Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C17H20BrNO3, synthesized from spiro­[2H-1,3-benzoxazine-2,1′-cyclo­hexan]-4(3H)-one and 2-bromo­butanoyl bromide, the chair cyclohexane ring in the mol­ecule shows high asymmetric induction in the synthesis of trans β-lactams.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027881/hg6244sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027881/hg6244Isup2.hkl
Contains datablock I

CCDC reference: 287599

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.036
  • wR factor = 0.096
  • Data-to-parameter ratio = 17.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

As we previously reported, the title compound (I) can be used to synthesize trans β-lactam with high diastereoselectivity (Jian et al., 2005). The bulky, chair-like, six-membered ring (which one?) in the compound plays an important role in the efficient asymmetric induction, which leads to trans β-lactams exclusively.

Fig. 1 shows the structure of (I). The compound crystallizes in the monoclinic space group C2/c with eight symmetry-equivalent molecules per unit cell. Selected molecular parameters are listed in Table 1. The molecular dimensions may be considered normal (Table 1). There are no ππ stacking or other weak intermolecular interactions in (I), and the crystal packing (Fig. 2) is controlled by van der Waals forces.

Experimental top

To a mixture of spiro[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one (217 mg, 1 mmol), pyridine (95 mg, 1.2 mmol) and toluene (10 ml) was added 2-bromobutanoyl bromide (276 mg, 1.2 mmol) dropwise at 278–288 K. This mixture was stirred at the same temperature for 30 min and then at 298 K for 20 h. The reaction mixture was poured into water (10 ml). The organic layer was washed successively with saturated aqueous NaHCO3 (5 ml) and brine (5 ml), dried over anhydrous Na2SO4, and evaporated in vacuo. The residue was dissolved in 2-propanol (3 ml) at 323–325 K, gradually cooled to 283 K and stirred at the same temperature for 1 h. The resulting crystals were collected, washed with 2-propanol (3 ml) and dried at 313 K for 20 h to afford 300 g (82% yield) of (I). Colorless crystals were obtained from CH2Cl2/EtOH solution after it was left to stand for 4 d. M.p. 342–344 K. 1H NMR (500 MHz, CDCl3): δ 1.13 (t, J = 7.3 Hz), 1.29 (m, 1H), 1.53–2.41 (m, 10H), 4.98 (dd, 1H, J = 5.2 and 8.8 Hz), 7.01 (m, 1H), 7.11 (m, 1H), 7.55 (m, 1H), 7.93 (m, 1H). ESI–MS: m/z 366 ([M+1]+).

Refinement top

The methyl H atoms were constrained to an ideal geometry [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)] and were allowed to rotate freely about the C—C bonds. The other H atoms were placed in calculated positions, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93–0.89 Å, and included in the final cycles of refinement in the riding-model approximation.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I). Displacment ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A packing diagram, viewed approximately along the c axis.
3-(2-Bromobutanoyl)spiro[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one top
Crystal data top
C17H20BrNO3F(000) = 1504
Mr = 366.25Dx = 1.502 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 10907 reflections
a = 10.9022 (7) Åθ = 2.2–27.3°
b = 17.636 (1) ŵ = 2.55 mm1
c = 16.8688 (8) ÅT = 295 K
β = 92.795 (2)°Block, colorless
V = 3239.5 (3) Å30.35 × 0.3 × 0.2 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2919 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 27°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1213
Tmin = 0.444, Tmax = 0.600k = 2222
14339 measured reflectionsl = 2121
3481 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0515P)2 + 2.5231P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.34 e Å3
3481 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
201 parametersExtinction coefficient: 0.0024 (3)
0 restraints
Crystal data top
C17H20BrNO3V = 3239.5 (3) Å3
Mr = 366.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.9022 (7) ŵ = 2.55 mm1
b = 17.636 (1) ÅT = 295 K
c = 16.8688 (8) Å0.35 × 0.3 × 0.2 mm
β = 92.795 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3481 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2919 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 0.600Rint = 0.032
14339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
3481 reflectionsΔρmin = 0.34 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.05354 (2)0.406841 (16)0.130812 (16)0.05562 (13)
O10.66552 (16)0.43308 (10)0.23033 (10)0.0483 (4)
O20.78140 (14)0.22409 (9)0.28519 (8)0.0382 (3)
O30.80639 (18)0.33062 (10)0.05914 (9)0.0507 (4)
N10.76922 (16)0.32507 (10)0.19416 (10)0.0342 (4)
C10.7222 (3)0.51648 (16)0.06483 (17)0.0566 (6)
H1A0.66920.47320.05790.085*
H1B0.70610.55160.02210.085*
H1C0.70710.54080.11430.085*
C20.8568 (2)0.49064 (14)0.06518 (15)0.0478 (6)
H2A0.87330.46640.01520.057*
H2B0.91110.53390.07230.057*
C30.8782 (2)0.43601 (13)0.13189 (14)0.0395 (5)
H30.86020.45970.18260.047*
C40.8130 (2)0.36052 (12)0.12250 (12)0.0372 (5)
C50.69373 (19)0.36834 (12)0.24585 (12)0.0363 (5)
C60.6526 (2)0.32994 (12)0.31973 (12)0.0360 (5)
C70.5709 (2)0.36567 (14)0.37405 (14)0.0441 (5)
H70.5390.41330.36160.053*
C80.5386 (2)0.33066 (17)0.44458 (14)0.0519 (6)
H80.48630.35430.47880.062*
C90.5868 (3)0.26038 (18)0.46142 (14)0.0546 (7)
H90.56710.23580.50790.066*
C100.6671 (2)0.22446 (15)0.40845 (14)0.0483 (6)
H100.69930.1770.42150.058*
C110.69903 (19)0.25917 (13)0.33668 (12)0.0364 (5)
C120.77030 (19)0.24070 (12)0.20183 (12)0.0328 (4)
C130.6542 (2)0.20568 (12)0.17195 (14)0.0382 (5)
H13A0.63970.21890.11650.046*
H13B0.58720.22640.20090.046*
C140.6539 (2)0.11970 (15)0.17999 (17)0.0521 (6)
H14A0.5790.09920.1550.063*
H14B0.65660.10580.23570.063*
C150.7681 (3)0.08554 (14)0.13956 (18)0.0572 (7)
H15A0.77050.03120.14810.069*
H15B0.76020.09460.08280.069*
C160.8831 (2)0.11942 (15)0.17170 (16)0.0491 (6)
H16A0.95150.09770.14480.059*
H16B0.89390.10710.22760.059*
C170.8844 (2)0.20540 (13)0.16174 (14)0.0411 (5)
H17A0.88160.21820.10580.049*
H17B0.95960.2260.18620.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04312 (17)0.0630 (2)0.0600 (2)0.00825 (11)0.00591 (12)0.00954 (12)
O10.0569 (10)0.0356 (8)0.0527 (10)0.0031 (7)0.0071 (8)0.0038 (7)
O20.0402 (8)0.0410 (8)0.0328 (7)0.0032 (6)0.0062 (6)0.0031 (6)
O30.0744 (12)0.0448 (9)0.0322 (8)0.0114 (8)0.0040 (8)0.0020 (7)
N10.0393 (9)0.0314 (9)0.0319 (8)0.0042 (7)0.0004 (7)0.0007 (7)
C10.0631 (16)0.0456 (14)0.0602 (15)0.0056 (12)0.0072 (13)0.0119 (12)
C20.0531 (14)0.0402 (13)0.0497 (13)0.0097 (11)0.0024 (11)0.0085 (10)
C30.0407 (11)0.0393 (11)0.0384 (11)0.0083 (9)0.0012 (9)0.0018 (9)
C40.0405 (11)0.0356 (11)0.0353 (11)0.0029 (9)0.0006 (9)0.0026 (9)
C50.0369 (11)0.0347 (12)0.0370 (11)0.0055 (9)0.0008 (9)0.0023 (9)
C60.0356 (10)0.0381 (11)0.0338 (10)0.0056 (8)0.0023 (9)0.0026 (8)
C70.0432 (12)0.0463 (13)0.0427 (12)0.0033 (10)0.0007 (10)0.0049 (10)
C80.0487 (14)0.0685 (17)0.0389 (12)0.0054 (12)0.0074 (11)0.0078 (12)
C90.0584 (15)0.0738 (19)0.0317 (12)0.0087 (13)0.0022 (11)0.0063 (11)
C100.0519 (14)0.0534 (14)0.0388 (12)0.0023 (11)0.0053 (11)0.0074 (10)
C110.0353 (10)0.0412 (12)0.0321 (10)0.0052 (9)0.0047 (9)0.0010 (9)
C120.0334 (10)0.0335 (11)0.0312 (10)0.0020 (8)0.0028 (8)0.0013 (8)
C130.0341 (10)0.0356 (11)0.0440 (11)0.0011 (8)0.0063 (9)0.0032 (9)
C140.0495 (14)0.0381 (12)0.0674 (16)0.0093 (11)0.0112 (12)0.0009 (11)
C150.0698 (18)0.0359 (13)0.0643 (17)0.0048 (12)0.0131 (14)0.0058 (11)
C160.0484 (13)0.0454 (13)0.0528 (14)0.0113 (11)0.0035 (11)0.0016 (11)
C170.0356 (11)0.0430 (13)0.0446 (12)0.0003 (9)0.0006 (9)0.0031 (10)
Geometric parameters (Å, º) top
Br1—C31.981 (2)C8—C91.371 (4)
O1—C51.208 (3)C8—H80.93
O2—C111.421 (3)C9—C101.429 (4)
O2—C121.436 (2)C9—H90.93
O3—C41.191 (3)C10—C111.415 (3)
N1—C51.446 (3)C10—H100.93
N1—C41.462 (3)C12—C131.475 (3)
N1—C121.494 (3)C12—C171.573 (3)
C1—C21.537 (4)C13—C141.522 (3)
C1—H1A0.96C13—H13A0.97
C1—H1B0.96C13—H13B0.97
C1—H1C0.96C14—C151.569 (4)
C2—C31.491 (3)C14—H14A0.97
C2—H2A0.97C14—H14B0.97
C2—H2B0.97C15—C161.468 (4)
C3—C41.513 (3)C15—H15A0.97
C3—H30.98C15—H15B0.97
C5—C61.506 (3)C16—C171.526 (3)
C6—C111.372 (3)C16—H16A0.97
C6—C71.452 (3)C16—H16B0.97
C7—C81.401 (3)C17—H17A0.97
C7—H70.93C17—H17B0.97
C11—O2—C12118.96 (16)C11—C10—H10119.1
C5—N1—C4119.45 (17)C9—C10—H10119.1
C5—N1—C12118.42 (16)C6—C11—C10117.9 (2)
C4—N1—C12119.75 (17)C6—C11—O2120.44 (18)
C2—C1—H1A109.5C10—C11—O2121.6 (2)
C2—C1—H1B109.5O2—C12—C13106.21 (17)
H1A—C1—H1B109.5O2—C12—N1106.74 (16)
C2—C1—H1C109.5C13—C12—N1112.62 (17)
H1A—C1—H1C109.5O2—C12—C17108.04 (16)
H1B—C1—H1C109.5C13—C12—C17111.77 (18)
C3—C2—C1108.0 (2)N1—C12—C17111.11 (17)
C3—C2—H2A110.1C12—C13—C14113.07 (19)
C1—C2—H2A110.1C12—C13—H13A109
C3—C2—H2B110.1C14—C13—H13A109
C1—C2—H2B110.1C12—C13—H13B109
H2A—C2—H2B108.4C14—C13—H13B109
C2—C3—C4115.74 (19)H13A—C13—H13B107.8
C2—C3—Br1106.02 (16)C13—C14—C15109.8 (2)
C4—C3—Br1102.64 (16)C13—C14—H14A109.7
C2—C3—H3110.7C15—C14—H14A109.7
C4—C3—H3110.7C13—C14—H14B109.7
Br1—C3—H3110.7C15—C14—H14B109.7
O3—C4—N1123.0 (2)H14A—C14—H14B108.2
O3—C4—C3119.4 (2)C16—C15—C14111.4 (2)
N1—C4—C3117.40 (18)C16—C15—H15A109.4
O1—C5—N1120.98 (19)C14—C15—H15A109.4
O1—C5—C6121.4 (2)C16—C15—H15B109.4
N1—C5—C6117.59 (18)C14—C15—H15B109.4
C11—C6—C7119.7 (2)H15A—C15—H15B108
C11—C6—C5117.36 (19)C15—C16—C17112.1 (2)
C7—C6—C5122.9 (2)C15—C16—H16A109.2
C8—C7—C6122.1 (2)C17—C16—H16A109.2
C8—C7—H7118.9C15—C16—H16B109.2
C6—C7—H7118.9C17—C16—H16B109.2
C9—C8—C7117.7 (2)H16A—C16—H16B107.9
C9—C8—H8121.1C16—C17—C12109.52 (19)
C7—C8—H8121.1C16—C17—H17A109.8
C8—C9—C10120.8 (2)C12—C17—H17A109.8
C8—C9—H9119.6C16—C17—H17B109.8
C10—C9—H9119.6C12—C17—H17B109.8
C11—C10—C9121.8 (2)H17A—C17—H17B108.2

Experimental details

Crystal data
Chemical formulaC17H20BrNO3
Mr366.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)10.9022 (7), 17.636 (1), 16.8688 (8)
β (°) 92.795 (2)
V3)3239.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.35 × 0.3 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.444, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
14339, 3481, 2919
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.07
No. of reflections3481
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Br1—C31.981 (2)N1—C51.446 (3)
O1—C51.208 (3)N1—C41.462 (3)
O2—C111.421 (3)N1—C121.494 (3)
O3—C41.191 (3)
C11—O2—C12118.96 (16)C4—C3—Br1102.64 (16)
C5—N1—C4119.45 (17)C12—C13—C14113.07 (19)
C5—N1—C12118.42 (16)C13—C14—C15109.8 (2)
C4—N1—C12119.75 (17)C15—C16—C17112.1 (2)
C2—C3—Br1106.02 (16)C16—C17—C12109.52 (19)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds