1.08070.48930.73730.085*
C110.9260 (8)0.4060 (5)0.6387 (5)0.0645 (18)
H11A0.94250.44260.60970.077*
C120.8177 (7)0.3235 (4)0.6044 (4)0.0553 (15)
H12A0.76470.30390.55160.066*
C130.2161 (7)0.0584 (4)0.0355 (5)0.0587 (16)
H13A0.24980.04330.09320.070*
H13B0.11760.10060.01900.070*
C140.2079 (7)0.0257 (4)0.0252 (5)0.0600 (17)
H14A0.14920.00950.02810.072*
H14B0.15890.06180.06800.072*
C150.3835 (7)0.1657 (4)0.0511 (3)0.0453 (13)
C160.2664 (9)0.2187 (5)0.0728 (5)0.0686 (19)
H16A0.22650.21280.11940.103*
H16B0.18720.19500.02640.103*
H16C0.31060.28210.08640.103*
C170.5368 (7)0.2210 (4)0.0568 (4)0.0565 (15)
H17A0.58500.24510.11390.068*
H17B0.52500.27320.04620.068*
C180.6456 (7)0.1797 (4)0.0032 (4)0.0540 (14)
H18A0.59590.15550.05420.065*
C190.7822 (7)0.2551 (4)0.0132 (4)0.0528 (14)
C200.7900 (11)0.2912 (5)0.0434 (5)0.081 (2)
H20A0.71510.26740.08930.097*
C210.9080 (14)0.3630 (7)0.0335 (7)0.102 (3)
H21A0.91070.38840.07190.122*
C221.0206 (11)0.3972 (6)0.0317 (6)0.086 (3)
H22A1.10310.44310.03600.104*
C231.0125 (9)0.3643 (5)0.0903 (5)0.073 (2)
H23A1.08750.38930.13630.088*
C240.8926 (8)0.2934 (5)0.0821 (5)0.0693 (19)
H24A0.88620.27150.12300.083*
C250.3083 (7)0.4261 (5)0.5847 (4)0.0568 (16)
H25A0.25820.43190.63210.068*
H25B0.33770.36880.56620.068*
C260.2042 (7)0.4252 (5)0.5176 (4)0.0596 (17)
H26A0.12670.36820.49460.071*
H26B0.15670.47520.53940.071*
C270.2233 (6)0.4017 (4)0.3777 (3)0.0428 (12)
C280.0632 (8)0.3493 (5)0.3481 (4)0.0654 (18)
H28A0.03850.30850.37470.098*
H28B0.04780.31450.28930.098*
H28C0.00030.39110.36130.098*
C290.3072 (7)0.4115 (4)0.3108 (3)0.0516 (14)
H29A0.23540.40940.26750.062*
H29B0.34700.35830.28720.062*
C300.4348 (6)0.4958 (4)0.3337 (3)0.0461 (13)
H30A0.39540.54830.36440.055*
C310.4755 (6)0.5065 (4)0.2564 (3)0.0433 (12)
C320.4028 (8)0.5564 (4)0.2273 (4)0.0603 (16)
H32A0.33020.58160.25500.072*
C330.4359 (11)0.5694 (5)0.1576 (5)0.077 (2)
H33A0.38480.60200.13790.093*
C340.5455 (10)0.5335 (6)0.1178 (4)0.072 (2)
H34A0.57230.54490.07270.087*
C350.6156 (8)0.4812 (5)0.1437 (4)0.0596 (16)
H35A0.68550.45430.11450.072*
C360.5819 (7)0.4687 (4)0.2133 (4)0.0514 (14)
H36A0.63130.43430.23160.062*
C410.4651 (6)0.0886 (4)0.3541 (3)0.0447 (12)
C420.5648 (6)0.0876 (4)0.2133 (3)0.0424 (12)
C430.5432 (7)0.2778 (4)0.4160 (4)0.0505 (14)
C440.7422 (6)0.1759 (3)0.3620 (3)0.0400 (12)
C450.6489 (7)0.2708 (4)0.2851 (3)0.0455 (13)
C460.3574 (7)0.1750 (4)0.2729 (3)0.0456 (13)
C510.337 (2)0.137 (2)0.8019 (18)0.136 (9)*0.50
H51A0.35150.08150.79830.163*0.50
C520.082 (4)0.067 (3)0.785 (2)0.171 (12)*0.50
H52A0.10800.01020.77570.257*0.50
H52B0.03380.06330.73430.257*0.50
H52C0.01410.07680.82490.257*0.50
C530.156 (4)0.216 (2)0.853 (2)0.153 (10)*0.50
H53A0.09250.21270.89300.230*0.50
H53B0.10560.23090.81320.230*0.50
H53C0.24740.26190.88050.230*0.50
N0.189 (2)0.1269 (15)0.8107 (13)0.119 (6)*0.50
O0.470 (3)0.1768 (16)0.7955 (15)0.172 (8)*0.50
O10.1361 (11)0.1425 (12)0.4438 (7)0.110 (5)0.50
H10.10450.10080.42260.132*0.50
H20.15470.18460.45150.132*0.50
O20.9342 (6)0.1380 (5)0.1697 (3)0.0900 (17)
H40.96000.12560.11620.108*
H30.99340.11430.19850.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0439 (4)0.0334 (4)0.0288 (3)0.0139 (3)0.0061 (3)0.0097 (3)
Cu10.0349 (5)0.0379 (5)0.0517 (6)0.0048 (4)0.0045 (4)0.0104 (4)
Cu20.0453 (5)0.0307 (5)0.0519 (6)0.0129 (4)0.0127 (4)0.0083 (4)
Cu30.0362 (5)0.0497 (5)0.0269 (4)0.0045 (4)0.0022 (3)0.0091 (4)
N10.041 (2)0.041 (3)0.047 (2)0.0054 (19)0.0039 (19)0.021 (2)
N20.042 (2)0.039 (2)0.045 (2)0.0076 (19)0.0020 (19)0.015 (2)
N30.046 (2)0.036 (2)0.039 (2)0.0140 (19)0.0096 (19)0.0077 (19)
N40.051 (3)0.035 (2)0.045 (2)0.013 (2)0.008 (2)0.0086 (19)
N50.038 (2)0.042 (2)0.040 (2)0.0051 (19)0.0024 (19)0.014 (2)
N60.045 (2)0.045 (3)0.040 (2)0.004 (2)0.0037 (19)0.017 (2)
N410.065 (3)0.068 (4)0.061 (3)0.003 (3)0.006 (3)0.039 (3)
N420.093 (4)0.054 (3)0.033 (3)0.030 (3)0.010 (3)0.007 (2)
N430.071 (4)0.061 (3)0.046 (3)0.020 (3)0.000 (3)0.003 (3)
N440.051 (3)0.061 (3)0.085 (4)0.016 (2)0.004 (3)0.042 (3)
N450.070 (4)0.072 (4)0.088 (4)0.011 (3)0.002 (3)0.054 (4)
N460.054 (3)0.080 (4)0.071 (4)0.023 (3)0.006 (3)0.025 (3)
C10.038 (3)0.046 (3)0.067 (4)0.002 (2)0.002 (3)0.022 (3)
C20.041 (3)0.051 (3)0.071 (4)0.012 (3)0.016 (3)0.019 (3)
C30.042 (3)0.050 (3)0.042 (3)0.010 (2)0.007 (2)0.016 (3)
C40.057 (4)0.063 (4)0.081 (5)0.022 (3)0.021 (3)0.018 (4)
C50.053 (4)0.041 (3)0.068 (4)0.011 (3)0.010 (3)0.007 (3)
C60.046 (3)0.049 (3)0.044 (3)0.000 (2)0.003 (2)0.013 (3)
C70.047 (3)0.045 (3)0.046 (3)0.001 (2)0.004 (2)0.006 (3)
C80.062 (4)0.070 (4)0.052 (4)0.004 (3)0.008 (3)0.019 (3)
C90.062 (4)0.079 (5)0.056 (4)0.008 (4)0.011 (3)0.011 (4)
C100.052 (4)0.057 (4)0.065 (4)0.009 (3)0.010 (3)0.003 (3)
C110.062 (4)0.052 (4)0.074 (5)0.006 (3)0.026 (3)0.022 (3)
C120.052 (3)0.054 (3)0.047 (3)0.004 (3)0.010 (3)0.012 (3)
C130.045 (3)0.054 (4)0.074 (4)0.011 (3)0.015 (3)0.024 (3)
C140.042 (3)0.048 (3)0.075 (4)0.015 (3)0.006 (3)0.009 (3)
C150.056 (3)0.045 (3)0.038 (3)0.024 (3)0.009 (2)0.015 (2)
C160.078 (5)0.055 (4)0.082 (5)0.037 (3)0.023 (4)0.026 (4)
C170.062 (4)0.037 (3)0.063 (4)0.015 (3)0.016 (3)0.010 (3)
C180.056 (3)0.047 (3)0.061 (4)0.017 (3)0.009 (3)0.022 (3)
C190.054 (3)0.036 (3)0.068 (4)0.013 (2)0.012 (3)0.020 (3)
C200.101 (6)0.063 (4)0.070 (5)0.002 (4)0.003 (4)0.030 (4)
C210.141 (9)0.074 (6)0.089 (6)0.001 (6)0.028 (6)0.044 (5)
C220.091 (6)0.054 (4)0.096 (6)0.009 (4)0.018 (5)0.024 (4)
C230.067 (4)0.048 (4)0.089 (5)0.004 (3)0.007 (4)0.019 (4)
C240.070 (4)0.059 (4)0.081 (5)0.006 (3)0.002 (4)0.038 (4)
C250.043 (3)0.072 (4)0.039 (3)0.001 (3)0.007 (2)0.014 (3)
C260.038 (3)0.086 (5)0.043 (3)0.001 (3)0.005 (2)0.023 (3)
C270.048 (3)0.035 (3)0.039 (3)0.003 (2)0.002 (2)0.013 (2)
C280.056 (4)0.069 (4)0.056 (4)0.014 (3)0.012 (3)0.029 (3)
C290.059 (4)0.048 (3)0.037 (3)0.003 (3)0.006 (3)0.017 (2)
C300.046 (3)0.052 (3)0.036 (3)0.011 (2)0.005 (2)0.015 (2)
C310.050 (3)0.042 (3)0.030 (3)0.007 (2)0.004 (2)0.009 (2)
C320.070 (4)0.050 (3)0.057 (4)0.019 (3)0.005 (3)0.018 (3)
C330.104 (6)0.065 (4)0.077 (5)0.018 (4)0.005 (4)0.048 (4)
C340.093 (5)0.080 (5)0.043 (3)0.007 (4)0.010 (3)0.033 (3)
C350.074 (4)0.062 (4)0.037 (3)0.012 (3)0.013 (3)0.016 (3)
C360.060 (4)0.056 (3)0.044 (3)0.021 (3)0.011 (3)0.022 (3)
C410.049 (3)0.047 (3)0.035 (3)0.011 (2)0.004 (2)0.016 (2)
C420.055 (3)0.044 (3)0.033 (3)0.023 (2)0.009 (2)0.016 (2)
C430.054 (3)0.050 (3)0.038 (3)0.020 (3)0.005 (2)0.006 (3)
C440.051 (3)0.035 (3)0.040 (3)0.013 (2)0.008 (2)0.020 (2)
C450.056 (3)0.044 (3)0.044 (3)0.021 (3)0.006 (2)0.022 (3)
C460.055 (4)0.037 (3)0.042 (3)0.019 (2)0.006 (3)0.010 (2)
O10.048 (5)0.207 (15)0.076 (7)0.061 (7)0.013 (5)0.066 (8)
O20.075 (3)0.116 (5)0.070 (3)0.019 (3)0.003 (3)0.034 (3)
Geometric parameters (Å, º) top
Co—C411.893 (6)C13—N4ii1.476 (8)
Co—C441.893 (6)C13—C141.478 (10)
Co—C431.896 (6)C13—H13A0.9700
Co—C421.896 (5)C13—H13B0.9700
Co—C451.898 (6)C14—H14A0.9700
Co—C461.907 (6)C14—H14B0.9700
Cu1—N1i2.000 (5)C15—C171.491 (9)
Cu1—N12.000 (5)C15—C161.504 (8)
Cu1—N2i2.011 (4)C16—H16A0.9600
Cu1—N22.011 (4)C16—H16B0.9600
Cu1—N412.553 (5)C16—H16C0.9600
Cu2—N3ii1.987 (4)C17—C181.512 (9)
Cu2—N31.987 (4)C17—H17A0.9700
Cu2—N4ii2.012 (5)C17—H17B0.9700
Cu2—N42.012 (5)C18—C191.520 (9)
Cu2—N422.511 (5)C18—H18A0.9800
Cu3—N5iii1.982 (4)C19—C201.352 (10)
Cu3—N51.982 (4)C19—C241.383 (10)
Cu3—N6iii2.037 (4)C20—C211.374 (12)
Cu3—N62.037 (4)C20—H20A0.9300
Cu3—N432.537 (6)C21—C221.357 (14)
N1—C31.263 (7)C21—H21A0.9300
N1—C21.466 (7)C22—C231.348 (12)
N2—C61.468 (7)C22—H22A0.9300
N2—C1i1.476 (8)C23—C241.385 (10)
N2—H2C0.9100C23—H23A0.9300
N3—C151.281 (7)C24—H24A0.9300
N3—C141.461 (8)C25—N6iii1.459 (7)
N4—C181.460 (8)C25—C261.479 (9)
N4—C13ii1.476 (8)C25—H25A0.9700
N4—H4D0.9100C25—H25B0.9700
N5—C271.277 (7)C26—H26A0.9700
N5—C261.468 (7)C26—H26B0.9700
N6—C25iii1.459 (7)C27—C281.493 (8)
N6—C301.472 (7)C27—C291.504 (8)
N6—H6B0.9100C28—H28A0.9600
N41—C411.149 (8)C28—H28B0.9600
N42—C421.135 (7)C28—H28C0.9600
N43—C431.144 (8)C29—C301.514 (8)
N44—C441.148 (7)C29—H29A0.9700
N45—C451.139 (8)C29—H29B0.9700
N46—C461.137 (8)C30—C311.513 (8)
C1—N2i1.476 (8)C30—H30A0.9800
C1—C21.499 (9)C31—C321.381 (9)
C1—H1A0.9700C31—C361.386 (8)
C1—H1B0.9700C32—C331.381 (10)
C2—H2A0.9700C32—H32A0.9300
C2—H2B0.9700C33—C341.376 (12)
C3—C51.498 (8)C33—H33A0.9300
C3—C41.503 (9)C34—C351.366 (11)
C4—H4A0.9600C34—H34A0.9300
C4—H4B0.9600C35—C361.377 (9)
C4—H4C0.9600C35—H35A0.9300
C5—C61.520 (9)C36—H36A0.9300
C5—H5A0.9700C51—O1.298 (17)
C5—H5B0.9700C51—N1.373 (17)
C6—C71.524 (8)C51—H51A0.9300
C6—H6A0.9800C52—N1.17 (4)
C7—C81.384 (9)C52—H52A0.9600
C7—C121.393 (9)C52—H52B0.9600
C8—C91.395 (10)C52—H52C0.9600
C8—H8A0.9300C53—N1.47 (3)
C9—C101.349 (12)C53—H53A0.9600
C9—H9A0.9300C53—H53B0.9600
C10—C111.362 (11)C53—H53C0.9600
C10—H10A0.9300O1—H10.7704
C11—C121.386 (9)O2—H22C0.9611
C11—H11A0.9300O2—H22D0.9705
C12—H12A0.9300
C41—Co—C4488.0 (2)N4ii—C13—H13A109.7
C41—Co—C4393.8 (3)C14—C13—H13A109.7
C44—Co—C4391.4 (2)N4ii—C13—H13B109.7
C41—Co—C4291.8 (2)C14—C13—H13B109.7
C44—Co—C4290.6 (2)H13A—C13—H13B108.2
C43—Co—C42174.0 (3)N3—C14—C13110.0 (5)
C41—Co—C45177.0 (2)N3—C14—H14A109.7
C44—Co—C4589.4 (2)C13—C14—H14A109.7
C43—Co—C4584.6 (3)N3—C14—H14B109.7
C42—Co—C4589.8 (2)C13—C14—H14B109.7
C41—Co—C4689.0 (2)H14A—C14—H14B108.2
C44—Co—C46177.0 (2)N3—C15—C17120.5 (5)
C43—Co—C4689.5 (2)N3—C15—C16124.2 (6)
C42—Co—C4688.8 (2)C17—C15—C16115.3 (5)
C45—Co—C4693.6 (2)C15—C16—H16A109.5
N1i—Cu1—N1180.0 (3)C15—C16—H16B109.5
N1i—Cu1—N2i95.05 (18)H16A—C16—H16B109.5
N1—Cu1—N2i84.95 (18)C15—C16—H16C109.5
N1i—Cu1—N284.95 (18)H16A—C16—H16C109.5
N1—Cu1—N295.05 (18)H16B—C16—H16C109.5
N2i—Cu1—N2180.0 (3)C15—C17—C18121.3 (5)
N1i—Cu1—N4192.38 (19)C15—C17—H17A107.0
N1—Cu1—N4187.62 (19)C18—C17—H17A107.0
N2i—Cu1—N4192.98 (18)C15—C17—H17B107.0
N2—Cu1—N4187.02 (18)C18—C17—H17B107.0
N3ii—Cu2—N3180.0 (2)H17A—C17—H17B106.7
N3ii—Cu2—N4ii95.11 (18)N4—C18—C17112.9 (5)
N3—Cu2—N4ii84.89 (18)N4—C18—C19114.9 (5)
N3ii—Cu2—N484.89 (18)C17—C18—C19109.2 (5)
N3—Cu2—N495.11 (18)N4—C18—H18A106.4
N4ii—Cu2—N4180.0 (3)C17—C18—H18A106.4
N3ii—Cu2—N4290.30 (18)C19—C18—H18A106.4
N3—Cu2—N4289.70 (18)C20—C19—C24118.8 (6)
N4ii—Cu2—N4292.7 (2)C20—C19—C18119.1 (6)
N4—Cu2—N4287.3 (2)C24—C19—C18121.8 (6)
N5iii—Cu3—N5180.000 (1)C19—C20—C21120.4 (8)
N5iii—Cu3—N6iii94.72 (18)C19—C20—H20A119.8
N5—Cu3—N6iii85.28 (18)C21—C20—H20A119.8
N5iii—Cu3—N685.28 (18)C22—C21—C20120.8 (9)
N5—Cu3—N694.72 (18)C22—C21—H21A119.6
N6iii—Cu3—N6180.000 (1)C20—C21—H21A119.6
N5iii—Cu3—N4394.00 (19)C23—C22—C21119.7 (8)
N5—Cu3—N4386.00 (19)C23—C22—H22A120.1
N6iii—Cu3—N4386.6 (2)C21—C22—H22A120.1
N6—Cu3—N4393.4 (2)C22—C23—C24120.0 (8)
C3—N1—C2121.0 (5)C22—C23—H23A120.0
C3—N1—Cu1128.3 (4)C24—C23—H23A120.0
C2—N1—Cu1110.7 (3)C19—C24—C23120.1 (7)
C6—N2—C1i114.4 (5)C19—C24—H24A119.9
C6—N2—Cu1113.3 (3)C23—C24—H24A119.9
C1i—N2—Cu1105.5 (3)N6iii—C25—C26110.6 (6)
C6—N2—H2C107.8N6iii—C25—H25A109.5
C1i—N2—H2C107.8C26—C25—H25A109.5
Cu1—N2—H2C107.8N6iii—C25—H25B109.5
C15—N3—C14120.1 (5)C26—C25—H25B109.5
C15—N3—Cu2128.9 (4)H25A—C25—H25B108.1
C14—N3—Cu2110.9 (3)N5—C26—C25109.4 (5)
C18—N4—C13ii115.4 (5)N5—C26—H26A109.8
C18—N4—Cu2115.6 (4)C25—C26—H26A109.8
C13ii—N4—Cu2106.0 (3)N5—C26—H26B109.8
C18—N4—H4D106.4C25—C26—H26B109.8
C13ii—N4—H4D106.4H26A—C26—H26B108.2
Cu2—N4—H4D106.4N5—C27—C28124.1 (5)
C27—N5—C26121.0 (5)N5—C27—C29121.4 (5)
C27—N5—Cu3128.7 (4)C28—C27—C29114.4 (5)
C26—N5—Cu3110.3 (3)C27—C28—H28A109.5
C25iii—N6—C30116.9 (5)C27—C28—H28B109.5
C25iii—N6—Cu3104.5 (3)H28A—C28—H28B109.5
C30—N6—Cu3113.8 (3)C27—C28—H28C109.5
C25iii—N6—H6B107.0H28A—C28—H28C109.5
C30—N6—H6B107.0H28B—C28—H28C109.5
Cu3—N6—H6B107.0C27—C29—C30118.3 (5)
C41—N41—Cu1135.2 (5)C27—C29—H29A107.7
C42—N42—Cu2139.3 (5)C30—C29—H29A107.7
C43—N43—Cu3138.8 (5)C27—C29—H29B107.7
N2i—C1—C2109.2 (5)C30—C29—H29B107.7
N2i—C1—H1A109.8H29A—C29—H29B107.1
C2—C1—H1A109.8N6—C30—C31116.3 (5)
N2i—C1—H1B109.8N6—C30—C29111.4 (5)
C2—C1—H1B109.8C31—C30—C29110.1 (4)
H1A—C1—H1B108.3N6—C30—H30A106.1
N1—C2—C1109.2 (5)C31—C30—H30A106.1
N1—C2—H2A109.8C29—C30—H30A106.1
C1—C2—H2A109.8C32—C31—C36118.2 (5)
N1—C2—H2B109.8C32—C31—C30118.4 (5)
C1—C2—H2B109.8C36—C31—C30123.4 (5)
H2A—C2—H2B108.3C33—C32—C31121.2 (7)
N1—C3—C5121.2 (5)C33—C32—H32A119.4
N1—C3—C4125.4 (5)C31—C32—H32A119.4
C5—C3—C4113.5 (5)C34—C33—C32119.1 (7)
C3—C4—H4A109.5C34—C33—H33A120.4
C3—C4—H4B109.5C32—C33—H33A120.4
H4A—C4—H4B109.5C35—C34—C33120.8 (6)
C3—C4—H4C109.5C35—C34—H34A119.6
H4A—C4—H4C109.5C33—C34—H34A119.6
H4B—C4—H4C109.5C34—C35—C36119.6 (7)
C3—C5—C6118.4 (5)C34—C35—H35A120.2
C3—C5—H5A107.7C36—C35—H35A120.2
C6—C5—H5A107.7C35—C36—C31121.0 (6)
C3—C5—H5B107.7C35—C36—H36A119.5
C6—C5—H5B107.7C31—C36—H36A119.5
H5A—C5—H5B107.1N41—C41—Co176.7 (5)
N2—C6—C5111.3 (5)N42—C42—Co178.0 (5)
N2—C6—C7113.6 (5)N43—C43—Co172.9 (6)
C5—C6—C7108.4 (5)N44—C44—Co179.8 (7)
N2—C6—H6A107.8N45—C45—Co174.4 (6)
C5—C6—H6A107.8N46—C46—Co178.3 (6)
C7—C6—H6A107.8O—C51—N158 (3)
C8—C7—C12118.5 (6)O—C51—H51A101.0
C8—C7—C6120.2 (6)N—C51—H51A101.0
C12—C7—C6121.0 (5)N—C52—H52A109.5
C7—C8—C9119.7 (7)N—C52—H52B109.5
C7—C8—H8A120.1H52A—C52—H52B109.5
C9—C8—H8A120.1N—C52—H52C109.5
C10—C9—C8121.0 (7)H52A—C52—H52C109.5
C10—C9—H9A119.5H52B—C52—H52C109.5
C8—C9—H9A119.5N—C53—H53A109.5
C9—C10—C11120.0 (6)N—C53—H53B109.5
C9—C10—H10A120.0H53A—C53—H53B109.5
C11—C10—H10A120.0N—C53—H53C109.5
C10—C11—C12120.5 (7)H53A—C53—H53C109.5
C10—C11—H11A119.8H53B—C53—H53C109.5
C12—C11—H11A119.8C52—N—C51135 (3)
C11—C12—C7120.1 (6)C52—N—C53113 (3)
C11—C12—H12A119.9C51—N—C53111 (2)
C7—C12—H12A119.9H22C—O2—H22D108.5
N4ii—C13—C14109.8 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O20.912.473.281 (7)149
N6—H6B···N450.912.513.380 (9)161
O2—H22D···N46iv0.972.242.912 (8)125
Symmetry code: (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3Co2(CN)6(C26H32N6)3]·C3H7NO·3H2O
Mr1877.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2510 (3), 16.4054 (5), 17.8005 (5)
α, β, γ (°)113.016 (1), 93.684 (1), 101.966 (1)
V3)2400.55 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.56 × 0.42 × 0.26
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.590, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
12146, 8189, 6842
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.200, 1.09
No. of reflections8189
No. of parameters557
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.76

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Co—C411.893 (6)Cu1—N412.553 (5)
Co—C441.893 (6)Cu2—N31.987 (4)
Co—C431.896 (6)Cu2—N42.012 (5)
Co—C421.896 (5)Cu2—N422.511 (5)
Co—C451.898 (6)Cu3—N51.982 (4)
Co—C461.907 (6)Cu3—N62.037 (4)
Cu1—N12.000 (5)Cu3—N432.537 (6)
Cu1—N22.011 (4)
C41—N41—Cu1135.2 (5)N43—C43—Co172.9 (6)
C42—N42—Cu2139.3 (5)N44—C44—Co179.8 (7)
C43—N43—Cu3138.8 (5)N45—C45—Co174.4 (6)
N41—C41—Co176.7 (5)N46—C46—Co178.3 (6)
N42—C42—Co178.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O20.912.473.281 (7)149
N6—H6B···N450.912.513.380 (9)161
O2—H22D···N46i0.972.242.912 (8)125
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds