Download citation
Download citation
link to html
The crystal structures of three compounds of glycine and inorganic materials are presented and discussed. The ortho­rhombic structure of glycinesulfatodilithium(I), [Li2(SO4)(C2H5NO2)]n, consists of corrugated sheets of [LiO4] and [SO4] tetrahedra. The glycine mol­ecules are located between these sheets. The main features of the monoclinic structure of di­aqua­di­chloro­glycinenickel(II), [NiCl2(C2H5NO2)(H2O)2]n, are helical chains of [NiO4Cl2] octahedra connected by glycine mol­ecules. The orthorhombic structure of tri­aqua­glycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3]n, is made up of [O3SOZnO5] clusters. These clusters are linked by glycine mol­ecules into zigzag chains. All three compounds are examples of non-centrosymmetric glycine compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104009825/hj1004sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104009825/hj1004Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104009825/hj1004IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104009825/hj1004IIIsup4.hkl
Contains datablock III

CCDC references: 243586; 243587; 243588

Comment top

In the course of our search for new non-centrosymmetric compounds, we have investigated compounds of glycine and inorganic materials. The Cambridge Structural Database (CSD; Allen, 2002) contains over 200 glycine compounds, nearly a third of which are non-centrosymmetric. However, in most of these substances, glyince is combined with other organic molecules. Only 20 compounds of glycine and inorganic materials were found. We focus here exclusively on such compounds, rather than structures containing other organic molecules. In contrast to the chiral amino acids, non-chiral glycine (as a structural unit) cannot enforce non-centrosymmetry of a crystal structure. However, many compounds of glycine are polar [e.g. glycine sodium nitrate, space group Cc (Krishnakumar et al., 2001), glycine calcium dichloride, space group Pb21a (Ravikumar et al., 1986), glycine calcium dibromide, space group Pbc21 (Mohana Rao & Natarajan, 1980) and glycine zinc chloride, space group Pbn21 (Hariharan et al., 1989)]. Even two of the three polymorphs of pure glycine are non-centrosymmetric, namely β-glycine (space group P21; Drebushchak et al., 2002) and γ-glycine (space group P32; Shimon et al., 1986). Since the glycine molecule as an amphoteric can assume cationic, anionic and zwitterionic forms, the molecule can combine with anionic, cationic and overall neutral chemical constituents, and thus a large number of possible glycine compounds exist. We have therefore started a study of such compounds of glycine and inorganic materials. We present here three new non-centrosymmetric structures of this type. All three represent new structure types, i.e. no isostructural compounds are known.

The structure of glycine lithium sulfate (Fig. 1) is composed of corrugated sheets of [LiO4] tetrahedra and [SO4] tetrahedra parallel to (001). These sheets consist of three crystallographically different tetrahedra (around Li1, Li2 and S) that are connected by common corners (represented by atoms O2S, O3S and O4S; Fig. 4). The tip of each tetrahedron (i.e. the corner not connected to other tetrahedra) faces away from the sheet. Since the O atoms forming the tips of the Li1- and Li2-tetrahedra belong to the carboxyl group of the glycine molecule, these neighboring tips are close to one another [O1—O2 = 2.238 (2) Å], twisting the polyhedra towards the glycine molecule and corrugating the sheets (Fig. 5). Consequently, the glycine molecules are located in the interstices between the sheets. The sheets are therefore connected only by weak hydrogen bonds. It is interesting to note that the carboxyl groups, which effect the corrugation of the sheet, are spread more than usual; the O1—C1—O2 angle is 126.4 (2) ° and the O1—O2 distance is 2.238 (2) Å. The average values of these parameters based on literature data are 125.2° and 2.214 Å, respectively. A test for possible higher symmetry, using the program PLATON (Spek, 2000), suggests the space group Pnma, with a probability of 92%. However, refinement in this space group shows that the position of the NH3 group does not suit this symmetry (imagine these alleged mirror planes horizontally in Fig. 5).

The crystal structure of glycine nickel dichloride dihydrate (Fig. 2) is altogether different. It is composed of distorted [NiO4Cl2] octhedra, with atoms Cl1 and Cl2 located at adjacent corners. The two opposite corners are occupied by O atoms from the carboxyl group of the glycine molecule (O1 and O2). The two remaining corners are occupied by O atoms of water molecules (O1W and O2W). Atoms O1 and O2 of one Ni coordination sphere belong to two different glycine molecules. Thus each molecule connects two Ni polyhedra, forming infinite chains along [010]. Each chain is actually a left-handed helix around a 21 screw axis (Fig. 6). These chains are connected to one another by hydrogen bonds. Similar chains are common in L-malates, e.g. copper dihydrogen dimalate (Fleck et al., 2004).

Glycine zinc sulfate trihydrate (Fig. 3) can also be described as having a chain structure. Slightly irregular [ZnO6] octahedra are connected to [SO4] tetrahedra by one common corner, namely atom O3S, thus forming [O3SOZnO5] clusters (Fig. 7). Three corners of the [ZnO6] octahedra are occupied by O atoms of water molecules. The remaining two corners are occupied by O atoms from the caboxyl group of the glycine molecules. Thus these [O3SOZnO5] zinc sulfate clusters are connected to one another by the glycine molecules, thus forming zigzag chains along [100]. The chain is not a spiral, as reported for the above nickel compound, but can be described by means of the a-glide plane in (010). More than 70 years ago, Dubský & Rabas (1931) described a pentahydrate, (C2H5NO2)ZnSO4·5H2O. However, in our experiments, we obtained only the trihydrate, which in turn was not reported by Dubský & Rabas (1931).

We have compared the geometry of the glycine molecules in the title compounds and in α-glycine (Legros & Kvick, 1980), β-glycine (Drebushchak et al., 2002), γ-glycine (Shimon et al., 1986), glycine nickel sulfate hydrate (Peterkova et al., 1991) and glycine zinc chloride (Hariharan et al., 1989). Obviously, the molecular conformation is the geometrical feature with the highest degree of freedom. Comparing the O—C1—C2—N torsion angles (assuming no chemical difference between the two O atoms of the carboxyl group) we found more or less antiperiplanar (i.e. trans) conformations. In some compounds, large deviations from the ideal trans conformation (i.e. a torsion angle of 180 °) were observed [e.g. −157.4 (2) ° in β-glycine and −163.4 (2) ° in glycine zinc chloride]. In the title compounds, the torsion angles are −170.98 (15) (glycine lithium sulfate), −178.78 (13) (glycine nickel dichloride dihydrate) and −176.85 (18) ° (glycine zinc sulfate trihydrate). The differences in the interatomic distances and angles are much smaller. None of the distances and angles deviate significantly from the average values calculated from the structural data of the above compounds [C1—O1 = 1.25 (2) Å, C1—O2 = 1.26 (2) Å, C1—C2 = 1.52 (2) Å, C2—N = 1.48 (1) Å and O1—C1—O2 = 125.7 (19) °; cf. Tables XXX). The only noteworthy deviation from these values occurs in glycine zinc chloride, where both carboxyl O atoms are virtually equidistant from the C atom. Obviously, the mesomeric effect is more pronounced in this salt than in the other compounds.

Experimental top

The crystals of the title compounds were grown from aqueous solutions of glycine and lithium sulfate, nickel dichloride or zinc sulfate, respectively, in a stochiometric ratio. The solutions were evaporated slowly at a temperature of approximately 295 K over a period of four months. The syntheses yielded crystals of up to several millimeters in diameter.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: DIAMOND (Bergerhoff et al., 1997) for (I); ATOMS (Dowty, 1999) for (II), (III). For all compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : The connectivity in glycine lithium sulfate, (C2H5NO2)Li2(SO4), with displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 3/2 − x, 1/2 + y, z + 1/2; (ii) x, 1 + y, z; (iii) 3/2 − x, y − 1/2, z − 1/2; (iv) 3/2 − x, y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. : The connectivity in glycine nickel dichloride dihydrate, (C2H5NO2)NiCl2·2(H2O), with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 2 − x, y + 1/2, 1 − z.]
[Figure 3] Fig. 3. : The connectivity in glycine zinc sulfate trihydrate, (C2H5NO2)Zn (SO4)·3(H2O), with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) x − 1/2, − y, z.]
[Figure 4] Fig. 4. : The crystal structure of glycine lithium sulfate, (C2H5NO2)Li2(SO4), in a view perpendicular to the sheets. In the online version of the journal, [LiO4] tetrahedra are shown in red and [SO4] tetrahedra in yellow.
[Figure 5] Fig. 5. : The crystal structure of glycine lithium sulfate, viewed along [010]. The corrugated sheets are oriented vertically. Note the position of the acid group, forcing the tips of the Li1 and Li2 tetrahedra together. Colours in the online version of the journal are as in Fig. 4.
[Figure 6] Fig. 6. : The crystal structure of glycine nickel dichloride dihydrate (C2H5NO2)NiCl2·2(H2O), in a view along [010], along the chains.
[Figure 7] Fig. 7. : The crystal structure of glycine zinc sulfate trihydrate, (C2H5NO2)Zn (SO4)·3(H2O), in a view along [010]. The chains are oriented horizontally. In the online version of the journal, [ZnO6] octahedra are coloured grey and [SO4] tetrahedra are coloured yellow.
(I) top
Crystal data top
[Li2(SO4)(C2H5O2N)]Dx = 1.953 Mg m3
Mr = 185.01Melting point: not determined K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1054 reflections
a = 16.423 (3) Åθ = 4.1–30.0°
b = 5.005 (1) ŵ = 0.49 mm1
c = 7.654 (2) ÅT = 293 K
V = 629.1 (2) Å3Prism, colourless
Z = 40.40 × 0.20 × 0.20 mm
F(000) = 376
Data collection top
Nonius Kappa CCD
diffractometer
1653 independent reflections
Radiation source: fine-focus sealed tube1582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 4.3°
ϕ and ω scansh = 2223
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
k = 77
Tmin = 0.827, Tmax = 0.908l = 1010
1653 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.088P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.28 e Å3
1653 reflectionsΔρmin = 0.36 e Å3
130 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.013 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.021 (4)
Crystal data top
[Li2(SO4)(C2H5O2N)]V = 629.1 (2) Å3
Mr = 185.01Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.423 (3) ŵ = 0.49 mm1
b = 5.005 (1) ÅT = 293 K
c = 7.654 (2) Å0.40 × 0.20 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
1653 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
1582 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.908Rint = 0.000
1653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.066Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.36 e Å3
1653 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
130 parametersAbsolute structure parameter: 0.021 (4)
1 restraint
Special details top

Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius Kappa diffractometer with CCD-area detector, using 282 frames with phi- and omega-increments of 1 degrees and a counting time of 20 s per frame. The crystal- to-detector-distance was 30 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by Direct methods (SHELXS97, Sheldrick, 1997) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F2 (SHELXL97, Sheldrick, 1997). All hydrogen atoms were refined freely.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.6948 (3)0.7389 (6)0.4648 (5)0.0179 (8)
Li20.7977 (2)0.2373 (7)0.5271 (5)0.0201 (8)
S0.668617 (16)0.23198 (5)0.24330 (12)0.01183 (11)
O1S0.58049 (6)0.2620 (2)0.2328 (5)0.0247 (3)
O2S0.69785 (7)0.3563 (3)0.40610 (17)0.0203 (3)
O3S0.70821 (8)0.3604 (3)0.09065 (18)0.0196 (3)
O4S0.69165 (5)0.05380 (17)0.2446 (3)0.01856 (19)
O10.60013 (8)0.8445 (3)0.59255 (17)0.0234 (3)
O20.61244 (9)0.8091 (3)0.8828 (2)0.0266 (3)
C10.59173 (7)0.9283 (2)0.7464 (3)0.0167 (2)
C20.55194 (11)1.1987 (3)0.7733 (2)0.0227 (4)
H1C0.5123 (18)1.183 (6)0.863 (4)0.039 (7)*
H2C0.5921 (15)1.320 (5)0.810 (3)0.034 (6)*
N0.51813 (10)1.3043 (4)0.6094 (2)0.0266 (3)
H1N0.5538 (18)1.294 (5)0.530 (5)0.043 (7)*
H2N0.471 (2)1.205 (6)0.597 (5)0.064 (9)*
H3N0.4959 (18)1.452 (6)0.627 (4)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0202 (16)0.0154 (19)0.0182 (19)0.0008 (10)0.0008 (14)0.0011 (11)
Li20.0257 (19)0.0181 (19)0.0166 (19)0.0004 (11)0.0002 (15)0.0021 (11)
S0.01380 (15)0.01120 (15)0.01050 (15)0.00120 (9)0.0003 (2)0.0005 (2)
O1S0.0128 (5)0.0316 (5)0.0296 (8)0.0031 (3)0.0002 (7)0.0056 (6)
O2S0.0305 (6)0.0165 (7)0.0138 (6)0.0024 (5)0.0042 (5)0.0034 (6)
O3S0.0250 (6)0.0154 (6)0.0183 (6)0.0023 (5)0.0076 (5)0.0051 (6)
O4S0.0316 (5)0.0114 (4)0.0127 (4)0.0032 (3)0.0005 (6)0.0003 (6)
O10.0256 (6)0.0248 (6)0.0199 (6)0.0035 (5)0.0041 (5)0.0024 (6)
O20.0307 (7)0.0295 (7)0.0197 (7)0.0047 (6)0.0049 (6)0.0041 (6)
C10.0148 (5)0.0172 (5)0.0181 (5)0.0018 (4)0.0000 (8)0.0012 (8)
C20.0307 (8)0.0189 (6)0.0183 (10)0.0023 (6)0.0039 (6)0.0016 (6)
N0.0350 (8)0.0245 (7)0.0203 (7)0.0119 (6)0.0020 (6)0.0023 (6)
Geometric parameters (Å, º) top
Li1—O11.911 (4)O3S—Li1iii1.958 (4)
Li1—O3Si1.958 (4)O4S—Li2iii1.973 (5)
Li1—O2S1.968 (4)O4S—Li1vi1.980 (4)
Li1—O4Sii1.980 (4)O1—C11.258 (3)
Li2—O2iii1.878 (4)O2—C11.249 (3)
Li2—O3Siv1.950 (4)C1—C21.517 (2)
Li2—O4Si1.973 (5)C2—N1.470 (2)
Li2—O2S1.976 (4)C2—H1C0.95 (3)
S—O1S1.4573 (11)C2—H2C0.94 (3)
S—O2S1.4732 (17)N—H1N0.84 (3)
S—O4S1.4796 (9)N—H2N0.92 (4)
S—O3S1.4837 (17)N—H3N0.83 (3)
O3S—Li2v1.950 (4)
O1—Li1—O3Si108.9 (2)O2iii—Li2—Li1100.67 (16)
O1—Li1—O2S114.0 (2)O3Siv—Li2—Li1143.47 (16)
O3Si—Li1—O2S113.21 (19)O4Si—Li2—Li175.27 (14)
O1—Li1—O4Sii105.62 (18)O2S—Li2—Li138.93 (8)
O3Si—Li1—O4Sii106.10 (19)Si—Li2—Li161.04 (11)
O2S—Li1—O4Sii108.42 (19)S—Li2—Li160.69 (7)
O1—Li1—Sii86.87 (13)Li1vi—Li2—Li1109.87 (11)
O3Si—Li1—Sii97.93 (13)O2iii—Li2—Li1iv124.0 (2)
O2S—Li1—Sii132.03 (18)O3Siv—Li2—Li1iv75.82 (15)
O4Sii—Li1—Sii24.72 (6)O4Si—Li2—Li1iv32.07 (9)
O1—Li1—Li2ii98.32 (15)O2S—Li2—Li1iv119.9 (2)
O3Si—Li1—Li2ii38.60 (9)Si—Li2—Li1iv56.32 (10)
O2S—Li1—Li2ii144.83 (17)S—Li2—Li1iv137.78 (19)
O4Sii—Li1—Li2ii73.69 (13)Li1vi—Li2—Li1iv100.27 (14)
Sii—Li1—Li2ii59.96 (10)Li1—Li2—Li1iv100.00 (14)
O1—Li1—Li2126.58 (16)O1S—S—O2S109.07 (13)
O3Si—Li1—Li274.29 (10)O1S—S—O4S110.73 (6)
O2S—Li1—Li239.12 (14)O2S—S—O4S108.62 (11)
O4Sii—Li1—Li2125.18 (15)O1S—S—O3S110.32 (12)
Sii—Li1—Li2146.52 (12)O2S—S—O3S109.89 (6)
Li2ii—Li1—Li2109.87 (11)O4S—S—O3S108.18 (10)
O1—Li1—Li2v122.8 (2)O1S—S—Li1vi104.84 (11)
O3Si—Li1—Li2v117.6 (2)O2S—S—Li1vi79.86 (10)
O2S—Li1—Li2v76.61 (14)O3S—S—Li1vi137.11 (10)
O4Sii—Li1—Li2v31.94 (9)O1S—S—Li2iii103.61 (12)
Sii—Li1—Li2v56.42 (10)O2S—S—Li2iii138.41 (10)
Li2ii—Li1—Li2v97.92 (14)O3S—S—Li2iii81.03 (10)
Li2—Li1—Li2v97.67 (13)Li1vi—S—Li2iii67.26 (6)
O2iii—Li2—O3Siv111.8 (2)O1S—S—Li2137.07 (15)
O2iii—Li2—O4Si109.00 (19)O4S—S—Li279.94 (10)
O3Siv—Li2—O4Si107.9 (2)O3S—S—Li2104.69 (10)
O2iii—Li2—O2S108.6 (2)Li1vi—S—Li260.45 (11)
O3Siv—Li2—O2S111.51 (19)Li2iii—S—Li2105.71 (8)
O4Si—Li2—O2S108.00 (19)Li2iii—O4S—Li1vi116.00 (10)
O2iii—Li2—Si91.25 (14)O2—C1—O1126.41 (13)
O3Siv—Li2—Si131.57 (19)O2—C1—C2115.5 (2)
O4Si—Li2—Si24.49 (6)O1—C1—C2118.13 (18)
O2S—Li2—Si99.28 (14)N—C2—C1111.59 (16)
O2iii—Li2—S97.43 (16)N—C2—H1C112.8 (18)
O3Siv—Li2—S97.75 (15)C1—C2—H1C108.7 (19)
O4Si—Li2—S132.06 (17)N—C2—H2C106.8 (16)
O2S—Li2—S24.11 (8)C1—C2—H2C108.3 (16)
Si—Li2—S121.71 (12)H1C—C2—H2C109 (2)
O2iii—Li2—Li1vi119.99 (16)C2—N—H1N109 (2)
O3Siv—Li2—Li1vi38.77 (13)C2—N—H2N102 (2)
O4Si—Li2—Li1vi127.87 (14)H1N—N—H2N118 (3)
O2S—Li2—Li1vi73.32 (10)C2—N—H3N110 (2)
Si—Li2—Li1vi148.74 (12)H1N—N—H3N118 (3)
S—Li2—Li1vi59.60 (7)H2N—N—H3N97 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+3/2, y+1/2, z1/2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O1Sii0.84 (3)2.32 (4)3.066 (4)147 (3)
N—H2N···O2vii0.92 (4)2.14 (4)2.816 (2)130 (3)
N—H3N···O1Sviii0.83 (3)2.07 (3)2.868 (2)160 (3)
Symmetry codes: (ii) x, y+1, z; (vii) x+1, y+2, z1/2; (viii) x+1, y+2, z+1/2.
(II) top
Crystal data top
[NiCl2(C2H5O2N)(H2O)2]F(000) = 244
Mr = 240.71Dx = 2.142 Mg m3
Monoclinic, P21Melting point: not determined K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.203 (2) ÅCell parameters from 1197 reflections
b = 5.475 (1) Åθ = 4.1–30.0°
c = 8.311 (2) ŵ = 3.27 mm1
β = 90.97 (3)°T = 293 K
V = 373.21 (14) Å3Prism, green
Z = 20.20 × 0.10 × 0.10 mm
Data collection top
Nonius Kappa CCD
diffractometer
2170 independent reflections
Radiation source: fine-focus sealed tube2142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 4.5°
ω scansh = 1111
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
k = 77
Tmin = 0.561, Tmax = 0.736l = 1111
2170 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0166P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.003
S = 1.13Δρmax = 0.29 e Å3
2170 reflectionsΔρmin = 0.34 e Å3
128 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.127 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (8)
Crystal data top
[NiCl2(C2H5O2N)(H2O)2]V = 373.21 (14) Å3
Mr = 240.71Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.203 (2) ŵ = 3.27 mm1
b = 5.475 (1) ÅT = 293 K
c = 8.311 (2) Å0.20 × 0.10 × 0.10 mm
β = 90.97 (3)°
Data collection top
Nonius Kappa CCD
diffractometer
2170 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
2142 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.736Rint = 0.000
2170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016All H-atom parameters refined
wR(F2) = 0.038Δρmax = 0.29 e Å3
S = 1.13Δρmin = 0.34 e Å3
2170 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
128 parametersAbsolute structure parameter: 0.002 (8)
1 restraint
Special details top

Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius Kappa diffractometer with CCD-area detector, using 318 frames with an omega-increment of 2 degrees and a counting time of 30 s per frame. The crystal to detector distance was 25 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by automatic patterson methods (SHELXS97, Sheldrick, 1997) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F2 (SHELXL97, Sheldrick, 1997). All hydrogen atoms were refined freely.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.784803 (18)0.78457 (3)0.334887 (18)0.01347 (6)
Cl10.54116 (4)0.54991 (7)0.25002 (4)0.02017 (8)
Cl20.77352 (4)0.99840 (7)0.08732 (4)0.02162 (9)
O11.00165 (12)0.4518 (2)0.58500 (13)0.0183 (2)
O20.76111 (13)0.6377 (2)0.56224 (13)0.0179 (2)
C10.86615 (16)0.5169 (3)0.63931 (16)0.0149 (2)
C20.8260 (2)0.4484 (4)0.8103 (2)0.0277 (4)
H1C0.830 (3)0.259 (6)0.821 (3)0.041 (6)*
H2C0.895 (3)0.509 (5)0.879 (3)0.043 (7)*
N0.66229 (16)0.5314 (3)0.85727 (17)0.0212 (3)
H1N0.648 (4)0.541 (8)0.960 (4)0.074 (10)*
H2N0.580 (5)0.435 (8)0.804 (5)0.090 (13)*
H3N0.637 (5)0.679 (8)0.814 (5)0.086 (13)*
O1W0.92928 (14)0.4953 (2)0.26258 (14)0.0200 (2)
H1W10.889 (4)0.364 (6)0.225 (4)0.063 (9)*
H2W10.964 (3)0.449 (6)0.364 (4)0.046 (7)*
O2W0.65320 (18)1.0653 (3)0.43031 (17)0.0329 (3)
H1W20.598 (3)1.046 (7)0.520 (4)0.063 (9)*
H2W20.631 (3)1.180 (6)0.386 (4)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01401 (8)0.01378 (9)0.01262 (9)0.00057 (6)0.00000 (5)0.00155 (7)
Cl10.01818 (15)0.02103 (17)0.02124 (16)0.00242 (12)0.00178 (11)0.00289 (13)
Cl20.02621 (17)0.02273 (18)0.01585 (15)0.00328 (13)0.00192 (12)0.00540 (13)
O10.0166 (5)0.0224 (5)0.0160 (5)0.0052 (4)0.0011 (4)0.0028 (4)
O20.0175 (5)0.0220 (5)0.0143 (5)0.0047 (4)0.0007 (4)0.0052 (4)
C10.0165 (6)0.0140 (6)0.0142 (6)0.0013 (5)0.0000 (4)0.0013 (5)
C20.0197 (7)0.0439 (11)0.0198 (7)0.0079 (7)0.0042 (6)0.0145 (7)
N0.0212 (6)0.0249 (7)0.0177 (6)0.0015 (5)0.0042 (4)0.0010 (5)
O1W0.0228 (5)0.0183 (5)0.0191 (5)0.0032 (4)0.0006 (4)0.0011 (4)
O2W0.0459 (8)0.0223 (6)0.0312 (6)0.0161 (6)0.0197 (6)0.0100 (6)
Geometric parameters (Å, º) top
Ni—O2W2.0457 (14)C2—H1C1.04 (4)
Ni—O22.0658 (11)C2—H2C0.86 (3)
Ni—O1W2.0732 (12)N—H1N0.86 (3)
Ni—O1i2.0762 (11)N—H2N0.96 (4)
Ni—Cl22.3677 (6)N—H3N0.91 (4)
Ni—Cl12.4688 (6)O1W—H1W10.85 (4)
O1—C11.2582 (17)O1W—H2W10.92 (3)
O2—C11.2534 (18)O2W—H1W20.89 (3)
C1—C21.512 (2)O2W—H2W20.75 (3)
C2—N1.477 (2)
O2W—Ni—O283.08 (5)N—C2—C1112.68 (13)
O2W—Ni—O1W173.85 (5)N—C2—H1C108.1 (14)
O2—Ni—O1W91.76 (5)C1—C2—H1C108.7 (14)
O2W—Ni—O1i89.56 (6)N—C2—H2C107.1 (17)
O2—Ni—O1i88.30 (5)C1—C2—H2C112.0 (17)
O1W—Ni—O1i86.93 (5)H1C—C2—H2C108 (2)
O2W—Ni—Cl287.27 (4)C2—N—H1N115 (2)
O2—Ni—Cl2169.89 (3)C2—N—H2N110 (2)
O1W—Ni—Cl298.05 (4)H1N—N—H2N113 (3)
O1i—Ni—Cl294.64 (4)C2—N—H3N112 (3)
O2W—Ni—Cl194.11 (5)H1N—N—H3N108 (4)
O2—Ni—Cl188.31 (4)H2N—N—H3N99 (3)
O1W—Ni—Cl189.06 (4)Ni—O1W—H1W1122 (2)
O1i—Ni—Cl1174.67 (3)Ni—O1W—H2W196.6 (18)
Cl2—Ni—Cl189.40 (3)H1W1—O1W—H2W1102 (3)
O2—C1—O1124.74 (13)Ni—O2W—H1W2121 (2)
O2—C1—C2116.91 (13)Ni—O2W—H2W2125 (2)
O1—C1—C2118.35 (13)H1W2—O2W—H2W2113 (3)
Symmetry code: (i) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···Cl1ii0.86 (3)2.58 (3)3.4296 (17)167 (3)
N—H2N···Cl1iii0.96 (4)2.37 (4)3.2372 (16)150 (4)
N—H3N···Cl1iv0.91 (4)2.55 (4)3.4042 (17)156 (4)
O1W—H1W1···Cl2v0.85 (4)2.49 (4)3.3304 (14)174 (3)
O1W—H2W1···O10.92 (3)1.86 (3)2.7451 (17)161 (3)
O2W—H1W2···Cl1iv0.89 (3)2.24 (3)3.1226 (16)172 (3)
O2W—H2W2···Cl1vi0.75 (3)2.43 (3)3.1756 (15)176 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y1, z; (vi) x, y+1, z.
(III) top
Crystal data top
[Zn(SO4)(C2H5O2N)(H2O)3]Dx = 2.206 Mg m3
Mr = 290.55Melting point: not determined K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2456 reflections
a = 8.440 (2) Åθ = 3.5–37.8°
b = 8.278 (2) ŵ = 3.08 mm1
c = 12.521 (3) ÅT = 293 K
V = 874.8 (4) Å3Prism, colourless
Z = 40.10 × 0.05 × 0.05 mm
F(000) = 592
Data collection top
Nonius Kappa CCD
diffractometer
4460 independent reflections
Radiation source: fine-focus sealed tube3901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 37.8°, θmin = 3.5°
ω–scansh = 1414
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.748, Tmax = 0.861l = 2121
4460 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.023P)2 + 0.336P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.64 e Å3
4460 reflectionsΔρmin = 0.47 e Å3
172 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0018 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.006 (3)
Crystal data top
[Zn(SO4)(C2H5O2N)(H2O)3]V = 874.8 (4) Å3
Mr = 290.55Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.440 (2) ŵ = 3.08 mm1
b = 8.278 (2) ÅT = 293 K
c = 12.521 (3) Å0.10 × 0.05 × 0.05 mm
Data collection top
Nonius Kappa CCD
diffractometer
4460 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
3901 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.861Rint = 0.000
4460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.067Δρmax = 0.64 e Å3
S = 1.02Δρmin = 0.47 e Å3
4460 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
172 parametersAbsolute structure parameter: 0.006 (3)
1 restraint
Special details top

Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius Kappa diffractometer with CCD-area detector, using 476 frames with an omega-increment of 2 degrees and a counting time of 100 s per frame. The crystal to detector distance was 25 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by automatic patterson methods (SHELXS97, Sheldrick, 1997) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F2 (SHELXL97, Sheldrick, 1997). All hydrogen atoms were refined freely. The crystals proved to racemic twins, therefore TWIN refinement was employed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.04955 (2)0.19651 (2)0.497340 (18)0.01759 (5)
S0.02497 (5)0.27959 (5)0.75223 (4)0.01762 (7)
O1S0.1399 (2)0.2522 (2)0.78387 (15)0.0325 (3)
O2S0.1220 (2)0.1356 (2)0.77214 (14)0.0294 (3)
O3S0.0306 (2)0.32374 (19)0.63729 (12)0.0290 (3)
O4S0.0917 (2)0.4204 (2)0.81091 (14)0.0284 (3)
O10.27904 (15)0.11371 (17)0.50738 (15)0.0246 (3)
O20.51595 (18)0.03689 (17)0.56383 (14)0.0262 (3)
C10.4077 (2)0.1384 (2)0.55399 (14)0.0171 (3)
C20.4362 (2)0.3058 (2)0.60084 (19)0.0231 (3)
H1C0.370 (5)0.318 (5)0.660 (3)0.049 (10)*
H2C0.416 (4)0.386 (5)0.539 (3)0.038 (9)*
N0.5949 (3)0.3198 (3)0.6477 (2)0.0326 (4)
H1N0.668 (5)0.306 (4)0.590 (3)0.043 (10)*
H2N0.606 (5)0.406 (7)0.688 (4)0.067 (12)*
H3N0.592 (6)0.254 (7)0.688 (5)0.077 (17)*
O1W0.1282 (2)0.41992 (19)0.43295 (13)0.0243 (3)
H1W10.065 (4)0.460 (4)0.406 (3)0.027 (8)*
H2W10.195 (6)0.404 (5)0.399 (4)0.066 (14)*
O2W0.0595 (2)0.1182 (2)0.33418 (14)0.0268 (3)
H1W20.150 (5)0.120 (5)0.317 (3)0.045 (10)*
H2W20.015 (6)0.030 (6)0.318 (4)0.070 (13)*
O3W0.19955 (18)0.2132 (2)0.47292 (13)0.0249 (3)
H1W30.218 (5)0.223 (5)0.403 (4)0.059 (12)*
H2W30.223 (5)0.120 (6)0.477 (4)0.066 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01679 (7)0.01588 (8)0.02010 (8)0.00075 (6)0.00041 (9)0.00027 (8)
S0.01806 (16)0.01866 (16)0.01614 (16)0.00037 (13)0.00055 (13)0.00120 (14)
O1S0.0208 (7)0.0430 (10)0.0338 (8)0.0044 (6)0.0043 (6)0.0028 (7)
O2S0.0280 (7)0.0230 (7)0.0371 (9)0.0044 (6)0.0079 (6)0.0046 (6)
O3S0.0494 (10)0.0202 (6)0.0173 (6)0.0033 (6)0.0047 (6)0.0017 (5)
O4S0.0273 (7)0.0261 (7)0.0319 (8)0.0000 (6)0.0051 (6)0.0085 (6)
O10.0170 (5)0.0229 (5)0.0339 (8)0.0015 (4)0.0035 (6)0.0044 (6)
O20.0231 (6)0.0169 (6)0.0387 (8)0.0039 (5)0.0089 (6)0.0068 (6)
C10.0167 (6)0.0175 (7)0.0173 (6)0.0006 (5)0.0016 (5)0.0011 (5)
C20.0213 (8)0.0170 (7)0.0311 (9)0.0001 (6)0.0020 (6)0.0047 (7)
N0.0244 (8)0.0311 (10)0.0425 (11)0.0000 (7)0.0061 (8)0.0173 (9)
O1W0.0271 (7)0.0212 (6)0.0244 (7)0.0012 (5)0.0038 (5)0.0051 (5)
O2W0.0269 (7)0.0261 (7)0.0274 (7)0.0008 (6)0.0007 (5)0.0073 (6)
O3W0.0192 (6)0.0250 (7)0.0305 (8)0.0005 (5)0.0016 (5)0.0038 (5)
Geometric parameters (Å, º) top
Zn—O3S2.0507 (16)C2—N1.467 (3)
Zn—O12.0584 (13)C2—H1C0.93 (4)
Zn—O2i2.1229 (15)C2—H2C1.03 (4)
Zn—O1W2.1238 (16)N—H1N0.95 (4)
Zn—O3W2.1290 (16)N—H2N0.88 (5)
Zn—O2W2.1449 (18)N—H3N0.75 (6)
S—O1S1.4642 (18)O1W—H1W10.71 (3)
S—O2S1.4675 (16)O1W—H2W10.72 (5)
S—O3S1.4857 (17)O2W—H1W20.79 (4)
S—O4S1.4888 (16)O2W—H2W20.85 (5)
O1—C11.249 (2)O3W—H1W30.89 (5)
O2—C11.248 (2)O3W—H2W30.80 (5)
C1—C21.524 (3)
O3S—Zn—O1101.09 (7)O1—C1—C2117.75 (16)
O3S—Zn—O2i97.00 (7)N—C2—C1111.71 (16)
O1—Zn—O2i78.38 (6)N—C2—H1C103 (3)
O3S—Zn—O1W84.35 (7)C1—C2—H1C108 (2)
O1—Zn—O1W91.10 (7)N—C2—H2C113.6 (18)
O2i—Zn—O1W169.47 (6)C1—C2—H2C106 (2)
O3S—Zn—O3W90.70 (7)H1C—C2—H2C115 (3)
O1—Zn—O3W163.65 (6)C2—N—H1N106 (2)
O2i—Zn—O3W89.05 (6)C2—N—H2N113 (3)
O1W—Zn—O3W101.40 (7)H1N—N—H2N117 (3)
O3S—Zn—O2W166.43 (7)C2—N—H3N101 (4)
O1—Zn—O2W85.45 (7)H1N—N—H3N116 (5)
O2i—Zn—O2W95.96 (7)H2N—N—H3N102 (6)
O1W—Zn—O2W83.64 (7)Zn—O1W—H1W1110 (3)
O3W—Zn—O2W85.50 (6)Zn—O1W—H2W1108 (4)
O1S—S—O2S111.00 (11)H1W1—O1W—H2W1113 (5)
O1S—S—O3S109.29 (11)Zn—O2W—H1W2107 (3)
O2S—S—O3S110.28 (10)Zn—O2W—H2W2118 (3)
O1S—S—O4S110.34 (10)H1W2—O2W—H2W2112 (4)
O2S—S—O4S109.94 (10)Zn—O3W—H1W3109 (3)
O3S—S—O4S105.87 (10)Zn—O3W—H2W3100 (3)
O2—C1—O1124.95 (17)H1W3—O3W—H2W396 (4)
O2—C1—C2117.30 (16)
Symmetry code: (i) x1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O3Wii0.95 (4)2.00 (4)2.929 (3)164 (3)
N—H2N···O4Siii0.88 (5)2.11 (5)2.967 (3)165 (4)
N—H3N···O2Wiv0.75 (6)2.49 (6)3.151 (3)148 (5)
O1W—H1W1···O4Sv0.71 (3)2.04 (4)2.744 (2)171 (4)
O1W—H2W1···O4Svi0.72 (5)2.12 (5)2.815 (2)164 (5)
O2W—H1W2···O2Svi0.79 (4)2.01 (4)2.802 (2)177 (4)
O2W—H2W2···O2Svii0.85 (5)1.88 (5)2.714 (2)167 (5)
O3W—H1W3···O1Sviii0.89 (5)1.93 (5)2.747 (2)152 (4)
O3W—H2W3···O1i0.80 (5)1.97 (5)2.746 (2)164 (4)
Symmetry codes: (i) x1/2, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1, z; (iv) x+1/2, y, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y, z1/2; (vii) x, y, z1/2; (viii) x1/2, y, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Li2(SO4)(C2H5O2N)][NiCl2(C2H5O2N)(H2O)2][Zn(SO4)(C2H5O2N)(H2O)3]
Mr185.01240.71290.55
Crystal system, space groupOrthorhombic, Pna21Monoclinic, P21Orthorhombic, Pca21
Temperature (K)293293293
a, b, c (Å)16.423 (3), 5.005 (1), 7.654 (2)8.203 (2), 5.475 (1), 8.311 (2)8.440 (2), 8.278 (2), 12.521 (3)
α, β, γ (°)90, 90, 9090, 90.97 (3), 9090, 90, 90
V3)629.1 (2)373.21 (14)874.8 (4)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.493.273.08
Crystal size (mm)0.40 × 0.20 × 0.200.20 × 0.10 × 0.100.10 × 0.05 × 0.05
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Nonius Kappa CCD
diffractometer
Nonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Multi-scan
(Otwinowski & Minor, 1997)
Multi-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.827, 0.9080.561, 0.7360.748, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
1653, 1653, 1582 2170, 2170, 2142 4460, 4460, 3901
Rint0.0000.0000.000
(sin θ/λ)max1)0.7040.7040.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.09 0.016, 0.038, 1.13 0.030, 0.067, 1.02
No. of reflections165321704460
No. of parameters130128172
No. of restraints111
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.360.29, 0.340.64, 0.47
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.021 (4)0.002 (8)0.006 (3)

Computer programs: COLLECT (Nonius, 2003), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff et al., 1997), ATOMS (Dowty, 1999), SHELXL97.

Selected bond lengths (Å) for (I) top
Li1—O11.911 (4)O3S—Li2v1.950 (4)
Li1—O3Si1.958 (4)O3S—Li1iii1.958 (4)
Li1—O2S1.968 (4)O4S—Li2iii1.973 (5)
Li1—O4Sii1.980 (4)O1—C11.258 (3)
Li2—O2iii1.878 (4)O2—C11.249 (3)
Li2—O3Siv1.950 (4)C1—C21.517 (2)
Li2—O4Si1.973 (5)C2—N1.470 (2)
Li2—O2S1.976 (4)C2—H1C0.95 (3)
S—O1S1.4573 (11)C2—H2C0.94 (3)
S—O2S1.4732 (17)N—H1N0.84 (3)
S—O4S1.4796 (9)N—H2N0.92 (4)
S—O3S1.4837 (17)N—H3N0.83 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O1Sii0.84 (3)2.32 (4)3.066 (4)147 (3)
N—H2N···O2vi0.92 (4)2.14 (4)2.816 (2)130 (3)
N—H3N···O1Svii0.83 (3)2.07 (3)2.868 (2)160 (3)
Symmetry codes: (ii) x, y+1, z; (vi) x+1, y+2, z1/2; (vii) x+1, y+2, z+1/2.
Selected bond lengths (Å) for (II) top
Ni—O2W2.0457 (14)C2—H1C1.04 (4)
Ni—O22.0658 (11)C2—H2C0.86 (3)
Ni—O1W2.0732 (12)N—H1N0.86 (3)
Ni—O1i2.0762 (11)N—H2N0.96 (4)
Ni—Cl22.3677 (6)N—H3N0.91 (4)
Ni—Cl12.4688 (6)O1W—H1W10.85 (4)
O1—C11.2582 (17)O1W—H2W10.92 (3)
O2—C11.2534 (18)O2W—H1W20.89 (3)
C1—C21.512 (2)O2W—H2W20.75 (3)
C2—N1.477 (2)
Symmetry code: (i) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N—H1N···Cl1ii0.86 (3)2.58 (3)3.4296 (17)167 (3)
N—H2N···Cl1iii0.96 (4)2.37 (4)3.2372 (16)150 (4)
N—H3N···Cl1iv0.91 (4)2.55 (4)3.4042 (17)156 (4)
O1W—H1W1···Cl2v0.85 (4)2.49 (4)3.3304 (14)174 (3)
O1W—H2W1···O10.92 (3)1.86 (3)2.7451 (17)161 (3)
O2W—H1W2···Cl1iv0.89 (3)2.24 (3)3.1226 (16)172 (3)
O2W—H2W2···Cl1vi0.75 (3)2.43 (3)3.1756 (15)176 (3)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y1, z; (vi) x, y+1, z.
Selected bond lengths (Å) for (III) top
Zn—O3S2.0507 (16)C2—N1.467 (3)
Zn—O12.0584 (13)C2—H1C0.93 (4)
Zn—O2i2.1229 (15)C2—H2C1.03 (4)
Zn—O1W2.1238 (16)N—H1N0.95 (4)
Zn—O3W2.1290 (16)N—H2N0.88 (5)
Zn—O2W2.1449 (18)N—H3N0.75 (6)
S—O1S1.4642 (18)O1W—H1W10.71 (3)
S—O2S1.4675 (16)O1W—H2W10.72 (5)
S—O3S1.4857 (17)O2W—H1W20.79 (4)
S—O4S1.4888 (16)O2W—H2W20.85 (5)
O1—C11.249 (2)O3W—H1W30.89 (5)
O2—C11.248 (2)O3W—H2W30.80 (5)
C1—C21.524 (3)
Symmetry code: (i) x1/2, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O3Wii0.95 (4)2.00 (4)2.929 (3)164 (3)
N—H2N···O4Siii0.88 (5)2.11 (5)2.967 (3)165 (4)
N—H3N···O2Wiv0.75 (6)2.49 (6)3.151 (3)148 (5)
O1W—H1W1···O4Sv0.71 (3)2.04 (4)2.744 (2)171 (4)
O1W—H2W1···O4Svi0.72 (5)2.12 (5)2.815 (2)164 (5)
O2W—H1W2···O2Svi0.79 (4)2.01 (4)2.802 (2)177 (4)
O2W—H2W2···O2Svii0.85 (5)1.88 (5)2.714 (2)167 (5)
O3W—H1W3···O1Sviii0.89 (5)1.93 (5)2.747 (2)152 (4)
O3W—H2W3···O1i0.80 (5)1.97 (5)2.746 (2)164 (4)
Symmetry codes: (i) x1/2, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1, z; (iv) x+1/2, y, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y, z1/2; (vii) x, y, z1/2; (viii) x1/2, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds