Download citation
Download citation
link to html
In the title adduct, C6H12N2·C7H8O2, the orcin and 1,4-di­aza­bi­cyclo­[2.2.2]­octane moieties are held together by O—H...N hydrogen bonds. One-dimensional chiral hydrogen-bonded chains are formed along the b axis. Neighbouring chains are held together principally by van der Waals interactions and are interrelated by translation, resulting in a chiral layer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104021936/hj1016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104021936/hj1016Isup2.hkl
Contains datablock I

CCDC reference: 254953

Comment top

Chiral crystals can be formed through self-assembly even from achiral molecules (Jacques et al., 1981). It is possible to synthesize substances asymmetrically from such crystals by solid state reactions (Elgavi et al., 1973; Green et al., 1979; Sakamoto, 1997). Furthermore, chiral crystallization is relevant to the origin of chiral compounds in nature (Addadi & Lahav, 1979). The design of chiral crystalline complexes from different achiral molecules (Koshima et al., 1996, 1997, 1998, 1999; Koshima & Honke 1999) is an active field. It has been reported previously that a resorcinol-urea adduct crystallizes in a chiral space group, P212121 (Pickering & Small, 1982). In our case, the chiral crystal of the title adduct, (I), was synthesized from two achiral compounds, 5-methylresorcinol (orcin) and 1,4-diazabicyclo[2.2.2]octane (DABCO). Here, the structure and the chirality of (I) are discussed. \sch

There are two crystallographically independent molecules each of DABCO and orcin in the unit cell of (I) (Fig. 1). In the structure of (I), the orcin and DABCO moieties are linked by O1—H1···N1, O2—H2···N3, O3—H3···N4i and O4—H4···N2ii hydrogen bonds (Fig. 2 and Table 2; symmetry codes as in Table 2).

The resorcinol hydroxy group may be arranged in one of the ways depicted in Scheme 2. In (I), the orcin hydroxy groups assume the first motif, which is in contrast with the third motif observed in the resorcinol-urea (1/1) adduct (Pickering & Small, 1982) and the second motif observed in the resorcinol-isonicotinamide (1/2) adduct (Vishweshwar et al., 2003). The orcin molecules are pseudo-C2 symmetrically related.

As shown in Fig. 2, one-dimensional chiral hydrogen-bonded chains are formed along the b axis, with the screw-pitch equal to the length of the b axis. The chain can be described in graph-set notation (Etter, 1990; Grell et al., 2000) as C44(22). Neighbouring chains in the (001) plane are associated with each other principally by van der Waals interactions and are interrelated by translation, thus resulting in a chiral layer. There are four kinds of chiral layer in the crystal of (I). C—H···O hydrogen bonds (Table 2) play an important role in stabilizing the chiral structure. Neighbouring chiral layers are related to each other via C5—H5B···O2iii, C6—H6A···O3iii and C10—H10A···O1iv hydrogen bonds (symmetry codes as in Table 2?).

There are four C—H···π interactions in the crystal, namely C8—H8Aiii···π(C13/C15/C17) (3.30 Å), C7—H7Biii···π(C13/C15/C17) (3.36 Å), C1—H1B(x + 1/2, 3/2 − y, 2 − z)···π(C20/C22/C24) (3.37 Å) and C2—H2A(x + 1/2, 3/2 − y, 2 − z)···π(C20/C22/C24) (3.30 Å), where the values in parentheses indicate the distances between the H atom and the centroid of the phenyl ring. As a result of the balance of C—H···O and C—H···π interactions, the two orcin molecules that are bridged by a DABCO molecule are fixed in a dihedral angle of 30.8 (3)°.

DABCO may assume one of four conformations, namely ordered and non-distorted, ordered and distorted, disordered and non-distorted, or disordered and distorted (Nimmo & Lucas, 1976). The disordered conformations are frequently observed, such as in DABCO-biphenol (1/1) (Ferguson et al., 1998), DABCO-perchloric acid (1/1) (Katrusiak, 2000) and DABCO-maleic acid (1/2) (Sun & Jin, 2002). In (I), both of the DABCO molecules are ordered, and they are almost non-distorted, as indicated by N—C—C—N torsion angles with mean values of 1.2 (4) and 0.9 (4)°, respectively, for N1/N2 and N3/N4.

Experimental top

Equimolar quantites of DABCO and orcin were mixed and dissolved in sufficient water by heating to a temperature where a clear solution resulted. Single crystals of (I) were formed by standing the resulting solution overnight at 293 K.

Refinement top

All H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.82–0.97 Å, with isotropic displacement parameters 1.2–1.5 times Ueq of the parent atoms. Because of the lack of atoms heavier than O and the short measuring wavelength of Mo radiation, no useful absolute structure parameter can be refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The orcin and DABCO moieties of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the infinite chiral chains along the b axis. Hydrogen bonds are shown as dashed lines.
5-methyl-1,3-benzenediol (orcin) 1,4-diazabicyclo[2.2.2]octane (1/1) top
Crystal data top
C6H12N2·C7H8O2F(000) = 1024.0
Mr = 236.31Dx = 1.206 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 346 reflections
a = 12.2569 (6) Åθ = 2.4–23.0°
b = 12.5985 (6) ŵ = 0.08 mm1
c = 16.8506 (9) ÅT = 293 K
V = 2602.0 (2) Å3Prism, colourless
Z = 80.46 × 0.42 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ϕ and ω scansh = 1114
13862 measured reflectionsk = 1514
2645 independent reflectionsl = 2015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1095P)2 + 0.08P]
where P = (Fo2 + 2Fc2)/3
2645 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H12N2·C7H8O2V = 2602.0 (2) Å3
Mr = 236.31Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.2569 (6) ŵ = 0.08 mm1
b = 12.5985 (6) ÅT = 293 K
c = 16.8506 (9) Å0.46 × 0.42 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 reflections with I > 2σ(I)
13862 measured reflectionsRint = 0.025
2645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2645 reflectionsΔρmin = 0.27 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35392 (19)0.96077 (19)0.89770 (15)0.0491 (6)
N20.15548 (18)1.02328 (19)0.90321 (15)0.0505 (6)
C10.3493 (2)1.0765 (2)0.8976 (2)0.0600 (8)
H1A0.38461.10360.85020.072*
H1B0.38801.10390.94340.072*
C20.2297 (2)1.1140 (2)0.8999 (2)0.0576 (8)
H2A0.21851.15870.94600.069*
H2B0.21421.15590.85290.069*
C30.3012 (2)0.9225 (2)0.97123 (17)0.0570 (8)
H3A0.34030.94961.01700.068*
H3B0.30400.84560.97290.068*
C40.1823 (2)0.9594 (2)0.97427 (19)0.0573 (8)
H4A0.13450.89820.97690.069*
H4B0.17061.00171.02160.069*
C50.2942 (2)0.9217 (2)0.82898 (19)0.0577 (8)
H5A0.29790.84480.82750.069*
H5B0.32750.94880.78090.069*
C60.1739 (2)0.9569 (2)0.8325 (2)0.0608 (8)
H6A0.15580.99690.78510.073*
H6B0.12700.89500.83460.073*
N30.35698 (19)0.54541 (18)0.84590 (16)0.0494 (6)
N40.15835 (19)0.48274 (19)0.85339 (14)0.0495 (6)
C70.3516 (2)0.4295 (2)0.8488 (2)0.0621 (8)
H7A0.39140.40400.89470.075*
H7B0.38570.40020.80170.075*
C80.2329 (2)0.3924 (2)0.8535 (2)0.0611 (9)
H8A0.21690.34690.80850.073*
H8B0.22240.35140.90150.073*
C90.3046 (2)0.5863 (3)0.91765 (19)0.0620 (8)
H9A0.30850.66320.91790.074*
H9B0.34310.56030.96400.074*
C100.1844 (2)0.5511 (3)0.92158 (19)0.0610 (8)
H10A0.17150.51260.97050.073*
H10B0.13740.61300.92120.073*
C110.2956 (2)0.5814 (2)0.77530 (18)0.0563 (8)
H11A0.32930.55320.72770.068*
H11B0.29760.65830.77220.068*
C120.1769 (2)0.5438 (2)0.78034 (19)0.0574 (8)
H12A0.12860.60480.77940.069*
H12B0.16020.49990.73470.069*
O10.57360 (16)0.94161 (16)0.89557 (16)0.0635 (7)
H10.50720.93350.89430.095*
O20.57432 (16)0.56999 (15)0.82461 (16)0.0681 (7)
H20.50800.57730.82760.102*
C130.6235 (2)0.8483 (2)0.87842 (16)0.0429 (7)
C140.5672 (2)0.7558 (2)0.85998 (17)0.0453 (7)
H140.49130.75540.86010.054*
C150.6241 (2)0.6642 (2)0.84145 (17)0.0450 (7)
C160.7375 (2)0.6648 (2)0.84002 (18)0.0477 (7)
H160.77550.60350.82650.057*
C170.7937 (2)0.7569 (2)0.85878 (17)0.0452 (7)
C180.7373 (2)0.8482 (2)0.87774 (18)0.0467 (7)
H180.77530.90990.89010.056*
C190.9172 (3)0.7574 (2)0.8584 (2)0.0721 (12)
H19A0.94310.82660.87300.108*
H19B0.94310.73990.80630.108*
H19C0.94380.70600.89580.108*
O30.94242 (16)0.44160 (16)0.85138 (16)0.0685 (7)
H31.00890.43450.85230.103*
O40.94221 (17)0.06990 (16)0.92750 (16)0.0719 (7)
H41.00870.07640.92500.108*
C200.8941 (2)0.3474 (2)0.86996 (16)0.0432 (6)
C210.7802 (2)0.3470 (2)0.87098 (17)0.0453 (7)
H210.74210.40850.85820.054*
C220.7241 (2)0.2566 (2)0.89075 (17)0.0448 (7)
C230.7804 (2)0.1653 (2)0.91022 (18)0.0482 (7)
H230.74240.10430.92440.058*
C240.8937 (2)0.1643 (2)0.90865 (18)0.0466 (7)
C250.9511 (2)0.2553 (2)0.88899 (17)0.0453 (7)
H251.02700.25490.88850.054*
C260.6006 (3)0.2572 (3)0.8901 (2)0.0664 (10)
H26A0.57490.32650.87570.100*
H26B0.57390.23930.94200.100*
H26C0.57460.20610.85230.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0362 (12)0.0518 (13)0.0591 (15)0.0082 (10)0.0013 (11)0.0028 (11)
N20.0365 (12)0.0533 (13)0.0615 (14)0.0050 (11)0.0012 (11)0.0055 (12)
C10.0456 (17)0.0526 (16)0.082 (2)0.0102 (14)0.0029 (16)0.0071 (17)
C20.0573 (18)0.0402 (15)0.075 (2)0.0086 (13)0.0062 (16)0.0042 (15)
C30.0573 (18)0.0576 (17)0.0561 (17)0.0127 (15)0.0036 (14)0.0041 (15)
C40.0470 (16)0.0638 (18)0.0611 (18)0.0024 (15)0.0064 (14)0.0107 (15)
C50.0533 (17)0.0558 (16)0.0638 (19)0.0006 (15)0.0013 (15)0.0100 (16)
C60.0485 (17)0.0697 (18)0.0642 (19)0.0071 (15)0.0099 (15)0.0034 (16)
N30.0369 (12)0.0495 (13)0.0619 (15)0.0079 (10)0.0008 (11)0.0025 (11)
N40.0376 (12)0.0534 (13)0.0575 (14)0.0095 (11)0.0002 (11)0.0031 (12)
C70.0483 (17)0.0528 (17)0.085 (2)0.0099 (14)0.0013 (17)0.0016 (17)
C80.0576 (19)0.0468 (16)0.079 (2)0.0078 (14)0.0040 (17)0.0079 (16)
C90.0566 (19)0.0627 (18)0.067 (2)0.0086 (16)0.0027 (16)0.0097 (17)
C100.0558 (19)0.0679 (19)0.0593 (19)0.0003 (16)0.0107 (15)0.0039 (15)
C110.0562 (18)0.0573 (17)0.0555 (17)0.0083 (15)0.0027 (14)0.0104 (15)
C120.0457 (15)0.0659 (18)0.0605 (18)0.0022 (15)0.0032 (14)0.0085 (14)
O10.0355 (10)0.0504 (12)0.1047 (19)0.0060 (9)0.0029 (11)0.0166 (12)
O20.0389 (11)0.0505 (12)0.115 (2)0.0082 (9)0.0092 (12)0.0198 (13)
C130.0291 (13)0.0475 (15)0.0521 (16)0.0043 (11)0.0021 (11)0.0009 (13)
C140.0240 (12)0.0520 (16)0.060 (2)0.0012 (11)0.0016 (12)0.0015 (14)
C150.0299 (13)0.0468 (15)0.0581 (17)0.0047 (11)0.0050 (12)0.0009 (14)
C160.0362 (14)0.0420 (14)0.0649 (18)0.0039 (11)0.0074 (13)0.0006 (14)
C170.0289 (13)0.0521 (15)0.0544 (18)0.0009 (11)0.0029 (12)0.0084 (14)
C180.0344 (14)0.0458 (15)0.0600 (17)0.0054 (12)0.0014 (12)0.0002 (13)
C190.0284 (14)0.071 (2)0.117 (3)0.0004 (14)0.0065 (17)0.004 (2)
O30.0337 (11)0.0549 (12)0.117 (2)0.0070 (10)0.0063 (12)0.0267 (13)
O40.0380 (11)0.0519 (12)0.126 (2)0.0077 (10)0.0113 (12)0.0248 (14)
C200.0312 (13)0.0477 (15)0.0506 (16)0.0053 (11)0.0018 (11)0.0021 (12)
C210.0311 (13)0.0466 (14)0.0582 (17)0.0037 (12)0.0030 (12)0.0001 (13)
C220.0302 (14)0.0496 (15)0.0544 (18)0.0001 (11)0.0001 (12)0.0113 (14)
C230.0350 (14)0.0430 (14)0.0665 (19)0.0032 (12)0.0077 (13)0.0027 (14)
C240.0333 (14)0.0439 (14)0.0627 (18)0.0038 (11)0.0042 (12)0.0023 (14)
C250.0208 (12)0.0533 (16)0.0619 (19)0.0002 (11)0.0011 (11)0.0046 (14)
C260.0295 (15)0.072 (2)0.097 (3)0.0004 (14)0.0050 (16)0.004 (2)
Geometric parameters (Å, º) top
N1—C51.456 (4)C11—H11A0.9700
N1—C11.459 (4)C11—H11B0.9700
N1—C31.478 (4)C12—H12A0.9700
N2—C21.462 (4)C12—H12B0.9700
N2—C61.473 (4)O1—C131.357 (3)
N2—C41.479 (4)O1—H10.8200
C1—C21.540 (4)O2—C151.364 (3)
C1—H1A0.9700O2—H20.8200
C1—H1B0.9700C13—C141.390 (4)
C2—H2A0.9700C13—C181.396 (3)
C2—H2B0.9700C14—C151.384 (4)
C3—C41.531 (4)C14—H140.9300
C3—H3A0.9700C15—C161.390 (3)
C3—H3B0.9700C16—C171.386 (4)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—C181.379 (4)
C5—C61.540 (4)C17—C191.515 (4)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C19—H19A0.9600
C6—H6A0.9700C19—H19B0.9600
C6—H6B0.9700C19—H19C0.9600
N3—C71.462 (4)O3—C201.363 (3)
N3—C91.463 (4)O3—H30.8200
N3—C111.479 (4)O4—C241.367 (3)
N4—C81.459 (4)O4—H40.8200
N4—C121.469 (4)C20—C251.392 (4)
N4—C101.471 (4)C20—C211.396 (3)
C7—C81.530 (4)C21—C221.371 (4)
C7—H7A0.9700C21—H210.9300
C7—H7B0.9700C22—C231.382 (4)
C8—H8A0.9700C22—C261.514 (4)
C8—H8B0.9700C23—C241.388 (4)
C9—C101.540 (4)C23—H230.9300
C9—H9A0.9700C24—C251.386 (4)
C9—H9B0.9700C25—H250.9300
C10—H10A0.9700C26—H26A0.9600
C10—H10B0.9700C26—H26B0.9600
C11—C121.532 (4)C26—H26C0.9600
C5—N1—C1108.5 (3)C9—C10—H10A109.7
C5—N1—C3109.7 (2)N4—C10—H10B109.7
C1—N1—C3108.1 (3)C9—C10—H10B109.7
C2—N2—C6108.5 (2)H10A—C10—H10B108.2
C2—N2—C4108.5 (2)N3—C11—C12110.1 (2)
C6—N2—C4108.2 (2)N3—C11—H11A109.6
N1—C1—C2110.1 (2)C12—C11—H11A109.6
N1—C1—H1A109.6N3—C11—H11B109.6
C2—C1—H1A109.6C12—C11—H11B109.6
N1—C1—H1B109.6H11A—C11—H11B108.2
C2—C1—H1B109.6N4—C12—C11110.8 (2)
H1A—C1—H1B108.2N4—C12—H12A109.5
N2—C2—C1110.7 (2)C11—C12—H12A109.5
N2—C2—H2A109.5N4—C12—H12B109.5
C1—C2—H2A109.5C11—C12—H12B109.5
N2—C2—H2B109.5H12A—C12—H12B108.1
C1—C2—H2B109.5C13—O1—H1109.5
H2A—C2—H2B108.1C15—O2—H2109.5
N1—C3—C4110.2 (2)O1—C13—C14123.4 (2)
N1—C3—H3A109.6O1—C13—C18117.0 (2)
C4—C3—H3A109.6C14—C13—C18119.6 (3)
N1—C3—H3B109.6C15—C14—C13119.9 (2)
C4—C3—H3B109.6C15—C14—H14120.0
H3A—C3—H3B108.1C13—C14—H14120.0
N2—C4—C3110.5 (2)O2—C15—C14123.1 (2)
N2—C4—H4A109.6O2—C15—C16116.6 (2)
C3—C4—H4A109.6C14—C15—C16120.2 (3)
N2—C4—H4B109.6C17—C16—C15119.9 (3)
C3—C4—H4B109.6C17—C16—H16120.1
H4A—C4—H4B108.1C15—C16—H16120.1
N1—C5—C6110.7 (2)C18—C17—C16120.1 (2)
N1—C5—H5A109.5C18—C17—C19119.9 (3)
C6—C5—H5A109.5C16—C17—C19120.0 (3)
N1—C5—H5B109.5C17—C18—C13120.2 (3)
C6—C5—H5B109.5C17—C18—H18119.9
H5A—C5—H5B108.1C13—C18—H18119.9
N2—C6—C5110.0 (2)C17—C19—H19A109.5
N2—C6—H6A109.7C17—C19—H19B109.5
C5—C6—H6A109.7H19A—C19—H19B109.5
N2—C6—H6B109.7C17—C19—H19C109.5
C5—C6—H6B109.7H19A—C19—H19C109.5
H6A—C6—H6B108.2H19B—C19—H19C109.5
C7—N3—C9107.7 (3)C20—O3—H3109.5
C7—N3—C11108.1 (3)C24—O4—H4109.5
C9—N3—C11109.5 (2)O3—C20—C25124.1 (2)
C8—N4—C12108.2 (2)O3—C20—C21116.1 (3)
C8—N4—C10108.7 (2)C25—C20—C21119.8 (3)
C12—N4—C10108.3 (2)C22—C21—C20120.5 (3)
N3—C7—C8110.5 (2)C22—C21—H21119.8
N3—C7—H7A109.6C20—C21—H21119.8
C8—C7—H7A109.6C21—C22—C23119.9 (3)
N3—C7—H7B109.6C21—C22—C26119.7 (3)
C8—C7—H7B109.6C23—C22—C26120.4 (3)
H7A—C7—H7B108.1C22—C23—C24120.2 (3)
N4—C8—C7110.9 (2)C22—C23—H23119.9
N4—C8—H8A109.5C24—C23—H23119.9
C7—C8—H8A109.5O4—C24—C25123.6 (2)
N4—C8—H8B109.5O4—C24—C23116.0 (3)
C7—C8—H8B109.5C25—C24—C23120.3 (3)
H8A—C8—H8B108.0C24—C25—C20119.3 (2)
N3—C9—C10110.7 (2)C24—C25—H25120.4
N3—C9—H9A109.5C20—C25—H25120.4
C10—C9—H9A109.5C22—C26—H26A109.5
N3—C9—H9B109.5C22—C26—H26B109.5
C10—C9—H9B109.5H26A—C26—H26B109.5
H9A—C9—H9B108.1C22—C26—H26C109.5
N4—C10—C9110.0 (2)H26A—C26—H26C109.5
N4—C10—H10A109.7H26B—C26—H26C109.5
C5—N1—C1—C258.6 (3)C8—N4—C12—C1158.5 (3)
C3—N1—C1—C260.3 (3)C10—N4—C12—C1159.1 (3)
C6—N2—C2—C159.3 (3)N3—C11—C12—N40.2 (4)
C4—N2—C2—C158.0 (3)O1—C13—C14—C15178.6 (3)
N1—C1—C2—N21.2 (4)C18—C13—C14—C150.3 (4)
C5—N1—C3—C458.2 (3)C13—C14—C15—O2178.4 (3)
C1—N1—C3—C459.9 (3)C13—C14—C15—C161.0 (4)
C2—N2—C4—C358.3 (3)O2—C15—C16—C17178.1 (3)
C6—N2—C4—C359.3 (3)C14—C15—C16—C171.3 (5)
N1—C3—C4—N20.5 (4)C15—C16—C17—C180.9 (5)
C1—N1—C5—C660.5 (3)C15—C16—C17—C19179.1 (3)
C3—N1—C5—C657.3 (3)C16—C17—C18—C130.2 (4)
C2—N2—C6—C557.4 (3)C19—C17—C18—C13179.8 (3)
C4—N2—C6—C560.1 (3)O1—C13—C18—C17178.3 (3)
N1—C5—C6—N22.0 (4)C14—C13—C18—C170.1 (5)
C9—N3—C7—C859.1 (4)O3—C20—C21—C22178.5 (3)
C11—N3—C7—C859.2 (4)C25—C20—C21—C220.1 (4)
C12—N4—C8—C758.6 (3)C20—C21—C22—C230.3 (4)
C10—N4—C8—C758.8 (3)C20—C21—C22—C26178.9 (3)
N3—C7—C8—N40.3 (4)C21—C22—C23—C241.0 (5)
C7—N3—C9—C1060.4 (3)C26—C22—C23—C24178.3 (3)
C11—N3—C9—C1056.9 (3)C22—C23—C24—O4178.9 (3)
C8—N4—C10—C957.0 (3)C22—C23—C24—C251.2 (5)
C12—N4—C10—C960.2 (3)O4—C24—C25—C20179.4 (3)
N3—C9—C10—N42.3 (4)C23—C24—C25—C200.7 (4)
C7—N3—C11—C1259.0 (3)O3—C20—C25—C24178.6 (3)
C9—N3—C11—C1258.1 (3)C21—C20—C25—C240.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.704 (3)162
O2—H2···N30.821.922.706 (3)161
O3—H3···N4i0.821.932.697 (3)155
O4—H4···N2ii0.821.952.710 (3)153
C5—H5B···O2iii0.972.633.576 (4)164
C6—H6A···O3iii0.972.693.417 (4)132
C10—H10A···O1iv0.972.623.369 (4)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1/2, z+3/2; (iv) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC6H12N2·C7H8O2
Mr236.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.2569 (6), 12.5985 (6), 16.8506 (9)
V3)2602.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.42 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13862, 2645, 2129
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.157, 1.06
No. of reflections2645
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
N1—C51.456 (4)O1—C131.357 (3)
N1—C11.459 (4)O2—C151.364 (3)
N1—C31.478 (4)C13—C141.390 (4)
N2—C21.462 (4)C13—C181.396 (3)
N2—C61.473 (4)C14—C151.384 (4)
N2—C41.479 (4)C15—C161.390 (3)
C1—C21.540 (4)C16—C171.386 (4)
C3—C41.531 (4)C17—C181.379 (4)
C5—C61.540 (4)C17—C191.515 (4)
N1—C1—C2—N21.2 (4)N3—C7—C8—N40.3 (4)
N1—C3—C4—N20.5 (4)N3—C9—C10—N42.3 (4)
N1—C5—C6—N22.0 (4)N3—C11—C12—N40.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.704 (3)162
O2—H2···N30.821.922.706 (3)161
O3—H3···N4i0.821.932.697 (3)155
O4—H4···N2ii0.821.952.710 (3)153
C5—H5B···O2iii0.972.633.576 (4)164
C6—H6A···O3iii0.972.693.417 (4)132
C10—H10A···O1iv0.972.623.369 (4)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1/2, z+3/2; (iv) x1/2, y+3/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds