Download citation
Download citation
link to html
The title compound, [Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2O, consists of bis(4-pyridyl)ethenedicobalt(II) cations, hexaaqua­cobalt cations, sulfate anions and water solvent molecules that are linked by hydrogen bonds into a network structure. In the hexaaquacobalt cation, the six water molecules are coordinated in an octahedral geometry to the Co atom, which lies on an inversion centre. The other cation is a 1,2-bis(4-pyridyl)ethene-bridged centrosymmetric dimer, consisting of protonated 1,2-bis(4-pyridyl)­ethene cations, a bridging 1,2-bis(4-pyridyl)ethene ligand and tetraaqua­cobalt cations. Each Co atom is six-coordinated by four water molecules and two N atoms from a protonated 1,2-bis(4-pyridyl)ethene cation and the bridging 1,2-bis(4-pyridyl)­ethene ligand, and the geometry around each Co atom is octahedral.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104030434/hj1033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104030434/hj1033Isup2.hkl
Contains datablock I

CCDC reference: 264793

Comment top

Much interest at present is focused on the deliberate construction of coordination polymers (Carlucci et al., 1994; Munakata et al., 1999; Hirsch et al., 1997; Hoskins & Robson, 1990), and a large amount of this interest has involved linear pyridyl-donor ligands. These include pyrazine (Carlucci et al., 1995), 4,4'-bipyridine (bipy; Yaghi & Li, 1996) and longer bridges (Soma & Iwamoto, 1997). Bipy has been used extensively before (Huang & Xiong, 1997); however few coordination polymers are known for the other ligands (Batten et al., 1999). Against this background, we report here the structure of the title compound to outline further studies on coordination polymers constructed through the interaction of metal ions with pyridyl-donor ligands with two-connecting geometry.

The title compound, (I), consists of [C36H48Co2N6O8]6+ cations, hexaaquacobalt cations, sulfate anions and water solvent molecules (Fig. 1). In the C36H48Co2N6O8]6+ cation, the Co2+ ion coordinates to four O atoms from four water molecules and two N atoms from a protonated 1,2-tris(4-pyridyl)-ethene and a 1,2-tris(4-pyridyl)-ethene ligand, and the geometry around the Co2+ ion is that of a distorted octahedron. The 1,2-tris(4-pyridyl)-ethene ligand bridges two Co2+ ions, forming a centrosymmetric dimer. In this dimeric cation, two 1,2-tris(4-pyridyl)-ethene ligands are protonated at one end, and the two bridging ligands act in a monodentate mode. This coordination mode is quite different from that reported by Batten et al. (1999) for [Cu{1,2-tris(4-pyridyl)-ethene}2] .(BF4).CH3CN, in which the 1,2-tris(4-pyridyl)-ethene ligand coordinates in a bridging fashion. It is interesting to note that there is a six coordinated hexaaquacobalt cation to the balance charge, and there are complex hydrogen bonds in this compound (Table 2).

The C36H48Co2N6O8]6+ cations are arranged in a parallel fashion, but only the terminal protonated 1,2-tris(4-pyridyl)-ethene ligands of each [C36H48Co2N6O8]6+ cation are overlapped. The sulfate anions, water molecules and hexaaquacobalt cations are distributed regularly between the overlap area (Fig. 2). There are two kinds of parallel arrangement directions of [C36H48Co2N6O8]6+ cations, which cross one another. The angle between the crossing molecules is 57.75 (3) °, and there are also significant face-to-face ππ interactions of the pyridyl rings between the molecules; the average distance is about 3.329 Å. The crossing [C36H48Co2N6O8]6+ cations form a regular grid structure, and interact with ππ interactions, forming alternate layers. There are channels between the layer grids, and the sulfate anions, hexaaquacobalt cations, and water molecules reside in channels through the structure, interacting via numerous hydrogen bonds (Table 2 and Fig. 3).

Experimental top

Cobalt sulfate heptahydrate (0.6 g, 2 mmol) was dissolved in water (10 ml) and the solution was mixed with a dimethylformamide solution (10 ml) of 1,2-tris(4-pyridyl)-ethene (0.4 g, 2 mmol), trimesic acid (0.4 g, 2 mmol) and 2,2'-dithiosalicylic acid (0.6 g, 2 mmol) at 298 K. The reaction mixture was filtered; brown block-shaped crystals separated from the solution after about three months.

Refinement top

The uncoordinated water H atoms were refined subject to the restraint O—H = 0.82 (5) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.82 (O—H), 0.86 (N—H) and 0.93 Å (C—H), with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound, showing 50% probability displacement ellipsoids. Only the contents of the asymmetric unit are labelled. H atoms of aromatic rings have been omitted for clarity.
[Figure 2] Fig. 2. The arrangement of the title compound.
[Figure 3] Fig. 3. The three-dimensional network formed by hydrogen-bonding interactions in the title compound, which are shown as dashed lines.
µ-1,2-Bis(4-pyridyl)ethene-κ2N:N'-bis(tetraaqua{4-[2-(4- pyridinio)ethenyl]pyridine-κN}cobalt(II)) hexaaquacobalt(II) tetrakis(sulfate) octahydrate top
Crystal data top
[Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2OF(000) = 1566
Mr = 1506.06Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p2ybcCell parameters from 5517 reflections
a = 10.2353 (8) Åθ = 1.9–25.1°
b = 12.1885 (9) ŵ = 1.03 mm1
c = 24.9647 (19) ÅT = 298 K
β = 93.895 (2)°Block, brown
V = 3107.2 (4) Å30.31 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area detector
diffractometer
5517 independent reflections
Radiation source: fine-focus sealed tube4657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
600 frames, delta ω = 2 dgr scansθmax = 25.1°, θmin = 1.9°
Absorption correction: numerical
SADABS (Sheldrick, 1996)
h = 1212
Tmin = 0.81, Tmax = 0.85k = 1414
16014 measured reflectionsl = 2129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0549P)2 + 2.9068P]
where P = (Fo2 + 2Fc2)/3
5517 reflections(Δ/σ)max = 0.016
425 parametersΔρmax = 0.72 e Å3
8 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2OV = 3107.2 (4) Å3
Mr = 1506.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2353 (8) ŵ = 1.03 mm1
b = 12.1885 (9) ÅT = 298 K
c = 24.9647 (19) Å0.31 × 0.18 × 0.15 mm
β = 93.895 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5517 independent reflections
Absorption correction: numerical
SADABS (Sheldrick, 1996)
4657 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.85Rint = 0.057
16014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0688 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.72 e Å3
5517 reflectionsΔρmin = 0.47 e Å3
425 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.16166 (6)0.77595 (5)0.24691 (2)0.01992 (18)
Co20.50001.00000.50000.0275 (2)
C10.0961 (5)0.8055 (4)0.1258 (2)0.0321 (12)
H10.11200.73040.12630.039*
C20.0668 (5)0.8539 (4)0.0773 (2)0.0329 (12)
H20.06260.81210.04600.039*
C30.0431 (4)0.9667 (4)0.07476 (19)0.0283 (11)
C40.0514 (5)1.0220 (4)0.1230 (2)0.0324 (12)
H40.03701.09730.12350.039*
C50.0807 (5)0.9668 (4)0.1703 (2)0.0310 (11)
H50.08491.00660.20220.037*
C60.2395 (5)0.7533 (4)0.36681 (19)0.0362 (13)
H60.22770.82890.36510.043*
C70.2719 (6)0.7071 (4)0.4162 (2)0.0389 (13)
H70.28190.75080.44670.047*
C80.2894 (4)0.5937 (4)0.41973 (19)0.0265 (11)
C90.2726 (5)0.5349 (4)0.37270 (19)0.0298 (11)
H90.28290.45910.37320.036*
C100.2403 (4)0.5881 (4)0.32457 (18)0.0256 (10)
H100.22960.54650.29330.031*
C110.3182 (4)0.5379 (4)0.47104 (18)0.0270 (11)
H110.30970.46200.47100.032*
C120.3552 (5)0.5848 (4)0.51758 (19)0.0307 (11)
H120.36860.66030.51750.037*
C130.3766 (5)0.5279 (4)0.56884 (19)0.0287 (11)
C140.4132 (5)0.5855 (4)0.61518 (19)0.0317 (11)
H140.42790.66060.61330.038*
C150.4283 (5)0.5337 (5)0.6636 (2)0.0381 (13)
H150.45320.57360.69440.046*
C170.3744 (5)0.3666 (4)0.6233 (2)0.0406 (13)
H170.36250.29130.62660.049*
C180.3581 (5)0.4144 (4)0.5745 (2)0.0357 (12)
H180.33440.37190.54440.043*
C190.0118 (5)1.0242 (4)0.02404 (19)0.0314 (11)
H190.00791.10040.02520.038*
O10.0508 (3)0.6368 (3)0.22274 (13)0.0286 (8)
H1B0.02700.64900.22610.043*
H1A0.08630.60520.19860.043*
O20.3202 (3)0.7055 (3)0.20966 (13)0.0344 (8)
H2B0.29320.65640.18930.052*
H2A0.38900.72420.22580.052*
O30.2776 (3)0.9101 (2)0.27277 (13)0.0315 (8)
H3B0.35080.88850.28310.047*
H3A0.23350.96630.27020.047*
O40.0116 (3)0.8333 (3)0.27725 (14)0.0408 (9)
H4B0.07450.81310.25760.061*
H4A0.00600.86770.30510.061*
O50.6410 (4)0.7879 (3)0.64893 (14)0.0503 (10)
O60.7881 (3)0.8767 (3)0.71377 (18)0.0494 (11)
O70.7452 (4)0.6849 (3)0.72121 (16)0.0487 (10)
O80.5793 (3)0.8159 (3)0.73794 (14)0.0464 (10)
O90.5717 (3)0.8525 (3)0.47054 (14)0.0372 (9)
H9B0.61180.81920.49500.056*
H9A0.62290.86580.44750.056*
O100.5057 (4)1.0756 (4)0.42341 (15)0.0565 (12)
H10B0.43701.10880.41630.085*
H10A0.57681.06370.41130.085*
O110.3104 (3)0.9471 (3)0.48213 (14)0.0366 (8)
H11B0.27820.98130.45620.055*
H11A0.26820.95390.50870.055*
O120.2940 (4)0.0380 (3)0.63901 (16)0.0537 (11)
O130.0740 (3)0.0222 (3)0.64645 (14)0.0397 (9)
O140.1420 (4)0.0409 (4)0.56264 (15)0.0574 (12)
O150.2246 (4)0.1294 (3)0.59775 (17)0.0527 (11)
O160.1755 (5)0.0346 (5)0.39738 (19)0.0684 (15)
O170.0495 (6)0.1771 (4)0.4999 (2)0.0808 (17)
O180.7246 (5)0.7350 (4)0.54571 (18)0.0501 (11)
O190.5339 (5)0.8828 (5)0.2999 (3)0.0830 (19)
N10.1036 (4)0.8586 (3)0.17286 (15)0.0271 (9)
N20.2240 (4)0.6965 (3)0.32120 (15)0.0266 (9)
N30.4074 (4)0.4263 (4)0.66699 (17)0.0370 (11)
H3N0.41530.39470.69790.044*
S10.68919 (11)0.78988 (9)0.70511 (5)0.0258 (3)
S20.18357 (11)0.01907 (10)0.61116 (5)0.0278 (3)
H16A0.105 (4)0.022 (5)0.387 (2)0.042*
H16B0.202 (6)0.059 (5)0.3723 (19)0.042*
H17A0.069 (5)0.150 (5)0.5287 (17)0.042*
H17B0.034 (6)0.121 (4)0.482 (2)0.042*
H18A0.791 (4)0.761 (5)0.537 (2)0.042*
H18B0.715 (6)0.748 (5)0.5755 (16)0.042*
H19A0.561 (6)0.934 (4)0.284 (3)0.042*
H19B0.560 (5)0.927 (4)0.322 (2)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0177 (3)0.0241 (3)0.0173 (3)0.0009 (2)0.0035 (2)0.0006 (3)
Co20.0232 (5)0.0319 (5)0.0275 (5)0.0042 (4)0.0019 (4)0.0019 (4)
C10.038 (3)0.030 (3)0.027 (3)0.004 (2)0.004 (2)0.000 (2)
C20.042 (3)0.034 (3)0.021 (3)0.007 (2)0.005 (2)0.001 (2)
C30.020 (2)0.038 (3)0.026 (3)0.000 (2)0.006 (2)0.003 (2)
C40.031 (3)0.031 (3)0.034 (3)0.005 (2)0.004 (2)0.002 (2)
C50.035 (3)0.035 (3)0.023 (3)0.008 (2)0.004 (2)0.006 (2)
C60.060 (4)0.022 (2)0.026 (3)0.006 (2)0.005 (3)0.002 (2)
C70.058 (4)0.030 (3)0.027 (3)0.005 (3)0.008 (3)0.004 (2)
C80.023 (2)0.032 (3)0.024 (3)0.003 (2)0.003 (2)0.005 (2)
C90.029 (3)0.028 (2)0.032 (3)0.005 (2)0.002 (2)0.000 (2)
C100.030 (3)0.027 (2)0.019 (2)0.002 (2)0.004 (2)0.003 (2)
C110.028 (3)0.028 (2)0.026 (3)0.001 (2)0.001 (2)0.006 (2)
C120.035 (3)0.025 (2)0.032 (3)0.001 (2)0.001 (2)0.005 (2)
C130.024 (3)0.036 (3)0.026 (3)0.005 (2)0.001 (2)0.004 (2)
C140.036 (3)0.034 (3)0.025 (3)0.002 (2)0.001 (2)0.003 (2)
C150.039 (3)0.052 (3)0.023 (3)0.002 (3)0.002 (2)0.007 (3)
C170.050 (3)0.036 (3)0.036 (3)0.004 (3)0.001 (3)0.005 (3)
C180.049 (3)0.033 (3)0.024 (3)0.003 (2)0.002 (2)0.001 (2)
C190.026 (3)0.039 (3)0.028 (3)0.001 (2)0.001 (2)0.007 (2)
O10.0158 (16)0.0341 (18)0.036 (2)0.0008 (14)0.0031 (14)0.0082 (16)
O20.0192 (17)0.046 (2)0.037 (2)0.0022 (15)0.0059 (15)0.0180 (17)
O30.0272 (19)0.0264 (17)0.039 (2)0.0014 (14)0.0117 (16)0.0024 (17)
O40.0239 (18)0.062 (3)0.036 (2)0.0067 (18)0.0029 (16)0.0216 (19)
O50.051 (2)0.072 (3)0.027 (2)0.018 (2)0.0020 (18)0.004 (2)
O60.0187 (18)0.0325 (19)0.097 (3)0.0041 (15)0.003 (2)0.001 (2)
O70.047 (2)0.035 (2)0.062 (3)0.0000 (18)0.016 (2)0.006 (2)
O80.0216 (18)0.081 (3)0.037 (2)0.0092 (19)0.0034 (16)0.023 (2)
O90.039 (2)0.037 (2)0.036 (2)0.0047 (16)0.0085 (17)0.0009 (17)
O100.037 (2)0.092 (3)0.042 (2)0.033 (2)0.0118 (19)0.026 (2)
O110.0257 (18)0.050 (2)0.034 (2)0.0009 (17)0.0014 (15)0.0061 (19)
O120.037 (2)0.072 (3)0.053 (3)0.009 (2)0.0061 (19)0.025 (2)
O130.036 (2)0.047 (2)0.038 (2)0.0005 (17)0.0117 (17)0.0029 (18)
O140.049 (2)0.086 (3)0.038 (2)0.016 (2)0.011 (2)0.022 (2)
O150.062 (3)0.038 (2)0.061 (3)0.0076 (19)0.021 (2)0.007 (2)
O160.042 (3)0.106 (4)0.054 (3)0.027 (3)0.019 (2)0.031 (3)
O170.094 (4)0.069 (3)0.075 (4)0.008 (3)0.029 (3)0.031 (3)
O180.061 (3)0.044 (2)0.044 (3)0.002 (2)0.003 (2)0.007 (2)
O190.048 (3)0.093 (4)0.103 (5)0.007 (3)0.024 (3)0.052 (4)
N10.025 (2)0.033 (2)0.022 (2)0.0023 (17)0.0060 (17)0.0020 (18)
N20.028 (2)0.027 (2)0.024 (2)0.0016 (17)0.0039 (17)0.0035 (18)
N30.035 (2)0.049 (3)0.027 (2)0.007 (2)0.0016 (19)0.015 (2)
S10.0210 (6)0.0281 (6)0.0278 (6)0.0013 (5)0.0014 (5)0.0002 (5)
S20.0245 (6)0.0352 (7)0.0239 (6)0.0004 (5)0.0026 (5)0.0049 (5)
Geometric parameters (Å, º) top
Co1—O42.095 (3)C14—H140.9300
Co1—O32.096 (3)C15—N31.330 (7)
Co1—O12.106 (3)C15—H150.9300
Co1—O22.107 (3)C17—N31.334 (7)
Co1—N22.151 (4)C17—C181.352 (7)
Co1—N12.153 (4)C17—H170.9300
Co2—O11i2.065 (3)C18—H180.9300
Co2—O112.065 (3)C19—C19ii1.345 (9)
Co2—O9i2.094 (3)C19—H190.9300
Co2—O92.094 (3)O1—H1B0.8200
Co2—O102.127 (4)O1—H1A0.8202
Co2—O10i2.127 (4)O2—H2B0.8200
C1—N11.339 (6)O2—H2A0.8201
C1—C21.362 (7)O3—H3B0.8200
C1—H10.9300O3—H3A0.8200
C2—C31.397 (7)O4—H4B0.8200
C2—H20.9300O4—H4A0.8200
C3—C41.377 (7)O5—S11.455 (4)
C3—C191.464 (6)O6—S11.471 (3)
C4—C51.375 (7)O7—S11.448 (4)
C4—H40.9300O8—S11.470 (3)
C5—N11.341 (6)O9—H9B0.8200
C5—H50.9300O9—H9A0.8201
C6—N21.333 (6)O10—H10B0.8200
C6—C71.374 (7)O10—H10A0.8200
C6—H60.9300O11—H11B0.8200
C7—C81.396 (7)O11—H11A0.8200
C7—H70.9300O12—S21.462 (4)
C8—C91.376 (7)O13—S21.473 (3)
C8—C111.462 (6)O14—S21.453 (4)
C9—C101.385 (6)O15—S21.454 (4)
C9—H90.9300O16—H16A0.76 (4)
C10—N21.333 (6)O16—H16B0.76 (4)
C10—H100.9300O17—H17A0.80 (4)
C11—C121.327 (6)O17—H17B0.82 (4)
C11—H110.9300O18—H18A0.79 (4)
C12—C131.459 (6)O18—H18B0.77 (4)
C12—H120.9300O19—H19A0.81 (4)
C13—C141.383 (7)O19—H19B0.80 (4)
C13—C181.405 (7)N3—H3N0.8600
C14—C151.363 (7)
O4—Co1—O395.94 (13)C13—C12—H12117.3
O4—Co1—O185.40 (13)C14—C13—C18116.5 (5)
O3—Co1—O1177.59 (13)C14—C13—C12120.6 (4)
O4—Co1—O2172.56 (13)C18—C13—C12122.9 (5)
O3—Co1—O291.00 (13)C15—C14—C13121.0 (5)
O1—Co1—O287.77 (12)C15—C14—H14119.5
O4—Co1—N292.72 (14)C13—C14—H14119.5
O3—Co1—N287.54 (14)N3—C15—C14120.2 (5)
O1—Co1—N290.39 (14)N3—C15—H15119.9
O2—Co1—N290.27 (14)C14—C15—H15119.9
O4—Co1—N187.90 (14)N3—C17—C18120.7 (5)
O3—Co1—N190.98 (14)N3—C17—H17119.6
O1—Co1—N191.08 (14)C18—C17—H17119.6
O2—Co1—N189.29 (14)C17—C18—C13120.4 (5)
N2—Co1—N1178.45 (15)C17—C18—H18119.8
O11i—Co2—O11180.0C13—C18—H18119.8
O11i—Co2—O9i90.17 (13)C19ii—C19—C3125.2 (6)
O11—Co2—O9i89.83 (13)C19ii—C19—H19117.4
O11i—Co2—O989.83 (13)C3—C19—H19117.4
O11—Co2—O990.17 (13)Co1—O1—H1B109.5
O9i—Co2—O9180.00 (18)Co1—O1—H1A109.4
O11i—Co2—O1088.64 (15)H1B—O1—H1A129.9
O11—Co2—O1091.36 (15)Co1—O2—H2B109.5
O9i—Co2—O1088.60 (15)Co1—O2—H2A109.4
O9—Co2—O1091.40 (15)H2B—O2—H2A138.5
O11i—Co2—O10i91.36 (15)Co1—O3—H3B109.5
O11—Co2—O10i88.64 (15)Co1—O3—H3A109.3
O9i—Co2—O10i91.40 (15)H3B—O3—H3A141.2
O9—Co2—O10i88.60 (15)Co1—O4—H4B109.5
O10—Co2—O10i180.000 (1)Co1—O4—H4A109.5
N1—C1—C2124.6 (5)H4B—O4—H4A141.0
N1—C1—H1117.7Co2—O9—H9B109.5
C2—C1—H1117.7Co2—O9—H9A109.4
C1—C2—C3119.5 (5)H9B—O9—H9A108.1
C1—C2—H2120.2Co2—O10—H10B109.5
C3—C2—H2120.2Co2—O10—H10A109.5
C4—C3—C2116.2 (5)H10B—O10—H10A140.9
C4—C3—C19121.2 (4)Co2—O11—H11B109.5
C2—C3—C19122.5 (5)Co2—O11—H11A109.4
C5—C4—C3120.6 (5)H11B—O11—H11A112.5
C5—C4—H4119.7H16A—O16—H16B100 (6)
C3—C4—H4119.7H17A—O17—H17B100 (6)
N1—C5—C4123.3 (5)H18A—O18—H18B111 (7)
N1—C5—H5118.4H19A—O19—H19B73 (5)
C4—C5—H5118.4C1—N1—C5115.8 (4)
N2—C6—C7124.1 (4)C1—N1—Co1121.6 (3)
N2—C6—H6117.9C5—N1—Co1122.5 (3)
C7—C6—H6117.9C6—N2—C10117.0 (4)
C6—C7—C8119.0 (5)C6—N2—Co1120.9 (3)
C6—C7—H7120.5C10—N2—Co1121.9 (3)
C8—C7—H7120.5C15—N3—C17121.1 (5)
C9—C8—C7116.9 (4)C15—N3—H3N119.4
C9—C8—C11120.7 (4)C17—N3—H3N119.4
C7—C8—C11122.3 (5)O7—S1—O5110.8 (2)
C8—C9—C10120.3 (4)O7—S1—O8109.8 (2)
C8—C9—H9119.8O5—S1—O8108.6 (2)
C10—C9—H9119.8O7—S1—O6109.9 (2)
N2—C10—C9122.7 (4)O5—S1—O6109.8 (3)
N2—C10—H10118.7O8—S1—O6107.9 (2)
C9—C10—H10118.7O14—S2—O15110.2 (3)
C12—C11—C8126.5 (4)O14—S2—O12109.3 (3)
C12—C11—H11116.7O15—S2—O12108.9 (3)
C8—C11—H11116.7O14—S2—O13108.7 (2)
C11—C12—C13125.5 (4)O15—S2—O13110.9 (2)
C11—C12—H12117.3O12—S2—O13108.8 (2)
N1—C1—C2—C30.4 (8)C4—C5—N1—Co1175.9 (4)
C1—C2—C3—C40.0 (7)O4—Co1—N1—C1125.8 (4)
C1—C2—C3—C19179.7 (4)O3—Co1—N1—C1138.3 (4)
C2—C3—C4—C50.4 (7)O1—Co1—N1—C140.5 (4)
C19—C3—C4—C5179.9 (4)O2—Co1—N1—C147.3 (4)
C3—C4—C5—N10.5 (8)N2—Co1—N1—C1121 (5)
N2—C6—C7—C80.3 (9)O4—Co1—N1—C558.4 (4)
C6—C7—C8—C90.1 (8)O3—Co1—N1—C537.5 (4)
C6—C7—C8—C11177.2 (5)O1—Co1—N1—C5143.8 (4)
C7—C8—C9—C100.3 (7)O2—Co1—N1—C5128.5 (4)
C11—C8—C9—C10177.5 (4)N2—Co1—N1—C555 (6)
C8—C9—C10—N20.1 (7)C7—C6—N2—C100.5 (8)
C9—C8—C11—C12169.4 (5)C7—C6—N2—Co1176.2 (4)
C7—C8—C11—C1213.6 (8)C9—C10—N2—C60.3 (7)
C8—C11—C12—C13176.5 (4)C9—C10—N2—Co1175.9 (3)
C11—C12—C13—C14179.0 (5)O4—Co1—N2—C658.2 (4)
C11—C12—C13—C180.9 (8)O3—Co1—N2—C637.7 (4)
C18—C13—C14—C150.9 (7)O1—Co1—N2—C6143.6 (4)
C12—C13—C14—C15177.3 (5)O2—Co1—N2—C6128.7 (4)
C13—C14—C15—N30.2 (8)N1—Co1—N2—C655 (6)
N3—C17—C18—C130.5 (8)O4—Co1—N2—C10117.3 (4)
C14—C13—C18—C170.8 (7)O3—Co1—N2—C10146.9 (4)
C12—C13—C18—C17177.4 (5)O1—Co1—N2—C1031.9 (4)
C4—C3—C19—C19ii172.6 (6)O2—Co1—N2—C1055.9 (4)
C2—C3—C19—C19ii7.7 (9)N1—Co1—N2—C10129 (5)
C2—C1—N1—C50.4 (7)C14—C15—N3—C171.5 (8)
C2—C1—N1—Co1176.4 (4)C18—C17—N3—C151.7 (8)
C4—C5—N1—C10.1 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O6iii0.821.922.688 (4)155
O1—H1A···O13iv0.822.022.738 (5)145
O2—H2B···O12iv0.821.912.699 (5)160
O2—H2A···O8v0.822.012.711 (4)143
O3—H3B···O190.821.892.686 (6)162
O3—H3A···O6i0.821.972.711 (5)150
O4—H4B···O7iii0.822.002.781 (5)159
O4—H4A···O13vi0.822.022.703 (5)141
O9—H9B···O180.821.952.761 (6)172
O10—H10B···O5i0.822.172.813 (5)136
O10—H10A···O12vii0.821.912.698 (5)161
O11—H11B···O16viii0.821.862.669 (6)167
O11—H11A···O14viii0.821.932.739 (5)169
N3—H3N···O8ix0.861.872.723 (5)174
O16—H16A···O13x0.76 (4)2.04 (4)2.797 (6)174 (6)
O16—H16B···O6vii0.76 (4)2.30 (4)3.024 (6)161 (6)
O17—H17A···O150.80 (4)2.28 (5)2.987 (7)147 (5)
O17—H17B···O14x0.82 (4)2.28 (5)2.936 (7)138 (6)
O18—H18A···O17vii0.79 (4)2.07 (4)2.855 (8)170 (6)
O18—H18B···O50.77 (4)2.09 (4)2.844 (6)166 (6)
O19—H19B···O12vii0.80 (4)2.20 (5)2.939 (7)155 (6)
Symmetry codes: (i) x+1, y+2, z+1; (iii) x1, y+3/2, z1/2; (iv) x, y+1/2, z1/2; (v) x, y+3/2, z1/2; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x, y+1, z; (ix) x+1, y1/2, z+3/2; (x) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2O
Mr1506.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.2353 (8), 12.1885 (9), 24.9647 (19)
β (°) 93.895 (2)
V3)3107.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.31 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionNumerical
SADABS (Sheldrick, 1996)
Tmin, Tmax0.81, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
16014, 5517, 4657
Rint0.057
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.144, 1.20
No. of reflections5517
No. of parameters425
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O42.095 (3)Co1—N12.153 (4)
Co1—O32.096 (3)Co2—O112.065 (3)
Co1—O12.106 (3)Co2—O92.094 (3)
Co1—O22.107 (3)Co2—O102.127 (4)
Co1—N22.151 (4)
O4—Co1—O395.94 (13)O1—Co1—N191.08 (14)
O4—Co1—O185.40 (13)O2—Co1—N189.29 (14)
O3—Co1—O1177.59 (13)N2—Co1—N1178.45 (15)
O4—Co1—O2172.56 (13)O11i—Co2—O11180.0
O3—Co1—O291.00 (13)O11i—Co2—O989.83 (13)
O1—Co1—O287.77 (12)O11—Co2—O990.17 (13)
O4—Co1—N292.72 (14)O9i—Co2—O9180.00 (18)
O3—Co1—N287.54 (14)O11i—Co2—O1088.64 (15)
O1—Co1—N290.39 (14)O11—Co2—O1091.36 (15)
O2—Co1—N290.27 (14)O9i—Co2—O1088.60 (15)
O4—Co1—N187.90 (14)O9—Co2—O1091.40 (15)
O3—Co1—N190.98 (14)O10—Co2—O10i180.000 (1)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O6ii0.821.922.688 (4)155
O1—H1A···O13iii0.822.022.738 (5)145
O2—H2B···O12iii0.821.912.699 (5)160
O2—H2A···O8iv0.822.012.711 (4)143
O3—H3B···O190.821.892.686 (6)162
O3—H3A···O6i0.821.972.711 (5)150
O4—H4B···O7ii0.822.002.781 (5)159
O4—H4A···O13v0.822.022.703 (5)141
O9—H9B···O180.821.952.761 (6)172
O10—H10B···O5i0.822.172.813 (5)136
O10—H10A···O12vi0.821.912.698 (5)161
O11—H11B···O16vii0.821.862.669 (6)167
O11—H11A···O14vii0.821.932.739 (5)169
N3—H3N···O8viii0.861.872.723 (5)174
O16—H16A···O13ix0.76 (4)2.04 (4)2.797 (6)174 (6)
O16—H16B···O6vi0.76 (4)2.30 (4)3.024 (6)161 (6)
O17—H17A···O150.80 (4)2.28 (5)2.987 (7)147 (5)
O17—H17B···O14ix0.82 (4)2.28 (5)2.936 (7)138 (6)
O18—H18A···O17vi0.79 (4)2.07 (4)2.855 (8)170 (6)
O18—H18B···O50.77 (4)2.09 (4)2.844 (6)166 (6)
O19—H19B···O12vi0.80 (4)2.20 (5)2.939 (7)155 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+3/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x+1, y1/2, z+3/2; (ix) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds