Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title complex, [Zn(C10H6NO2)2(CH3OH)2], the Zn atom at a center of inversion has distorted octa­hedral coordination geometry and is bonded to two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two isoquinoline-3-carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O—H...O hydrogen bonds between the methanol ligands and neighboring carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027698/hg6240sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027698/hg6240Isup2.hkl
Contains datablock I

CCDC reference: 287595

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.086
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - O1M .. 5.42 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Transition metal ions are well known to have many biological functions, such as antimicrobial or fungicidal activity (Okide et al., 2000; Patel et al., 1999), or have redox activity such as Fenton-type reactions (Kasprzak, 2002) inducing toxicity or carcinogenesis. ZnII is well known for its insulinomemetic activity (e.g. Matsumoto et al., 2005). In the previous papers, the crystal structures of the FeII (II), CoII (III), NiII (IV) and CuII (V) complexes of isoquinoline-3-carboxylate have been reported (Okabe & Muranishi, 2003c; Okabe et al., 2004). We report here the structure of the corresponding ZnII complex, (I).

The structure of (I) is shown in Fig. 1. It is isomorphous with the analogs (II)–(V), with the metal ion at a center of inversion and a distorted octahedral coordination geometry.

The two bidentate ligands lie trans to each other. They are coordinated to the central metal ion, through the isoquinoline N atoms and the carboxylate O atoms to form five-membered rings in the equatorial plane. Two O atoms of the methanol ligands complete the octahedron at the axial positions. The coordination bond distances of (I) are listed in Table 1, together with those of (II)–(V).

As shown in Table 1, coordination bond distances, M—N, decrease in the order (II) > (III) > (IV) > (V) < (I). The reverse of this order coincides well with the Irving–Williams series, which indicates the general stability sequence of octahedral metal complexes in the order Fe < Co < Ni < Cu > Zn. The longest axial coordination bond distance (M—O1m) of (V) is explained by the Jahn–Teller effect. The bond lengths of both sides of the ring N atom (N1—C1 and N1—C9) and C atom (C1—C2) of all complexes are shorter than those of others in the same pyridine ring, C2—C3, C3—C8 and C8—C9 (Table 1). This indicates that the double-bond character of these three bonds may be a general characteristic of the transition metal complexes of isoquinoline-3-carboxylate.

It is noticed that only the bonds on either side of the N atom have double-bond character in the isoquinoline-1-carboxylate complexes with FeII (Muranishi & Okabe, 2003), CoII and NiII (Okabe & Muranishi, 2002), and ZnII (Okabe & Muranishi, 2003b), and in the quinoline-2-carboxylate complexes with FeII (Okabe & Makino, 1998), CoII (Okabe & Makino, 1999), NiII (Odoko et al., 2001) and ZnII (Okabe & Muranishi, 2003a).

The hydrogen-bonding parameters of (I)–(V) are listed in Table 2 for comparison. All structures are stabilized by a similar intermolecular O—H···O hydrogen-bonding pattern between methanol ligands and the neighbouring carboxylate groups. A stacking interaction is also observed between the ligands with a mean distance of 3.366 (4) Å.

Experimental top

Colorless plate crystals of (I) were obtained by slow evapolation of a methanol solution of a mixture of isoquinoline-3-carboxylic acid (5 mg) dissolved in methanol (3 ml) and ZnSO4 (2.1 mg) dissolved in methanol (2 ml) (molar ratio 4:1) at room temperature.

Refinement top

All H atoms were located in difference Fourier maps, and then were regenerated at ideal positions [C—H = 0.96 (methyl), 0.93 Å (other H atoms); Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(other C)]. The weighting schemes for both structures were optimized.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms correspond to 50% probability. Atoms labeled with an asterisk are at the symmetry position (please supply).
trans-Bis(isoquinoline-3-carboxylato-κ2N,O)bis(methanol-κO)zinc(II) top
Crystal data top
[Zn(C10H6NO2)2(CH4O)2]F(000) = 488.0
Mr = 473.79Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.672 (1) Åθ = 14.2–15.0°
b = 6.301 (2) ŵ = 1.27 mm1
c = 15.091 (1) ÅT = 296 K
β = 100.567 (9)°Prism, colorless
V = 997.6 (3) Å30.40 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.025
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 013
Tmin = 0.858, Tmax = 0.880k = 08
2627 measured reflectionsl = 1919
2288 independent reflections3 standard reflections every 150 reflections
1515 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.6344P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.30 e Å3
2288 reflectionsΔρmin = 0.47 e Å3
143 parameters
Crystal data top
[Zn(C10H6NO2)2(CH4O)2]V = 997.6 (3) Å3
Mr = 473.79Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.672 (1) ŵ = 1.27 mm1
b = 6.301 (2) ÅT = 296 K
c = 15.091 (1) Å0.40 × 0.10 × 0.10 mm
β = 100.567 (9)°
Data collection top
Rigaku AFC-5R
diffractometer
1515 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.858, Tmax = 0.8803 standard reflections every 150 reflections
2627 measured reflections intensity decay: 0.1%
2288 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033143 parameters
wR(F2) = 0.086H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
2288 reflectionsΔρmin = 0.47 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.0314 (1)
O10.0368 (2)0.2152 (3)0.4428 (1)0.0352 (4)
O1M0.0400 (2)0.6690 (3)0.3796 (1)0.0369 (5)
O20.1933 (2)0.0160 (3)0.4363 (1)0.0438 (5)
N10.1975 (2)0.4835 (4)0.5459 (1)0.0283 (4)
C10.2455 (2)0.2957 (4)0.5209 (2)0.0269 (5)
C20.3713 (2)0.2453 (4)0.5450 (2)0.0302 (6)
C30.4571 (2)0.3900 (5)0.5946 (2)0.0297 (6)
C40.5902 (3)0.3521 (5)0.6190 (2)0.0369 (7)
C50.6683 (2)0.5044 (6)0.6637 (2)0.0421 (7)
C60.6183 (3)0.6982 (6)0.6873 (2)0.0434 (8)
C70.4906 (3)0.7385 (5)0.6662 (2)0.0364 (6)
C80.4078 (3)0.5854 (5)0.6194 (2)0.0291 (6)
C90.2750 (2)0.6212 (4)0.5928 (2)0.0292 (6)
C100.1506 (2)0.1517 (4)0.4620 (2)0.0307 (6)
C110.0523 (3)0.7327 (7)0.3043 (2)0.0604 (10)
H1M0.07090.80380.39720.0554*
H20.40060.11460.52860.0362*
H40.62410.22350.60450.0442*
H50.75550.47950.67860.0505*
H60.67280.80030.71770.0521*
H70.45840.86680.68270.0436*
H90.24120.74820.60930.0351*
H11A0.11010.61740.28590.0906*
H11B0.01040.77120.25550.0906*
H11C0.09890.85240.32060.0906*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0202 (2)0.0306 (2)0.0410 (2)0.0034 (2)0.0008 (2)0.0060 (3)
O10.0257 (9)0.033 (1)0.044 (1)0.0004 (8)0.0005 (8)0.0075 (9)
O1M0.034 (1)0.032 (1)0.042 (1)0.0016 (9)0.0004 (8)0.0009 (9)
O20.0323 (10)0.030 (1)0.069 (1)0.0017 (10)0.0096 (9)0.015 (1)
N10.0219 (9)0.030 (1)0.033 (1)0.003 (1)0.0036 (8)0.001 (1)
C10.024 (1)0.024 (1)0.033 (1)0.001 (1)0.0059 (10)0.000 (1)
C20.026 (1)0.030 (1)0.036 (1)0.004 (1)0.009 (1)0.002 (1)
C30.026 (1)0.038 (2)0.026 (1)0.004 (1)0.006 (1)0.002 (1)
C40.026 (1)0.047 (2)0.037 (2)0.008 (1)0.007 (1)0.002 (1)
C50.020 (1)0.064 (2)0.041 (1)0.003 (2)0.0018 (10)0.000 (2)
C60.028 (1)0.059 (2)0.042 (2)0.007 (1)0.002 (1)0.009 (2)
C70.031 (1)0.042 (2)0.035 (1)0.003 (1)0.004 (1)0.006 (1)
C80.025 (1)0.037 (1)0.025 (1)0.000 (1)0.005 (1)0.002 (1)
C90.023 (1)0.031 (1)0.033 (1)0.003 (1)0.004 (1)0.002 (1)
C100.030 (1)0.026 (1)0.038 (1)0.002 (1)0.009 (1)0.000 (1)
C110.052 (2)0.076 (3)0.048 (2)0.001 (2)0.006 (2)0.011 (2)
Geometric parameters (Å, º) top
Zn1—O12.060 (2)C3—C41.420 (4)
Zn1—O1i2.060 (2)C3—C81.416 (4)
Zn1—O1M2.214 (2)C4—C51.365 (4)
Zn1—O1Mi2.214 (2)C4—H40.930
Zn1—N12.096 (2)C5—C61.405 (5)
Zn1—N1i2.096 (2)C5—H50.930
O1—C101.261 (3)C6—C71.365 (4)
O1M—C111.419 (4)C6—H60.930
O1M—H1M0.932C7—C81.408 (4)
O2—C101.242 (4)C7—H70.930
N1—C11.370 (4)C8—C91.419 (4)
N1—C91.313 (3)C9—H90.930
C1—C21.363 (3)C11—H11A0.960
C1—C101.519 (4)C11—H11B0.960
C2—C31.407 (4)C11—H11C0.960
C2—H20.930
O1···O1ii3.383 (4)O2···C11iii3.380 (4)
O1···C10ii3.530 (3)O2···N1iii3.558 (3)
O1···O2ii3.546 (3)O2···C6v3.592 (4)
O1···O1Miii3.573 (3)C1···C5v3.336 (4)
O1M···O2iv2.614 (3)C2···C5v3.478 (4)
O1M···C10iv3.413 (3)C2···C6v3.546 (4)
O1M···C5v3.472 (3)C3···C3v3.446 (6)
O2···C9iii3.288 (3)C3···C4v3.563 (4)
O2···C4vi3.350 (4)C4···C7vii3.576 (4)
O1—Zn1—O1i180.0000 (1)C2—C3—C8117.8 (2)
O1—Zn1—O1M89.73 (7)C4—C3—C8118.7 (2)
O1—Zn1—O1Mi90.27 (7)C3—C4—C5120.1 (3)
O1—Zn1—N180.67 (8)C3—C4—H4120.0
O1—Zn1—N1i99.33 (8)C5—C4—H4120.0
O1i—Zn1—O1M90.27 (7)C4—C5—C6120.7 (2)
O1i—Zn1—O1Mi89.73 (7)C4—C5—H5119.7
O1i—Zn1—N199.33 (8)C6—C5—H5119.7
O1i—Zn1—N1i80.67 (8)C5—C6—C7120.8 (3)
O1M—Zn1—O1Mi180.0000 (1)C5—C6—H6119.6
O1M—Zn1—N187.78 (7)C7—C6—H6119.6
O1M—Zn1—N1i92.22 (7)C6—C7—C8119.8 (3)
O1Mi—Zn1—N192.22 (7)C6—C7—H7120.1
O1Mi—Zn1—N1i87.78 (7)C8—C7—H7120.1
N1—Zn1—N1i180.0C3—C8—C7119.9 (2)
Zn1—O1—C10115.4 (2)C3—C8—C9117.7 (2)
Zn1—O1M—C11125.7 (2)C7—C8—C9122.4 (3)
Zn1—O1M—H1M108.4N1—C9—C8123.1 (2)
C11—O1M—H1M97.3N1—C9—H9118.5
Zn1—N1—C1110.9 (2)C8—C9—H9118.5
Zn1—N1—C9129.9 (2)O1—C10—O2126.3 (2)
C1—N1—C9119.3 (2)O1—C10—C1117.1 (2)
N1—C1—C2121.9 (2)O2—C10—C1116.6 (2)
N1—C1—C10115.7 (2)O1M—C11—H11A109.5
C2—C1—C10122.4 (2)O1M—C11—H11B109.5
C1—C2—C3120.3 (3)O1M—C11—H11C109.5
C1—C2—H2119.9H11A—C11—H11B109.5
C3—C2—H2119.9H11A—C11—H11C109.5
C2—C3—C4123.4 (3)H11B—C11—H11C109.5
Zn1—O1—C10—O2178.8 (2)N1—Zn1—O1—C103.5 (2)
Zn1—O1—C10—C12.3 (3)N1—Zn1—O1i—C10i176.5 (2)
Zn1—O1i—C10i—O2i178.8 (2)N1—Zn1—O1M—C11175.7 (3)
Zn1—O1i—C10i—C1i2.3 (3)N1—Zn1—O1Mi—C11i4.3 (3)
Zn1—N1—C1—C2178.2 (2)N1—C1—C2—C32.0 (4)
Zn1—N1—C1—C104.0 (3)N1—C9—C8—C30.9 (4)
Zn1—N1—C9—C8179.6 (2)N1—C9—C8—C7177.1 (3)
Zn1—N1i—C1i—C2i178.2 (2)C1—N1—C9—C80.0 (4)
Zn1—N1i—C1i—C10i4.0 (3)C1—C2—C3—C4177.4 (3)
Zn1—N1i—C9i—C8i179.6 (2)C1—C2—C3—C81.0 (4)
O1—Zn1—O1M—C1195.0 (2)C2—C1—N1—C91.5 (4)
O1—Zn1—O1Mi—C11i85.0 (2)C2—C3—C4—C5177.0 (3)
O1—Zn1—N1—C13.9 (2)C2—C3—C8—C7177.7 (3)
O1—Zn1—N1—C9176.5 (2)C2—C3—C8—C90.3 (4)
O1—Zn1—N1i—C1i176.1 (2)C3—C2—C1—C10175.7 (2)
O1—Zn1—N1i—C9i3.5 (2)C3—C4—C5—C61.0 (4)
O1—C10—C1—N11.3 (4)C3—C8—C7—C60.3 (4)
O1—C10—C1—C2179.1 (3)C4—C3—C8—C70.8 (4)
O1M—Zn1—O1—C1091.3 (2)C4—C3—C8—C9178.8 (3)
O1M—Zn1—O1i—C10i88.7 (2)C4—C5—C6—C70.1 (5)
O1M—Zn1—N1—C194.0 (2)C5—C4—C3—C81.4 (4)
O1M—Zn1—N1—C986.4 (2)C5—C6—C7—C80.7 (5)
O1M—Zn1—N1i—C1i86.0 (2)C6—C7—C8—C9177.7 (3)
O1M—Zn1—N1i—C9i93.6 (2)C9—N1—C1—C10176.4 (2)
O2—C10—C1—N1177.7 (2)C9—N1—C1—C10176.4 (2)
O2—C10—C1—C20.1 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H1M···O2iv0.931.752.613 (3)153
Symmetry code: (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H6NO2)2(CH4O)2]
Mr473.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.672 (1), 6.301 (2), 15.091 (1)
β (°) 100.567 (9)
V3)997.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.858, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
2627, 2288, 1515
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.01
No. of reflections2288
No. of parameters143
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.47

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Comparative selected geometric parameters (Å, °). Author: Please check: values for (I) have been changed because the original values did not match those given in CIF. top
M=(II)a(III)b(IV)b(V)b(I)
M—O12.050 (2)2.050 (2)2.036 (2)1.963 (2)2.060 (2)
M—O1M2.196 (2)2.149 (2)2.116 (2)2.516 (2)2.214 (2)
M—N12.167 (2)2.110 (2)2.049 (2)1.979 (2)2.096 (2)
N1—C11.372 (4)1.376 (3)1.369 (3)1.372 (3)1.370 (4)
N1—C91.315 (4)1.314 (3)1.314 (3)1.315 (3)1.313 (3)
C1—C21.366 (4)1.357 (3)1.357 (3)1.361 (3)1.363 (3)
C2—C31.414 (4)1.413 (3)1.412 (3)1.412 (3)1.407 (4)
C3—C81.415 (5)1.416 (3)1.416 (4)1.418 (3)1.416 (4)
C8—C91.416 (4)1.415 (3)1.417 (3)1.414 (3)1.419 (4)
O1—M—O1M89.97 (9)89.65 (6)90.81 (7)90.41 (7)89.73 (7)
O1—M—N178.86 (9)80.21 (6)81.63 (7)83.77 (7)80.67 (8)
O1M—M—N192.43 (9)87.44 (7)92.55 (7)88.14 (7)87.78 (7)
Notes: (a) Okabe & Muranishi (2003c); (b) Okabe et al. (2004).
Hydrogen-bonding geometry (Å, °). top
D—H···AD—HH···AD···AD—H···A
(I)O1M—H1M···O2i0.931.752.613 (3)153
(II)aO1M—H1M···O2ii0.971.662.617 (3)170
(III)bO1M—H1M···O2ii0.961.652.604 (2)172
(IV)bO1M—H1M···O2ii0.901.702.600 (3)178
(V)bO1M—H1M···O2ii0.821.862.679 (3)175
Symmetry code: (i) x, 1 + y, z; (ii) −x, −1 − y, −z.

Notes: (a) Okabe & Muranishi (2003c); (b) Okabe et al. (2004).
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds