Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The β-diketone 3-(4-cyano­phenyl)­pentane-2,4-dione crystallizes as the enol tautomer 4-(2-hydroxy-4-oxopent-2-en-3-yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H...O hydrogen bond [O...O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complex bis­[3-(4-cyano­phenyl)­pentane-2,4-dionato-κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β-diketonate O atoms in a slightly distorted square-planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104002938/hj1000sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104002938/hj1000Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104002938/hj1000IIsup3.hkl
Contains datablock II

CCDC references: 237904; 237905

Comment top

Metal-β-diketonate complexes are of interest for their host–guest chemistry (Soldatov & Ripmeester, 2001) and their application in chemical vapor deposition (CVD) of metal films (Borgharkar et al., 1999; Maverick et al., 2002). Our previous studies of metal-β-diketonate supramolecules (Maverick et al., 1986; 2001) have shown that the metal centers in these supramolecules can bind a variety of different guest molecules, making these kinds of compounds potentially useful in separation and sensors. The structures of 3-(4-cyanophenyl)pentane-2,4-dione (Hacac-C6H4—CN), (I), and its copper(II) complex, (II), are reported here. We are now attempting to utilize coordination of the CN moieties in (II) to other metal atoms in order to construct nanoporous materials.

The structure of (I) is shown in Fig. 1, and selected bond distances and angles are listed in Table 1. It exists as the enol tautomer, which is consistent with the solution NMR study (Dell'Erba et al., 1991). The bond distances, angles and hydrogen bonding distance [2.456 (2) Å] for O1···O2 are comparable to those reported in other 3-phenylpentane-2,4-dione derivatives (Emsley et al., 1989). The dihedral angle between the β-diketone plane and the phenyl ring is 78.28 (4)°, and the H atoms on methyl group C5 are disordered over two sets of sites.

Although the two β-diketonate moieties are almost coplanar with the Cu atom, they make an angle of 24.74 (6) ° with each other. This represents a twisting distortion of the two ligands, away from square–planar and towards tetrahedral geometry. Few four-coordinate copper(II) β-diketonate complexes show this type of distortion; of 59 such compounds for which coordinates were available in the Cambridge Structural Database (Allen et al., 1979), eight showed a noticeable amount (refcodes BIBFIB10, CAXRUO, JOXGIM, NILMUQ, PENTUX, SOJXIY01, TIRGIK, and ZUVSOY). The analogous dihedral angles for these structures range from 4.33 to 24.5 °, the largest value being for JOXGIM. In the case of BIBFIB10 (20.2 °), the distortion at the Cu atom is probably attributable to ring strain, which results from the Pt atom linking its two phosphino-β-diketone ligands. In the other structures, there are no obvious intermolecular interactions causing the distortions.

The average Cu—O distance in II [1.900 (6) Å] is slightly shorter than those found in two other copper(II) cyano-β-diketone complexes, viz. Cu(acac-CN)2 [1.920 (2) Å; Angelova et al., 1989] and Cu(dpm-CN)2 [1.924 (3) Å; Silvernail et al., 2001]. The dihedral angles between the β-diketone planes and phenyl rings are 71.07 (5) (O1, O2 and C1–C5/C6–C11) and 67.54 (5)° (O3, O4 and C13–C17/C18–C23). The intramolecular N1···N2 distance is 20.286 (2) Å, making (II) a very long building block for construction of nanometer-sized porous materials.

It is of interest to compare the packing of Cu(acac-Ph—CN)2 with other related metal-β-diketonate building blocks. Unlike bis(3-(4-pyridyl) pentane-2,4-dionato)copper(II), which crystallizes in two- and three-dimensional metal-organic frameworks because of intermolecular Cu···N coordination (Turner et al., 1997; Chen et al., 2003), Cu(acac-Ph—CN)2 is a molecular solid without any intermolecular Cu···N(C) coordination. In addition to the present Cu(acac-Ph—CN)2 structure, structures have been reported for three other bis(cyano-β-diketonato)M(II) compounds. In the structure of Cu(acac-CN)2 (Angelova et al., 1989), a fifth coordination site at the Cu atom is occupied by an N atom from an adjacent Cu(acac-CN)2 group, leading to the formation of one-dimensional Cu(acac-CN)2 chains. On the other hand, in the structures of Cu(dpm-CN)2 (Silvernail et al., 2001) and Co(acac-CN)2 (Angelova et al., 1991), nitrile N atoms occupy both the fifth and sixth coordination sites, forming two-dimensional (Cu(dpm-CN)2) and three-dimensional (Co(acac-CN)2) frameworks. These structural variations occur mainly because metal–nitrile coordination is weak. Thus slight changes in the β-diketone ligands and metal centers can cause substantial changes in intermolecular interactions in the crystal. We are now exploring the use of these metal-functionalized-β-diketonate `building blocks' in construction of nanometer-sized porous materials.

Experimental top

3-(4-cyanophenyl)pentane-2,4-dione, (I), was synthesized according to the procedure of Dell'Erba et al. (1991) and crystallized from ether–dichloromethane (4:1 volume ratio). A solution of Hacac-Ph—CN (I) (0.05 g, 0.25 mmol) in ethanol (5 ml) was mixed with Cu(CH3COO)2(H2O) (0.05 g, 0.25 mmol) in H2O (5 ml), and several drops of triethylamine were added. Compound (II) precipitated and was collected in 65% yield. Recrystallization of the crude product from acetonitrile produced crystals suitable for X-ray analysis.

Refinement top

The hydroxy H-atom positional parameters for (I) were refined. All other H atoms were treated as riding in idealized positions, with C—H distances of 0.95–0.98 Å, depending on atom type. A torsional parameter was refined for each methyl group. Methyl group C5 in (I) is disordered, and this group and was modeled as six equally spaced half-occupied positions in the expected torus. Uiso(H) values were taken to be 1.2Ueq of the attached atom (1.5Ueq for hydroxy and methyl atoms).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
(I) 4-(2-hydroxy-4-oxopent-2-en-3-yl)benzonitrile top
Crystal data top
C12H11NO2F(000) = 424
Mr = 201.22Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1990 reflections
a = 7.070 (5) Åθ = 2.5–26.0°
b = 11.644 (9) ŵ = 0.09 mm1
c = 12.2430 (11) ÅT = 100 K
β = 94.035 (3)°Plate fragment, colorless
V = 1005.4 (11) Å30.20 × 0.10 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
1396 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
ω scans with κ offsetsh = 88
8931 measured reflectionsk = 1414
1969 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.1248P]
where P = (Fo2 + 2Fc2)/3
1969 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H11NO2V = 1005.4 (11) Å3
Mr = 201.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.070 (5) ŵ = 0.09 mm1
b = 11.644 (9) ÅT = 100 K
c = 12.2430 (11) Å0.20 × 0.10 × 0.07 mm
β = 94.035 (3)°
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
1396 reflections with I > 2σ(I)
8931 measured reflectionsRint = 0.033
1969 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
1969 reflectionsΔρmin = 0.25 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.48769 (19)0.31127 (11)0.99362 (10)0.0310 (4)
O20.7718 (2)0.42543 (12)0.96421 (11)0.0335 (4)
H2O0.670 (4)0.367 (2)0.9953 (19)0.050*
N10.0985 (3)0.67949 (15)0.37053 (15)0.0403 (5)
C10.2021 (3)0.32336 (17)0.88139 (17)0.0321 (5)
H1A0.16920.25790.92670.048*
H1B0.18360.30230.80390.048*
H1C0.12060.38880.89620.048*
C20.4040 (3)0.35524 (15)0.90779 (15)0.0275 (4)
C30.4987 (3)0.43567 (15)0.84266 (15)0.0263 (4)
C40.6824 (3)0.46915 (16)0.87613 (16)0.0285 (5)
C50.7940 (3)0.55509 (18)0.81730 (18)0.0360 (5)
H5A0.91890.56490.85620.054*0.50
H5B0.72680.62880.81440.054*0.50
H5C0.80960.52810.74270.054*0.50
H5D0.71800.58290.75270.054*0.50
H5E0.91010.51910.79440.054*0.50
H5F0.82730.61980.86620.054*0.50
C60.4002 (3)0.48581 (16)0.74187 (15)0.0268 (4)
C70.3844 (3)0.42415 (16)0.64429 (15)0.0291 (5)
H70.43160.34780.64270.035*
C80.3006 (3)0.47256 (16)0.54949 (15)0.0304 (5)
H80.29130.42980.48320.036*
C90.2301 (3)0.58387 (16)0.55163 (15)0.0290 (5)
C100.2403 (3)0.64582 (16)0.64914 (16)0.0300 (5)
H100.18980.72130.65100.036*
C110.3244 (3)0.59677 (16)0.74305 (16)0.0300 (5)
H110.33090.63900.80960.036*
C120.1552 (3)0.63711 (17)0.45117 (17)0.0320 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (8)0.0286 (7)0.0281 (7)0.0019 (6)0.0002 (6)0.0040 (6)
O20.0336 (8)0.0337 (8)0.0324 (8)0.0024 (6)0.0040 (6)0.0001 (6)
N10.0445 (11)0.0397 (10)0.0355 (10)0.0073 (9)0.0045 (8)0.0044 (8)
C10.0329 (11)0.0299 (10)0.0336 (10)0.0008 (8)0.0033 (8)0.0055 (9)
C20.0338 (11)0.0218 (9)0.0270 (10)0.0043 (8)0.0025 (8)0.0031 (8)
C30.0301 (11)0.0224 (9)0.0264 (10)0.0023 (8)0.0019 (8)0.0002 (8)
C40.0318 (11)0.0249 (9)0.0290 (10)0.0045 (8)0.0027 (8)0.0035 (8)
C50.0326 (11)0.0342 (11)0.0413 (12)0.0037 (9)0.0028 (9)0.0025 (9)
C60.0265 (10)0.0255 (10)0.0288 (10)0.0014 (8)0.0038 (8)0.0012 (8)
C70.0337 (11)0.0232 (9)0.0305 (10)0.0003 (8)0.0019 (8)0.0012 (8)
C80.0354 (11)0.0295 (10)0.0260 (10)0.0055 (9)0.0010 (9)0.0019 (8)
C90.0271 (10)0.0306 (10)0.0290 (10)0.0049 (8)0.0001 (8)0.0051 (8)
C100.0315 (11)0.0264 (10)0.0320 (10)0.0011 (8)0.0009 (8)0.0030 (8)
C110.0356 (11)0.0279 (10)0.0263 (10)0.0013 (8)0.0023 (8)0.0014 (8)
C120.0309 (11)0.0318 (11)0.0328 (11)0.0043 (9)0.0014 (9)0.0013 (9)
Geometric parameters (Å, º) top
O1—C21.276 (2)C5—H5D0.9800
O2—C41.314 (2)C5—H5E0.9800
O2—H2O1.08 (3)C5—H5F0.9800
N1—C121.150 (3)C6—C71.392 (3)
C1—C21.489 (3)C6—C111.399 (3)
C1—H1A0.9800C7—C81.385 (3)
C1—H1B0.9800C7—H70.9500
C1—H1C0.9800C8—C91.390 (3)
C2—C31.427 (3)C8—H80.9500
C3—C41.389 (3)C9—C101.392 (3)
C3—C61.493 (3)C9—C121.444 (3)
C4—C51.491 (3)C10—C111.380 (3)
C5—H5A0.9800C10—H100.9500
C5—H5B0.9800C11—H110.9500
C5—H5C0.9800
C2—O1—H2O101.2 (10)H5B—C5—H5E141.1
C4—O2—H2O104.0 (13)H5C—C5—H5E56.3
C2—C1—H1A109.5H5D—C5—H5E109.5
C2—C1—H1B109.5C4—C5—H5F109.5
H1A—C1—H1B109.5H5A—C5—H5F56.3
C2—C1—H1C109.5H5B—C5—H5F56.3
H1A—C1—H1C109.5H5C—C5—H5F141.1
H1B—C1—H1C109.5H5D—C5—H5F109.5
O1—C2—C3120.99 (18)H5E—C5—H5F109.5
O1—C2—C1117.42 (17)C7—C6—C11118.52 (17)
C3—C2—C1121.53 (17)C7—C6—C3120.84 (16)
C4—C3—C2119.00 (17)C11—C6—C3120.63 (16)
C4—C3—C6120.40 (17)C8—C7—C6120.87 (18)
C2—C3—C6120.58 (17)C8—C7—H7119.6
O2—C4—C3121.28 (18)C6—C7—H7119.6
O2—C4—C5114.57 (18)C7—C8—C9119.78 (18)
C3—C4—C5124.14 (18)C7—C8—H8120.1
C4—C5—H5A109.5C9—C8—H8120.1
C4—C5—H5B109.5C8—C9—C10120.15 (17)
H5A—C5—H5B109.5C8—C9—C12119.66 (17)
C4—C5—H5C109.5C10—C9—C12120.11 (18)
H5A—C5—H5C109.5C11—C10—C9119.56 (18)
H5B—C5—H5C109.5C11—C10—H10120.2
C4—C5—H5D109.5C9—C10—H10120.2
H5A—C5—H5D141.1C10—C11—C6121.08 (18)
H5B—C5—H5D56.3C10—C11—H11119.5
H5C—C5—H5D56.3C6—C11—H11119.5
C4—C5—H5E109.5N1—C12—C9178.9 (2)
H5A—C5—H5E56.3
O1—C2—C3—C42.4 (3)C2—C3—C6—C11101.4 (2)
C1—C2—C3—C4174.87 (17)C11—C6—C7—C81.9 (3)
O1—C2—C3—C6179.45 (16)C3—C6—C7—C8177.06 (18)
C1—C2—C3—C63.3 (3)C6—C7—C8—C90.4 (3)
C2—C3—C4—O22.3 (3)C7—C8—C9—C101.2 (3)
C6—C3—C4—O2179.55 (16)C7—C8—C9—C12175.55 (18)
C2—C3—C4—C5178.01 (17)C8—C9—C10—C111.3 (3)
C6—C3—C4—C50.2 (3)C12—C9—C10—C11175.43 (18)
C4—C3—C6—C7102.1 (2)C9—C10—C11—C60.2 (3)
C2—C3—C6—C779.7 (2)C7—C6—C11—C101.8 (3)
C4—C3—C6—C1176.8 (3)C3—C6—C11—C10177.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O11.08 (3)1.44 (3)2.456 (2)153 (2)
(II) bis[3-(4-cyanophenyl)pentane-2,4-dionato-κ2O,O]copper(II) top
Crystal data top
[Cu(C12H10NO2)2]Z = 2
Mr = 463.96F(000) = 478
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6087 (10) ÅCell parameters from 6559 reflections
b = 9.260 (2) Åθ = 2.5–32.0°
c = 15.198 (3) ŵ = 1.11 mm1
α = 91.327 (8)°T = 100 K
β = 92.814 (8)°Fragment, blue-green
γ = 107.509 (12)°0.22 × 0.10 × 0.07 mm
V = 1019.1 (3) Å3
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
7082 independent reflections
Radiation source: fine-focus sealed tube5681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scans with κ offsetsθmax = 32.1°, θmin = 2.6°
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
h = 1011
Tmin = 0.793, Tmax = 0.927k = 1313
31552 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.023P)2 + 0.7093P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7082 reflectionsΔρmax = 0.44 e Å3
285 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (6)
Crystal data top
[Cu(C12H10NO2)2]γ = 107.509 (12)°
Mr = 463.96V = 1019.1 (3) Å3
Triclinic, P1Z = 2
a = 7.6087 (10) ÅMo Kα radiation
b = 9.260 (2) ŵ = 1.11 mm1
c = 15.198 (3) ÅT = 100 K
α = 91.327 (8)°0.22 × 0.10 × 0.07 mm
β = 92.814 (8)°
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
7082 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
5681 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.927Rint = 0.030
31552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
7082 reflectionsΔρmin = 0.53 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30072 (3)0.69219 (2)0.434532 (12)0.01640 (6)
O10.50600 (15)0.62536 (14)0.41004 (7)0.0192 (2)
O20.17323 (15)0.60823 (14)0.32549 (7)0.0190 (2)
O30.07902 (15)0.71769 (14)0.47396 (7)0.0199 (2)
O40.44600 (15)0.82044 (13)0.52842 (7)0.0178 (2)
N10.5919 (2)0.15695 (18)0.10331 (10)0.0281 (3)
N20.0244 (2)1.22657 (18)0.97707 (10)0.0247 (3)
C10.6982 (2)0.50069 (19)0.34782 (11)0.0191 (3)
H1A0.79940.57890.32340.029*
H1B0.67630.40490.31390.029*
H1C0.73100.48700.40960.029*
C20.5258 (2)0.54869 (18)0.34249 (10)0.0160 (3)
C30.4001 (2)0.50698 (18)0.26789 (10)0.0153 (3)
C40.2314 (2)0.54150 (18)0.26348 (10)0.0161 (3)
C50.1034 (2)0.5029 (2)0.18164 (10)0.0194 (3)
H5A0.02380.48790.19780.029*
H5B0.11240.40970.15300.029*
H5C0.13840.58600.14090.029*
C60.4490 (2)0.42633 (18)0.19088 (10)0.0152 (3)
C70.5900 (2)0.50294 (19)0.13793 (10)0.0184 (3)
H70.65680.60580.15240.022*
C80.6342 (2)0.43164 (19)0.06464 (11)0.0195 (3)
H80.73130.48490.02970.023*
C90.5349 (2)0.28088 (19)0.04277 (11)0.0182 (3)
C100.3959 (2)0.20118 (19)0.09581 (11)0.0192 (3)
H100.33000.09800.08170.023*
C110.3550 (2)0.27416 (18)0.16924 (11)0.0181 (3)
H110.26120.21960.20550.022*
C120.5689 (2)0.2104 (2)0.03774 (11)0.0213 (3)
C130.1417 (2)0.7632 (2)0.56388 (11)0.0226 (3)
H13A0.17950.84590.53790.034*
H13B0.15510.76510.62770.034*
H13C0.21970.66600.53760.034*
C140.0572 (2)0.78264 (19)0.54615 (10)0.0169 (3)
C150.2016 (2)0.86747 (18)0.60544 (10)0.0147 (3)
C160.3885 (2)0.88461 (18)0.59124 (10)0.0158 (3)
C170.5394 (2)0.9829 (2)0.65382 (11)0.0203 (3)
H17A0.55670.92460.70480.030*
H17B0.50481.07150.67380.030*
H17C0.65471.01650.62350.030*
C180.1553 (2)0.94125 (18)0.68629 (10)0.0153 (3)
C190.0813 (2)1.06172 (19)0.67991 (10)0.0184 (3)
H190.05931.09700.62350.022*
C200.0393 (2)1.13089 (19)0.75461 (10)0.0189 (3)
H200.01401.21110.74930.023*
C210.0760 (2)1.08144 (18)0.83754 (10)0.0170 (3)
C220.1503 (2)0.96118 (19)0.84553 (10)0.0187 (3)
H220.17470.92730.90200.022*
C230.1879 (2)0.89181 (19)0.76992 (10)0.0179 (3)
H230.23670.80910.77510.021*
C240.0445 (2)1.1598 (2)0.91583 (10)0.0192 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01405 (10)0.02094 (11)0.01507 (10)0.00703 (7)0.00001 (7)0.00351 (7)
O10.0163 (5)0.0254 (6)0.0175 (5)0.0093 (5)0.0013 (4)0.0056 (5)
O20.0161 (5)0.0263 (6)0.0160 (5)0.0091 (5)0.0007 (4)0.0052 (4)
O30.0148 (5)0.0282 (7)0.0171 (5)0.0080 (5)0.0004 (4)0.0067 (5)
O40.0139 (5)0.0222 (6)0.0174 (5)0.0061 (4)0.0002 (4)0.0044 (4)
N10.0288 (8)0.0270 (8)0.0286 (8)0.0088 (7)0.0032 (6)0.0085 (6)
N20.0277 (8)0.0267 (8)0.0197 (7)0.0080 (6)0.0035 (6)0.0022 (6)
C10.0165 (7)0.0219 (8)0.0206 (7)0.0092 (6)0.0020 (6)0.0030 (6)
C20.0141 (7)0.0180 (7)0.0159 (7)0.0049 (6)0.0010 (5)0.0000 (6)
C30.0150 (7)0.0159 (7)0.0152 (7)0.0050 (6)0.0014 (5)0.0012 (5)
C40.0151 (7)0.0170 (7)0.0157 (7)0.0044 (6)0.0007 (5)0.0002 (6)
C50.0160 (7)0.0256 (9)0.0175 (7)0.0086 (6)0.0016 (6)0.0036 (6)
C60.0132 (7)0.0178 (7)0.0153 (7)0.0060 (6)0.0003 (5)0.0004 (6)
C70.0172 (7)0.0177 (8)0.0188 (7)0.0033 (6)0.0005 (6)0.0035 (6)
C80.0167 (7)0.0216 (8)0.0184 (7)0.0032 (6)0.0027 (6)0.0025 (6)
C90.0164 (7)0.0205 (8)0.0191 (7)0.0084 (6)0.0008 (6)0.0034 (6)
C100.0175 (7)0.0155 (7)0.0241 (8)0.0047 (6)0.0000 (6)0.0026 (6)
C110.0157 (7)0.0179 (8)0.0204 (7)0.0045 (6)0.0021 (6)0.0004 (6)
C120.0182 (7)0.0205 (8)0.0256 (8)0.0069 (6)0.0003 (6)0.0037 (6)
C130.0152 (7)0.0323 (10)0.0193 (8)0.0062 (7)0.0005 (6)0.0065 (7)
C140.0164 (7)0.0206 (8)0.0147 (7)0.0074 (6)0.0008 (5)0.0005 (6)
C150.0150 (7)0.0176 (7)0.0125 (6)0.0066 (6)0.0006 (5)0.0010 (5)
C160.0166 (7)0.0171 (7)0.0143 (7)0.0058 (6)0.0002 (5)0.0013 (5)
C170.0164 (7)0.0240 (8)0.0187 (7)0.0038 (6)0.0001 (6)0.0020 (6)
C180.0159 (7)0.0165 (7)0.0131 (6)0.0048 (6)0.0000 (5)0.0007 (5)
C190.0207 (8)0.0223 (8)0.0140 (7)0.0093 (6)0.0009 (6)0.0001 (6)
C200.0201 (7)0.0204 (8)0.0180 (7)0.0088 (6)0.0003 (6)0.0012 (6)
C210.0142 (7)0.0189 (8)0.0157 (7)0.0015 (6)0.0023 (5)0.0017 (6)
C220.0185 (7)0.0225 (8)0.0148 (7)0.0060 (6)0.0013 (6)0.0021 (6)
C230.0188 (7)0.0181 (8)0.0178 (7)0.0070 (6)0.0013 (6)0.0022 (6)
C240.0172 (7)0.0226 (8)0.0165 (7)0.0042 (6)0.0014 (6)0.0002 (6)
Geometric parameters (Å, º) top
Cu1—O11.8946 (11)C9—C101.398 (2)
Cu1—O31.8954 (11)C9—C121.444 (2)
Cu1—O21.9028 (11)C10—C111.387 (2)
Cu1—O41.9092 (11)C10—H100.9500
O1—C21.2751 (18)C11—H110.9500
O2—C41.2823 (18)C13—C141.507 (2)
O3—C141.2809 (18)C13—H13A0.9800
O4—C161.2757 (18)C13—H13B0.9800
N1—C121.147 (2)C13—H13C0.9800
N2—C241.148 (2)C14—C151.410 (2)
C1—C21.506 (2)C15—C161.411 (2)
C1—H1A0.9800C15—C181.500 (2)
C1—H1B0.9800C16—C171.508 (2)
C1—H1C0.9800C17—H17A0.9800
C2—C31.414 (2)C17—H17B0.9800
C3—C41.412 (2)C17—H17C0.9800
C3—C61.495 (2)C18—C191.396 (2)
C4—C51.508 (2)C18—C231.397 (2)
C5—H5A0.9800C19—C201.388 (2)
C5—H5B0.9800C19—H190.9500
C5—H5C0.9800C20—C211.395 (2)
C6—C111.398 (2)C20—H200.9500
C6—C71.398 (2)C21—C221.397 (2)
C7—C81.388 (2)C21—C241.446 (2)
C7—H70.9500C22—C231.387 (2)
C8—C91.396 (2)C22—H220.9500
C8—H80.9500C23—H230.9500
O1—Cu1—O3166.74 (5)C9—C10—H10120.3
O1—Cu1—O292.44 (5)C10—C11—C6121.29 (15)
O3—Cu1—O289.28 (5)C10—C11—H11119.4
O1—Cu1—O489.21 (5)C6—C11—H11119.4
O3—Cu1—O492.28 (5)N1—C12—C9177.52 (18)
O2—Cu1—O4166.07 (5)C14—C13—H13A109.5
C2—O1—Cu1127.74 (10)C14—C13—H13B109.5
C4—O2—Cu1127.54 (10)H13A—C13—H13B109.5
C14—O3—Cu1127.52 (10)C14—C13—H13C109.5
C16—O4—Cu1127.30 (10)H13A—C13—H13C109.5
C2—C1—H1A109.5H13B—C13—H13C109.5
C2—C1—H1B109.5O3—C14—C15124.95 (14)
H1A—C1—H1B109.5O3—C14—C13114.10 (14)
C2—C1—H1C109.5C15—C14—C13120.95 (14)
H1A—C1—H1C109.5C14—C15—C16122.00 (14)
H1B—C1—H1C109.5C14—C15—C18119.07 (13)
O1—C2—C3125.21 (14)C16—C15—C18118.93 (13)
O1—C2—C1114.18 (13)O4—C16—C15125.27 (14)
C3—C2—C1120.61 (14)O4—C16—C17114.39 (14)
C4—C3—C2121.93 (14)C15—C16—C17120.33 (14)
C4—C3—C6119.11 (13)C16—C17—H17A109.5
C2—C3—C6118.95 (13)C16—C17—H17B109.5
O2—C4—C3124.89 (14)H17A—C17—H17B109.5
O2—C4—C5113.94 (13)C16—C17—H17C109.5
C3—C4—C5121.16 (14)H17A—C17—H17C109.5
C4—C5—H5A109.5H17B—C17—H17C109.5
C4—C5—H5B109.5C19—C18—C23118.55 (14)
H5A—C5—H5B109.5C19—C18—C15120.97 (13)
C4—C5—H5C109.5C23—C18—C15120.48 (14)
H5A—C5—H5C109.5C20—C19—C18121.15 (15)
H5B—C5—H5C109.5C20—C19—H19119.4
C11—C6—C7118.30 (14)C18—C19—H19119.4
C11—C6—C3121.41 (14)C19—C20—C21119.31 (15)
C7—C6—C3120.29 (14)C19—C20—H20120.3
C8—C7—C6121.31 (15)C21—C20—H20120.3
C8—C7—H7119.3C20—C21—C22120.51 (14)
C6—C7—H7119.3C20—C21—C24119.59 (15)
C7—C8—C9119.42 (15)C22—C21—C24119.84 (14)
C7—C8—H8120.3C23—C22—C21119.18 (15)
C9—C8—H8120.3C23—C22—H22120.4
C8—C9—C10120.22 (14)C21—C22—H22120.4
C8—C9—C12119.64 (15)C22—C23—C18121.27 (15)
C10—C9—C12120.04 (15)C22—C23—H23119.4
C11—C10—C9119.42 (15)C18—C23—H23119.4
C11—C10—H10120.3N2—C24—C21177.47 (19)
O3—Cu1—O1—C295.4 (2)C7—C8—C9—C12174.37 (15)
O2—Cu1—O1—C21.81 (14)C8—C9—C10—C111.3 (2)
O4—Cu1—O1—C2167.98 (14)C12—C9—C10—C11174.95 (15)
O1—Cu1—O2—C43.18 (14)C9—C10—C11—C60.6 (2)
O3—Cu1—O2—C4170.02 (14)C7—C6—C11—C101.8 (2)
O4—Cu1—O2—C493.4 (2)C3—C6—C11—C10177.53 (14)
O1—Cu1—O3—C1487.7 (3)Cu1—O3—C14—C159.5 (2)
O2—Cu1—O3—C14174.74 (14)Cu1—O3—C14—C13171.22 (11)
O4—Cu1—O3—C148.58 (14)O3—C14—C15—C162.1 (3)
O1—Cu1—O4—C16164.22 (14)C13—C14—C15—C16178.64 (16)
O3—Cu1—O4—C162.59 (14)O3—C14—C15—C18178.14 (15)
O2—Cu1—O4—C1698.8 (2)C13—C14—C15—C181.1 (2)
Cu1—O1—C2—C34.9 (2)Cu1—O4—C16—C152.8 (2)
Cu1—O1—C2—C1174.10 (11)Cu1—O4—C16—C17178.33 (11)
O1—C2—C3—C43.3 (3)C14—C15—C16—O44.3 (3)
C1—C2—C3—C4175.68 (15)C18—C15—C16—O4175.41 (15)
O1—C2—C3—C6175.63 (15)C14—C15—C16—C17176.85 (15)
C1—C2—C3—C65.4 (2)C18—C15—C16—C173.4 (2)
Cu1—O2—C4—C35.3 (2)C14—C15—C18—C1968.1 (2)
Cu1—O2—C4—C5173.84 (11)C16—C15—C18—C19112.11 (18)
C2—C3—C4—O22.1 (3)C14—C15—C18—C23112.71 (18)
C6—C3—C4—O2179.00 (15)C16—C15—C18—C2367.0 (2)
C2—C3—C4—C5176.98 (15)C23—C18—C19—C200.5 (2)
C6—C3—C4—C51.9 (2)C15—C18—C19—C20179.63 (15)
C4—C3—C6—C1170.5 (2)C18—C19—C20—C211.6 (3)
C2—C3—C6—C11110.55 (18)C19—C20—C21—C221.5 (2)
C4—C3—C6—C7108.85 (18)C19—C20—C21—C24175.75 (15)
C2—C3—C6—C770.1 (2)C20—C21—C22—C230.3 (2)
C11—C6—C7—C81.2 (2)C24—C21—C22—C23176.98 (15)
C3—C6—C7—C8178.15 (15)C21—C22—C23—C180.9 (2)
C6—C7—C8—C90.6 (2)C19—C18—C23—C220.8 (2)
C7—C8—C9—C101.9 (2)C15—C18—C23—C22178.37 (15)

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H11NO2[Cu(C12H10NO2)2]
Mr201.22463.96
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)7.070 (5), 11.644 (9), 12.2430 (11)7.6087 (10), 9.260 (2), 15.198 (3)
α, β, γ (°)90, 94.035 (3), 9091.327 (8), 92.814 (8), 107.509 (12)
V3)1005.4 (11)1019.1 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.091.11
Crystal size (mm)0.20 × 0.10 × 0.070.22 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD (with Oxford Cryostream)
diffractometer
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.793, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
8931, 1969, 1396 31552, 7082, 5681
Rint0.0330.030
(sin θ/λ)max1)0.6170.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.02 0.038, 0.087, 1.04
No. of reflections19697082
No. of parameters140285
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.250.44, 0.53

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O1—C21.276 (2)C2—C31.427 (3)
O2—C41.314 (2)C3—C41.389 (3)
N1—C121.150 (3)
O1—C2—C3120.99 (18)O2—C4—C3121.28 (18)
C4—C3—C2119.00 (17)N1—C12—C9178.9 (2)
C2—C3—C6—C779.7 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O11.08 (3)1.44 (3)2.456 (2)153 (2)
Selected geometric parameters (Å, º) for (II) top
Cu1—O11.8946 (11)O2—C41.2823 (18)
Cu1—O31.8954 (11)O3—C141.2809 (18)
Cu1—O21.9028 (11)O4—C161.2757 (18)
Cu1—O41.9092 (11)N1—C121.147 (2)
O1—C21.2751 (18)N2—C241.148 (2)
O1—Cu1—O3166.74 (5)O3—Cu1—O492.28 (5)
O1—Cu1—O292.44 (5)O2—Cu1—O4166.07 (5)
O3—Cu1—O289.28 (5)N1—C12—C9177.52 (18)
O1—Cu1—O489.21 (5)N2—C24—C21177.47 (19)
C2—C3—C6—C770.1 (2)C14—C15—C18—C1968.1 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds