Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C6H8O4S2)(C10H9N3)]n, the 3,3′-dithio­dipropionate anion, which acts as a bridge, is tetra­dentate to di-2-pyridylamine-coordinated copper(II) ions, forming a polymeric helical chain. The geometry of the copper(II) ion is that of a distorted octa­hedron. There are hydrogen bonds between two adjacent helical chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042364/hg6825sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042364/hg6825Isup2.hkl
Contains datablock I

CCDC reference: 296576

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.039
  • wR factor = 0.089
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Structural studies on compounds with disulfide bonds are helpful in understanding the mechanisms of how proteins fold (Ganesh et al., 1990 or 2002; Toby et al., 1981). In this work, we report the stucture of the title polymeric copper complex, (I).

In (I), each copper ion coordinates to four O atoms from two carboxylate groups of two 3,3'-dithiodipropionato anions and two N atoms from di-2-pyridylamine (Fig. 1). O1 and O3 coordinate to copper atoms with a typical Cu—O (carboxylate) bond lengths ranging from 1.953 (2)–1.975 (2) Å (Yang & Li, 2005). O2 and O4 coordinate to the Cu atoms with significantly longer bond lengths of 2.777 (3) Å and 2.530 (2) Å, respectively, resulting in considerable distortion of the geometry of the copper(II) coordination sphere. Each 3,3'-dithiodipropionato anion bridges two copper ions, forming a polymeric helical chain structure (Fig. 2).

Experimental top

A solution of CuCl2·2H2O (0.08 g, 0.5 mmol) in water (10 ml) was mixed with a dimethylformamide solution (10 ml) of di-2-pyridylamine (0.08, 0.5 mmol) and 3,3'-dithiodipropionic acid (0.10 g, 0.5 mmol). The reaction mixture was filtered, stirred for a few minutes, and then left to stand at room temperature for a month to afford blue prism shaped crystals (m.p. 480–481 K). Analysis calculated for C16H17CuN3O4S2: C 43.39, H 3.84, N 9.48%; found: C 43.35, H 3.88, N 9.51%. IR (KBr disk, cm−1): 3421 (s), 2975 (m), 2359 (s), 1726 (s), 1655 (m), 1482 (s), 1381 (m), 1160 (m), 960 (m), 767 (s), 592 (m).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms. with N—H = 0.86 Å, Csp2—H = 0.93 Å and Csp3—H = 0.97 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environments of (I), showing the atom numbering scheme and displacement ellipsoids drawns at the 50% probability level.
[Figure 2] Fig. 2. The one-dimensional helical chain of (I).
catena-Poly[(di-2-pyridylamine-κ2N2,N2')copper(II)]- µ-3,3'-dithiodipropionato-κO,O':κO''] top
Crystal data top
[Cu(C6H8O4S2)(C10H9N3)]F(000) = 1816
Mr = 442.99Dx = 1.665 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7574 reflections
a = 24.1289 (18) Åθ = 1.9–25.1°
b = 8.8057 (7) ŵ = 1.50 mm1
c = 19.9518 (15) ÅT = 298 K
β = 123.509 (1)°Prism, blue
V = 3534.6 (5) Å30.27 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker APEX area-detector
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2128
Tmin = 0.671, Tmax = 0.720k = 109
9071 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0331P)2 + 7.1784P]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu(C6H8O4S2)(C10H9N3)]V = 3534.6 (5) Å3
Mr = 442.99Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.1289 (18) ŵ = 1.50 mm1
b = 8.8057 (7) ÅT = 298 K
c = 19.9518 (15) Å0.27 × 0.25 × 0.22 mm
β = 123.509 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2880 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.720Rint = 0.025
9071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
3152 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.145589 (17)0.14891 (4)0.08554 (2)0.03241 (13)
C10.06862 (16)0.3176 (3)0.0627 (2)0.0414 (8)
H10.10080.38980.03120.050*
C20.01889 (17)0.3574 (4)0.1379 (2)0.0485 (9)
H20.01660.45510.15690.058*
C30.02865 (17)0.2497 (4)0.1861 (2)0.0479 (8)
H30.06340.27400.23810.058*
C40.02386 (15)0.1078 (4)0.15625 (18)0.0390 (7)
H40.05480.03370.18820.047*
C50.02800 (13)0.0740 (3)0.07719 (16)0.0284 (6)
C60.07412 (13)0.1418 (3)0.02138 (17)0.0280 (6)
C70.06593 (15)0.2983 (3)0.02495 (19)0.0372 (7)
H70.03070.34870.01900.045*
C80.10994 (16)0.3765 (4)0.0933 (2)0.0455 (8)
H80.10520.48060.09640.055*
C90.16198 (16)0.2984 (4)0.1582 (2)0.0461 (8)
H90.19300.34920.20520.055*
C100.16656 (15)0.1464 (4)0.15138 (19)0.0384 (7)
H100.20120.09450.19520.046*
C110.25064 (16)0.2701 (4)0.10620 (18)0.0394 (7)
C120.30094 (16)0.3782 (4)0.1098 (2)0.0532 (10)
H12A0.33280.40530.16560.064*
H12B0.32490.32560.09060.064*
C130.13691 (15)0.2548 (3)0.20592 (17)0.0336 (7)
C140.16198 (17)0.3350 (4)0.28416 (19)0.0411 (8)
H4A0.19990.27950.32690.049*
H4B0.17740.43530.28160.049*
C150.11147 (19)0.3519 (4)0.3054 (2)0.0503 (9)
H5A0.07130.39550.25990.060*
H5B0.12850.42270.34990.060*
C160.22774 (15)0.0205 (4)0.4377 (2)0.0421 (8)
H16A0.24520.08130.41290.050*
H16B0.26470.00630.49130.050*
N10.07421 (12)0.1779 (3)0.03041 (14)0.0301 (5)
N20.12345 (11)0.0657 (3)0.08427 (13)0.0291 (5)
N30.02888 (11)0.0686 (3)0.04925 (14)0.0296 (5)
H3N0.00530.12270.08210.036*
O10.19526 (11)0.3262 (2)0.08800 (15)0.0484 (6)
O20.26315 (14)0.1346 (3)0.11942 (17)0.0606 (7)
O30.17921 (11)0.1822 (3)0.19982 (13)0.0478 (6)
O40.07768 (11)0.2681 (3)0.14936 (13)0.0462 (6)
S10.09035 (4)0.17566 (10)0.33305 (5)0.0442 (2)
S20.16961 (4)0.13573 (10)0.44658 (5)0.0447 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0298 (2)0.0298 (2)0.0313 (2)0.00428 (14)0.01288 (17)0.00254 (15)
C10.0442 (19)0.0315 (17)0.048 (2)0.0031 (13)0.0247 (17)0.0046 (14)
C20.051 (2)0.0408 (19)0.047 (2)0.0004 (16)0.0237 (18)0.0161 (16)
C30.0453 (19)0.056 (2)0.0334 (18)0.0041 (16)0.0157 (16)0.0137 (15)
C40.0373 (17)0.0457 (19)0.0285 (16)0.0047 (14)0.0148 (14)0.0018 (14)
C50.0289 (14)0.0336 (16)0.0278 (15)0.0010 (12)0.0188 (13)0.0036 (12)
C60.0244 (14)0.0324 (15)0.0297 (15)0.0006 (11)0.0165 (13)0.0003 (12)
C70.0343 (16)0.0313 (16)0.0419 (18)0.0044 (13)0.0185 (15)0.0034 (13)
C80.0459 (19)0.0304 (17)0.056 (2)0.0022 (14)0.0253 (18)0.0084 (15)
C90.0387 (18)0.0444 (19)0.044 (2)0.0054 (15)0.0155 (16)0.0152 (15)
C100.0288 (16)0.0460 (19)0.0338 (17)0.0036 (13)0.0131 (14)0.0036 (14)
C110.0382 (18)0.0385 (19)0.0341 (17)0.0036 (14)0.0153 (14)0.0022 (14)
C120.0337 (18)0.048 (2)0.064 (2)0.0017 (15)0.0178 (17)0.0156 (18)
C130.0388 (17)0.0267 (15)0.0303 (16)0.0082 (13)0.0160 (15)0.0018 (12)
C140.0497 (19)0.0369 (18)0.0357 (17)0.0102 (14)0.0230 (16)0.0044 (13)
C150.064 (2)0.0391 (19)0.053 (2)0.0104 (16)0.035 (2)0.0028 (16)
C160.0346 (16)0.0365 (17)0.050 (2)0.0047 (13)0.0204 (15)0.0028 (15)
N10.0299 (13)0.0317 (13)0.0280 (13)0.0002 (10)0.0155 (11)0.0013 (10)
N20.0259 (12)0.0322 (13)0.0274 (13)0.0012 (10)0.0136 (11)0.0018 (10)
N30.0262 (12)0.0288 (13)0.0279 (12)0.0050 (10)0.0112 (10)0.0017 (10)
O10.0327 (12)0.0325 (12)0.0658 (16)0.0049 (9)0.0182 (12)0.0049 (11)
O20.0721 (17)0.0341 (14)0.084 (2)0.0089 (12)0.0483 (16)0.0143 (12)
O30.0389 (13)0.0607 (15)0.0333 (12)0.0024 (11)0.0133 (11)0.0133 (11)
O40.0368 (12)0.0461 (13)0.0376 (13)0.0039 (10)0.0091 (11)0.0018 (10)
S10.0332 (4)0.0547 (5)0.0464 (5)0.0024 (4)0.0230 (4)0.0028 (4)
S20.0448 (5)0.0519 (5)0.0408 (5)0.0100 (4)0.0257 (4)0.0004 (4)
Geometric parameters (Å, º) top
Cu1—O11.953 (2)C10—N21.357 (4)
Cu1—N21.960 (2)C10—H100.9300
Cu1—O31.975 (2)C11—O21.223 (4)
Cu1—N11.996 (2)C11—O11.275 (4)
C1—C21.352 (5)C11—C121.512 (5)
C1—N11.360 (4)C12—C16i1.491 (4)
C1—H10.9300C12—H12A0.9700
C2—C31.387 (5)C12—H12B0.9700
C2—H20.9300C13—O41.245 (4)
C3—C41.361 (5)C13—O31.266 (4)
C3—H30.9300C13—C141.503 (4)
C4—C51.401 (4)C14—C151.503 (5)
C4—H40.9300C14—H4A0.9700
C5—N11.342 (4)C14—H4B0.9700
C5—N31.369 (4)C15—S11.812 (3)
C6—N21.338 (4)C15—H5A0.9700
C6—N31.376 (3)C15—H5B0.9700
C6—C71.400 (4)C16—C12ii1.491 (4)
C7—C81.365 (4)C16—S21.817 (3)
C7—H70.9300C16—H16A0.9700
C8—C91.390 (5)C16—H16B0.9700
C8—H80.9300N3—H3N0.8600
C9—C101.356 (4)S1—S22.0320 (12)
C9—H90.9300
O1—Cu1—N2158.50 (10)C16i—C12—H12A108.6
O1—Cu1—O389.83 (10)C11—C12—H12A108.6
N2—Cu1—O395.37 (10)C16i—C12—H12B108.6
O1—Cu1—N192.96 (10)C11—C12—H12B108.6
N2—Cu1—N193.08 (9)H12A—C12—H12B107.5
O3—Cu1—N1149.40 (10)O4—C13—O3122.9 (3)
C2—C1—N1123.7 (3)O4—C13—C14120.0 (3)
C2—C1—H1118.1O3—C13—C14117.0 (3)
N1—C1—H1118.1C15—C14—C13114.6 (3)
C1—C2—C3118.7 (3)C15—C14—H4A108.6
C1—C2—H2120.7C13—C14—H4A108.6
C3—C2—H2120.7C15—C14—H4B108.6
C4—C3—C2119.1 (3)C13—C14—H4B108.6
C4—C3—H3120.4H4A—C14—H4B107.6
C2—C3—H3120.4C14—C15—S1114.2 (2)
C3—C4—C5119.7 (3)C14—C15—H5A108.7
C3—C4—H4120.2S1—C15—H5A108.7
C5—C4—H4120.2C14—C15—H5B108.7
N1—C5—N3121.4 (3)S1—C15—H5B108.7
N1—C5—C4121.4 (3)H5A—C15—H5B107.6
N3—C5—C4117.2 (3)C12ii—C16—S2114.8 (2)
N2—C6—N3121.2 (2)C12ii—C16—H16A108.6
N2—C6—C7121.5 (3)S2—C16—H16A108.6
N3—C6—C7117.3 (3)C12ii—C16—H16B108.6
C8—C7—C6119.6 (3)S2—C16—H16B108.6
C8—C7—H7120.2H16A—C16—H16B107.5
C6—C7—H7120.2C5—N1—C1117.4 (3)
C7—C8—C9119.0 (3)C5—N1—Cu1124.94 (19)
C7—C8—H8120.5C1—N1—Cu1117.4 (2)
C9—C8—H8120.5C6—N2—C10117.6 (2)
C10—C9—C8118.5 (3)C6—N2—Cu1126.13 (19)
C10—C9—H9120.8C10—N2—Cu1115.91 (19)
C8—C9—H9120.8C5—N3—C6132.2 (2)
C9—C10—N2123.7 (3)C5—N3—H3N113.9
C9—C10—H10118.1C6—N3—H3N113.9
N2—C10—H10118.1C11—O1—Cu1103.26 (19)
O2—C11—O1122.3 (3)C13—O3—Cu1110.31 (19)
O2—C11—C12120.5 (3)C15—S1—S2103.75 (13)
O1—C11—C12117.2 (3)C16—S2—S1106.87 (12)
C16i—C12—C11114.8 (3)
N1—C1—C2—C31.4 (5)C7—C6—N2—C101.6 (4)
C1—C2—C3—C40.1 (5)N3—C6—N2—Cu16.1 (4)
C2—C3—C4—C51.3 (5)C7—C6—N2—Cu1174.7 (2)
C3—C4—C5—N11.5 (5)C9—C10—N2—C60.6 (5)
C3—C4—C5—N3177.4 (3)C9—C10—N2—Cu1174.3 (3)
N2—C6—C7—C81.5 (5)O1—Cu1—N2—C6107.9 (3)
N3—C6—C7—C8179.2 (3)O3—Cu1—N2—C6148.8 (2)
C6—C7—C8—C90.2 (5)N1—Cu1—N2—C61.8 (2)
C7—C8—C9—C100.8 (5)O1—Cu1—N2—C1065.2 (4)
C8—C9—C10—N20.7 (5)O3—Cu1—N2—C1038.1 (2)
O2—C11—C12—C16i156.3 (3)N1—Cu1—N2—C10171.3 (2)
O1—C11—C12—C16i22.9 (5)N1—C5—N3—C66.7 (5)
O4—C13—C14—C1532.4 (4)C4—C5—N3—C6174.4 (3)
O3—C13—C14—C15151.3 (3)N2—C6—N3—C512.4 (5)
C13—C14—C15—S170.5 (3)C7—C6—N3—C5168.3 (3)
N3—C5—N1—C1178.6 (3)O2—C11—O1—Cu11.7 (4)
C4—C5—N1—C10.2 (4)C12—C11—O1—Cu1177.5 (3)
N3—C5—N1—Cu14.4 (4)N2—Cu1—O1—C1112.5 (4)
C4—C5—N1—Cu1174.5 (2)O3—Cu1—O1—C1191.9 (2)
C2—C1—N1—C51.2 (5)N1—Cu1—O1—C11118.6 (2)
C2—C1—N1—Cu1173.5 (3)O4—C13—O3—Cu116.3 (4)
O1—Cu1—N1—C5166.4 (2)C14—C13—O3—Cu1159.8 (2)
N2—Cu1—N1—C57.0 (2)O1—Cu1—O3—C1396.8 (2)
O3—Cu1—N1—C599.0 (3)N2—Cu1—O3—C13104.1 (2)
O1—Cu1—N1—C119.4 (2)N1—Cu1—O3—C131.3 (3)
N2—Cu1—N1—C1178.7 (2)C14—C15—S1—S276.3 (3)
O3—Cu1—N1—C175.3 (3)C12ii—C16—S2—S154.4 (3)
N3—C6—N2—C10179.1 (2)C15—S1—S2—C1691.11 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4iii0.861.982.831 (3)173
Symmetry code: (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H8O4S2)(C10H9N3)]
Mr442.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.1289 (18), 8.8057 (7), 19.9518 (15)
β (°) 123.509 (1)
V3)3534.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.27 × 0.25 × 0.22
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.671, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
9071, 3152, 2880
Rint0.025
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.089, 1.08
No. of reflections3152
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.953 (2)C15—S11.812 (3)
Cu1—N21.960 (2)C16—S21.817 (3)
Cu1—O31.975 (2)S1—S22.0320 (12)
Cu1—N11.996 (2)
O1—Cu1—N2158.50 (10)O3—Cu1—N1149.40 (10)
O1—Cu1—O389.83 (10)C14—C15—S1114.2 (2)
N2—Cu1—O395.37 (10)C12i—C16—S2114.8 (2)
O1—Cu1—N192.96 (10)C15—S1—S2103.75 (13)
N2—Cu1—N193.08 (9)C16—S2—S1106.87 (12)
C15—S1—S2—C1691.11 (16)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4ii0.861.982.831 (3)173
Symmetry code: (ii) x, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds