Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
X-ray absorption spectroscopy (XAS), including extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) analysis, has been carried out at the Zn K edge of the N-terminal part of the integrase protein of the human immunodeficiency virus, type 2 (HIV-2), and of some zinc coordination compounds. In the presence of excess β-mercaptoethanol, which was present in the NMR structure elucidation of the protein [Eijkelenboom et al. (1997), Curr. Biol. 7, 739–746; (2000), J. Biomol. NMR, 18, 119–28], the protein spectrum was nearly identical to that recorded in its absence. Comparison of the XANES of the protein with that of model compounds and literature data permits the conclusion that the Zn ion is four-coordinated. The major shell of the EXAFS provides evidence for a mixed (N or O as well as S) coordination sphere, while the minor shells indicate imidazole coordination. Our approach to the analysis of the EXAFS, including quantification of the imidazole by multiple scattering simulations with EXCURV92, was validated on the model compounds. An important result is that with multiple scattering simulations using restraints on the parameters of the imidazole rings the number of imidazoles and their orientation could be determined. The integrase spectra can be fitted with two sulfur ligands at 2.26 Å (Debye–Waller-type factor 0.009 Å2) and two imidazole ligands with the N atoms at 1.99 Å (Debye–Waller-type factor 0.005 Å2). The XAS-derived geometry is fully consistent with that found in the NMR structure determination and, allowing for the volume contraction due to the temperature difference between the experiments, justifies the restraints applied in the structure calculation (Zn—S and Zn—N distances of 2.3 Å and 2.0 Å, respectively).

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds