Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C23H17NO2, was prepared by reacting 10-(3-amino­benzyl­idene)anthrone and acetic anhydride in the presence of pyridine. X-ray crystal structure analysis shows that the three rings of the anthraquinone system are not coplanar because of steric inter­actions with the benzyl­idene group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027601/hg6234sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027601/hg6234Isup2.hkl
Contains datablock I

CCDC reference: 287592

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.051
  • wR factor = 0.150
  • Data-to-parameter ratio = 9.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 6 PLAT731_ALERT_1_C Bond Calc 0.85(5), Rep 0.851(19) ...... 2.63 su-Rat N1 -H1X 1.555 1.555
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 2171 Count of symmetry unique reflns 2197 Completeness (_total/calc) 98.82% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

It was reported recently that some 10-substituted benzylideneanthrones possess high antitumour activity (Paull et al., 1992). In our laboratory, some 10-substituted benzylideneanthrones have been prepared and evaluated for antitumour activity. Our study of the structure–activity relationship (SAR) showed that substitution in the phenyl moiety of the molecule affects its antitumour activity (Hu & Zhou, 2004). As a continuation of our research work on SARs, we prepared crystals of the title molecule, (I), and investigated its structure.

The molecular structure of (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. A s illustrated in Fig. 1, the three rings of the anthraquinone moiety are not coplanar, because of steric interactions with the benzylidene moiety, wherein the two side phenyl rings form a dihedral angle of 23.0 (1)°. In the central six-membered ring, atoms C11, C12, C13 and C14 are coplanar to within 0.009 (2) Å, with atoms C5 and C10 deviating from the plane by 0.125 (5) and 0.246 (5) Å, respectively, and the ring adopts an asymmetric boat conformation.

Experimental top

10-(3-Aminobenzylidene)anthrone was prepared according to the literature method of Ingram (1950). A mixture of 10-(3-aminobenzylidene)anthrone (0.6 g), acetic anhydride (20 ml) and pyridine (0.5 ml) was added to a 100 ml flask and then stirred. The reaction was continued for 1.5 h at room temperature, followed by filtration and washing with alcohol [Ethanol?]. The collected crude product was recrystallized with alcohol [Ethanol?] to afford yellow crystals of (I) (0.4 g, yield 59.0%, m.p. 462–465 K). Spectroscopic analysis: IR (KBr, ν, cm−1): 3319, 1687, 1645, 1602, 1544, 1483, 1417, 1372, 1319, 1277, 932, 776, 683; 1H NMR (CDCl3, δ, p.p.m.): 7.52 (s, 1H, CCH), 7.00–8.28 (m, 12H), 2.18 (s, 3H, –CH3). MS (%): 340 (M+1, 10), 339 (M, 22), 297 (11), 296 (32), 281 (17), 280 (47), 239 (10), 43 (100).

Refinement top

H atoms were positioned geometrically, with C—H distances set to 0.96 Å for methyl H atoms and 0.93 Å for the remainder, and refined using the riding-model approximation, with Uiso(H) = 1.2 (or 1.5 for methyl H atoms) times Ueq(parent atom). Due to the absence of any significant anomalous scatterers in the molecule, attempts to determine the absolute structure by refinement of the Flack parameter were inconclusive. Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration remained undetermined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD (McArdle, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), with 30% probability displacement ellipsoids.
10-(3-Acetamidobenzylidene)anthrone top
Crystal data top
C23H17NO2F(000) = 356
Mr = 339.38Dx = 1.264 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.3847 (3) Åθ = 3.3–27.5°
b = 7.4853 (4) ŵ = 0.08 mm1
c = 12.3351 (3) ÅT = 296 K
β = 128.764 (4)°Block, yellow
V = 891.63 (8) Å30.34 × 0.23 × 0.14 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1626 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω–2θ scansh = 160
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.963, Tmax = 0.989l = 1116
3717 measured reflections3 standard reflections every 60 min
2171 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0888P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2171 reflectionsΔρmax = 0.34 e Å3
241 parametersΔρmin = 0.33 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.084 (12)
Crystal data top
C23H17NO2V = 891.63 (8) Å3
Mr = 339.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.3847 (3) ŵ = 0.08 mm1
b = 7.4853 (4) ÅT = 296 K
c = 12.3351 (3) Å0.34 × 0.23 × 0.14 mm
β = 128.764 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1626 reflections with I > 2σ(I)
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
Rint = 0.029
Tmin = 0.963, Tmax = 0.9893 standard reflections every 60 min
3717 measured reflections intensity decay: none
2171 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.34 e Å3
2171 reflectionsΔρmin = 0.33 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2202 (3)0.0772 (4)0.0075 (3)0.0740 (9)
O20.3858 (4)0.4173 (6)0.2636 (3)0.0986 (13)
N10.2766 (3)0.3305 (4)0.1791 (3)0.0501 (8)
H1X0.260 (4)0.360 (6)0.124 (3)0.061 (11)*
C10.3602 (4)0.2565 (5)0.4502 (4)0.0503 (9)
H10.34020.26820.51120.060*
C20.4885 (4)0.3066 (6)0.4935 (5)0.0588 (9)
H20.55310.35440.58190.071*
C30.5221 (4)0.2866 (6)0.4065 (5)0.0638 (11)
H30.60920.31970.43610.077*
C40.4259 (4)0.2174 (5)0.2763 (5)0.0621 (11)
H40.44910.20190.21830.074*
C50.1877 (4)0.1102 (5)0.0815 (3)0.0498 (8)
C60.0636 (5)0.0918 (5)0.1210 (4)0.0603 (10)
H60.03910.07180.17750.072*
C70.2007 (5)0.1065 (6)0.1798 (4)0.0687 (12)
H70.26890.09360.27530.082*
C80.2367 (4)0.1404 (6)0.0967 (4)0.0649 (11)
H80.32930.15630.13680.078*
C90.1352 (4)0.1513 (5)0.0476 (4)0.0540 (9)
H90.16140.17300.10250.065*
C100.1171 (3)0.1381 (4)0.2657 (3)0.0389 (7)
C110.2932 (4)0.1693 (5)0.2284 (4)0.0457 (8)
C120.0407 (3)0.1067 (5)0.0240 (3)0.0464 (8)
C130.0054 (3)0.1301 (4)0.1109 (3)0.0427 (7)
C140.2581 (3)0.1878 (4)0.3160 (3)0.0412 (7)
C150.0992 (3)0.1016 (5)0.3607 (3)0.0468 (8)
H150.17740.11800.45270.056*
C160.0253 (3)0.0395 (5)0.3415 (3)0.0451 (8)
C170.0967 (3)0.1142 (5)0.2677 (3)0.0437 (8)
H170.06810.17900.22540.052*
C180.2103 (3)0.1732 (5)0.2557 (3)0.0431 (8)
C190.2545 (4)0.0742 (6)0.3165 (4)0.0539 (9)
H190.33250.10930.30620.065*
C200.1818 (4)0.0769 (7)0.3924 (4)0.0642 (11)
H200.21020.14100.43520.077*
C210.0677 (4)0.1347 (6)0.4060 (4)0.0587 (10)
H210.01980.23640.45770.070*
C220.3596 (4)0.4412 (6)0.1845 (4)0.0599 (10)
C230.4162 (5)0.5972 (7)0.0868 (5)0.0760 (14)
H23A0.37400.70540.13890.114*
H23B0.39620.58230.02360.114*
H23C0.51460.60390.03520.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.111 (2)0.076 (2)0.0782 (16)0.0024 (19)0.0803 (17)0.0004 (17)
O20.123 (3)0.122 (3)0.108 (2)0.059 (3)0.099 (2)0.036 (2)
N10.0512 (17)0.0622 (19)0.0494 (15)0.0110 (14)0.0375 (14)0.0035 (15)
C10.045 (2)0.058 (2)0.0510 (19)0.0033 (17)0.0319 (17)0.0025 (17)
C20.046 (2)0.059 (2)0.0622 (19)0.0072 (18)0.0289 (17)0.004 (2)
C30.046 (2)0.065 (3)0.087 (3)0.006 (2)0.045 (2)0.003 (2)
C40.072 (3)0.059 (2)0.091 (3)0.002 (2)0.068 (3)0.006 (2)
C50.071 (2)0.0409 (17)0.0560 (17)0.0019 (18)0.0488 (18)0.0057 (17)
C60.084 (3)0.046 (2)0.0460 (17)0.006 (2)0.039 (2)0.0020 (17)
C70.077 (3)0.050 (2)0.0424 (17)0.008 (2)0.0198 (18)0.0022 (18)
C80.052 (2)0.055 (2)0.056 (2)0.0034 (19)0.0186 (18)0.005 (2)
C90.048 (2)0.053 (2)0.0540 (18)0.0023 (17)0.0288 (16)0.0039 (18)
C100.0387 (16)0.0416 (17)0.0428 (15)0.0004 (14)0.0287 (13)0.0006 (14)
C110.054 (2)0.0410 (18)0.0579 (18)0.0008 (15)0.0428 (17)0.0041 (16)
C120.062 (2)0.0358 (16)0.0431 (16)0.0030 (16)0.0340 (16)0.0000 (15)
C130.0483 (18)0.0363 (17)0.0435 (15)0.0050 (15)0.0288 (15)0.0006 (15)
C140.0427 (18)0.0402 (16)0.0465 (16)0.0001 (15)0.0308 (15)0.0018 (15)
C150.0424 (17)0.060 (2)0.0421 (15)0.0084 (17)0.0284 (14)0.0051 (16)
C160.0406 (17)0.061 (2)0.0387 (14)0.0048 (16)0.0272 (14)0.0007 (16)
C170.0471 (19)0.054 (2)0.0434 (15)0.0024 (15)0.0348 (15)0.0013 (15)
C180.0373 (17)0.060 (2)0.0357 (14)0.0018 (16)0.0247 (13)0.0037 (16)
C190.046 (2)0.077 (3)0.0544 (19)0.002 (2)0.0386 (17)0.000 (2)
C200.063 (2)0.085 (3)0.069 (2)0.004 (2)0.053 (2)0.015 (2)
C210.058 (2)0.074 (3)0.0572 (19)0.013 (2)0.0428 (18)0.018 (2)
C220.054 (2)0.074 (3)0.0532 (19)0.017 (2)0.0340 (18)0.002 (2)
C230.075 (3)0.082 (3)0.074 (3)0.027 (3)0.048 (2)0.007 (3)
Geometric parameters (Å, º) top
O1—C51.231 (4)C9—C131.401 (5)
O2—C221.219 (4)C9—H90.9300
N1—C221.354 (4)C10—C151.350 (4)
N1—C181.408 (5)C10—C141.489 (4)
N1—H1X0.851 (19)C10—C131.502 (4)
C1—C21.375 (5)C11—C141.401 (4)
C1—C141.408 (5)C12—C131.399 (4)
C1—H10.9300C15—C161.480 (4)
C2—C31.381 (6)C15—H150.9300
C2—H20.9300C16—C171.388 (5)
C3—C41.368 (6)C16—C211.393 (5)
C3—H30.9300C17—C181.391 (4)
C4—C111.401 (5)C17—H170.9300
C4—H40.9300C18—C191.387 (5)
C5—C121.484 (5)C19—C201.383 (6)
C5—C111.491 (5)C19—H190.9300
C6—C71.371 (6)C20—C211.384 (5)
C6—C121.410 (5)C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C81.373 (6)C22—C231.500 (6)
C7—H70.9300C23—H23A0.9599
C8—C91.397 (5)C23—H23B0.9599
C8—H80.9300C23—H23C0.9599
C22—N1—C18128.4 (3)C6—C12—C5118.9 (3)
C22—N1—H1X117 (3)C12—C13—C9117.5 (3)
C18—N1—H1X115 (3)C12—C13—C10119.9 (3)
C2—C1—C14121.6 (3)C9—C13—C10122.5 (3)
C2—C1—H1119.2C11—C14—C1117.3 (3)
C14—C1—H1119.2C11—C14—C10120.2 (3)
C1—C2—C3120.5 (4)C1—C14—C10122.4 (3)
C1—C2—H2119.8C10—C15—C16130.2 (3)
C3—C2—H2119.8C10—C15—H15114.9
C4—C3—C2119.2 (4)C16—C15—H15114.9
C4—C3—H3120.4C17—C16—C21119.0 (3)
C2—C3—H3120.4C17—C16—C15122.5 (3)
C3—C4—C11121.5 (3)C21—C16—C15118.4 (3)
C3—C4—H4119.3C16—C17—C18121.3 (3)
C11—C4—H4119.3C16—C17—H17119.3
O1—C5—C12121.0 (3)C18—C17—H17119.3
O1—C5—C11121.1 (3)C19—C18—C17119.2 (3)
C12—C5—C11117.8 (3)C19—C18—N1123.2 (3)
C7—C6—C12120.7 (4)C17—C18—N1117.6 (3)
C7—C6—H6119.6C20—C19—C18119.6 (3)
C12—C6—H6119.6C20—C19—H19120.2
C6—C7—C8119.6 (3)C18—C19—H19120.2
C6—C7—H7120.2C19—C20—C21121.3 (3)
C8—C7—H7120.2C19—C20—H20119.3
C7—C8—C9120.5 (4)C21—C20—H20119.3
C7—C8—H8119.7C20—C21—C16119.5 (4)
C9—C8—H8119.7C20—C21—H21120.2
C8—C9—C13121.1 (4)C16—C21—H21120.2
C8—C9—H9119.5O2—C22—N1122.7 (4)
C13—C9—H9119.5O2—C22—C23122.2 (3)
C15—C10—C14118.5 (3)N1—C22—C23115.1 (3)
C15—C10—C13125.0 (3)C22—C23—H23A109.5
C14—C10—C13116.5 (2)C22—C23—H23B109.5
C4—C11—C14119.8 (3)H23A—C23—H23B109.5
C4—C11—C5119.5 (3)C22—C23—H23C109.5
C14—C11—C5120.5 (3)H23A—C23—H23C109.5
C13—C12—C6120.3 (3)H23B—C23—H23C109.5
C13—C12—C5120.7 (3)
C14—C1—C2—C31.6 (6)C4—C11—C14—C10.4 (5)
C1—C2—C3—C40.5 (7)C5—C11—C14—C1175.5 (3)
C2—C3—C4—C111.1 (6)C4—C11—C14—C10179.6 (3)
C12—C6—C7—C81.6 (6)C5—C11—C14—C103.7 (5)
C6—C7—C8—C93.2 (6)C2—C1—C14—C111.1 (5)
C7—C8—C9—C130.7 (6)C2—C1—C14—C10178.0 (4)
C3—C4—C11—C141.6 (6)C15—C10—C14—C11158.8 (3)
C3—C4—C11—C5174.4 (4)C13—C10—C14—C1120.3 (5)
O1—C5—C11—C411.0 (5)C15—C10—C14—C122.1 (5)
C12—C5—C11—C4164.2 (3)C13—C10—C14—C1158.9 (3)
O1—C5—C11—C14173.1 (4)C14—C10—C15—C16176.1 (4)
C12—C5—C11—C1411.8 (5)C13—C10—C15—C162.9 (6)
C7—C6—C12—C132.4 (5)C10—C15—C16—C1755.5 (6)
C7—C6—C12—C5173.2 (4)C10—C15—C16—C21127.7 (4)
O1—C5—C12—C13174.8 (3)C21—C16—C17—C180.8 (5)
C11—C5—C12—C1310.0 (5)C15—C16—C17—C18177.5 (3)
O1—C5—C12—C69.6 (5)C16—C17—C18—C191.3 (5)
C11—C5—C12—C6165.6 (3)C16—C17—C18—N1179.9 (3)
C6—C12—C13—C94.7 (5)C22—N1—C18—C1922.1 (6)
C5—C12—C13—C9170.9 (3)C22—N1—C18—C17159.2 (4)
C6—C12—C13—C10177.5 (3)C17—C18—C19—C202.6 (5)
C5—C12—C13—C107.0 (4)N1—C18—C19—C20178.7 (3)
C8—C9—C13—C123.2 (5)C18—C19—C20—C211.8 (6)
C8—C9—C13—C10179.1 (3)C19—C20—C21—C160.3 (6)
C15—C10—C13—C12157.0 (3)C17—C16—C21—C201.5 (6)
C14—C10—C13—C1222.0 (4)C15—C16—C21—C20178.5 (3)
C15—C10—C13—C925.3 (5)C18—N1—C22—O21.6 (7)
C14—C10—C13—C9155.7 (3)C18—N1—C22—C23179.1 (4)

Experimental details

Crystal data
Chemical formulaC23H17NO2
Mr339.38
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)12.3847 (3), 7.4853 (4), 12.3351 (3)
β (°) 128.764 (4)
V3)891.63 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.23 × 0.14
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3717, 2171, 1626
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.10
No. of reflections2171
No. of parameters241
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD (McArdle, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C51.231 (4)N1—C181.408 (5)
O2—C221.219 (4)C10—C151.350 (4)
N1—C221.354 (4)
C15—C10—C14118.5 (3)C17—C16—C21119.0 (3)
C15—C10—C13125.0 (3)C17—C16—C15122.5 (3)
C14—C10—C15—C16176.1 (4)C10—C15—C16—C21127.7 (4)
C13—C10—C15—C162.9 (6)C22—N1—C18—C1922.1 (6)
C10—C15—C16—C1755.5 (6)C22—N1—C18—C17159.2 (4)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds