Download citation
Download citation
link to html
The title compound, [Ni2Zn(C24H22N4O6)2(CH4O)2](ClO4)2, was synthesized using a mononuclear complex ligand NiL (L is diethyl 5,6,7,8,15,16-hexa­hydro-6,7-dioxo-5,8,14,17-tetraazadibenzo[a,g]cyclo­tetra­decine-13,18-dicarboxyl­ate), Zn(ClO4)2·6H2O and CH3OH. X-ray single-crystal analysis reveals that the Zn2+ ion is in a slightly distorted octa­hedral O6 environment. The trinuclear complex cation is centrosymmetric. The Zn2+ and both Ni2+ ions are bridged by the oxamide group from the macrocyclic ligand L. Inter­molecular O—H...O hydrogen bonds exist between the perchlorate anion and the complex cation, and π–π inter­actions organize the trinuclear cations to form supramolecular one-dimensional chains in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680502828X/hg6213sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680502828X/hg6213Isup2.hkl
Contains datablock I

CCDC reference: 287587

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.036
  • wR factor = 0.105
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.14 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.16 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C17 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C18' PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17' PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O8 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O10 PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O10' PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for O11' PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for O8' PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for O9 PLAT301_ALERT_3_C Main Residue Disorder ......................... 7.00 Perc. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 44.00 Perc. PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O8' PLAT313_ALERT_2_C Oxygen with three covalent bonds (rare) ........ O11 PLAT413_ALERT_2_C Short Inter XH3 .. XHn H14B .. H25D .. 2.13 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 O1 -ZN1 -O1 -C1 2.00 0.00 3.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 O2 -ZN1 -O2 -C2 15.00 0.00 3.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 O7 -ZN1 -O7 -C25 3.00 0.00 3.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 O7 -ZN1 -O7 -C25' 3.00 0.00 3.565 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 22 N3 -NI1 -N1 -C9 95.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 N3 -NI1 -N1 -C13 -81.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 29 N4 -NI1 -N2 -C15 99.40 1.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 32 N4 -NI1 -N2 -C14 -77.70 1.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 N1 -NI1 -N3 -C1 -124.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 37 N1 -NI1 -N3 -C24 57.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 39 N2 -NI1 -N4 -C2 -61.70 1.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 42 N2 -NI1 -N4 -C3 109.80 1.00 1.555 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 18.20 Deg. C17 -O6 -C17' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 42.60 Deg. C25 -O7 -C25' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 34.40 Deg. O10' -CL1 -O9 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 27.90 Deg. O9' -CL1 -O8 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 36 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 20 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Polynuclear complexes are currently of considerable interest and have been researched widely. Black & Moss (1987) first synthesized a series of ML-like complexes, and many polynuclear complexes with interesting structures and properties have been synthesized using these mononuclear complexes as ligands (Gao et al., 2001; Zhang et al., 2003; Wang, Yang, Liao & Li, 2004; Sun et al., 2004; Wang, Yang, Li et al., 2004). We have synthesized a number of heterotrinuclear complexes with NiL as ligand (Li, Liao et al., 2002; Li, Yu et al., 2002; Li et al., 2003 Li, Liao et al. or Li, Yang et al..?; Li et al., 2004). In this report, we present the structure of the title heterotrinuclear complex of Zn with NiL, (I).

The molecular structure of (I) is illustrated in Fig. 1. The trinuclear complex cation is centrosymmetric. There is an oxamide bridge between atom Zn1 and the two Ni atoms. The coordination environment (Table 1) of the Ni atom is slightly distorted square-planar, with two deprotonated oxamido N atoms and two imino N atoms as donors. The deviations of the four donor atoms (N1, N2, N3 and N4) from their mean plane are −0.0562 (5), 0.0732 (5), −0.0571 (5) and 0.0725 (5) Å, respectively, and Ni1 is −0.0324 (5) Å out of the plane. Atom Zn1 resides in the centre of a slightly distorted octahedral environment, with four completely coplanar O atoms of two oxamide groups in the equatorial positions and two atoms of two CH3OH ligands in the axial positions. The dihedral angle between the Zn equatorial plane and the coordination plane of the Ni atom is 27.8 (9)°. The three metal atoms in the trinuclear cation are arranged in a line, and the distance between atom Zn1 and the Ni atoms is 5.180 (4) Å. The trinuclear cation provides atoms O7 and H7A to form intermolecular O—H···O hydrogen bonds with atoms O8 and O9' of the disordered perchlorate anion, respectively (Table 2).

Each of the two NiL fragments of a trinuclear cation overlaps with an NiL fragment of another trinuclear cation (Fig. 2). Some atom-to-atom distances between overlapping NiL fragments are in the range of strong ππ interactions (Janiak, 2000). For example, the distances between atom Ni1 of one fragment of a trinuclear cation and atoms C7 and C8 of a fragment of another trinuclear cation are 3.591 (5) and 3.634 (5) Å, respectively, and the distance between atoms C15 of the former and C6 of the latter is 3.266 (5) Å. The ππ interactions among these overlapping fragments are evident. These ππ interactions also result in one-dimensional chains of overlapping trinuclear cations in the crystal structure. Although the anion–cation interplay certainly contributes muchto the stabilization of the crystal, it is the O—H···O hydrogen bonds and ππ interactions which provide directionality, selectivity and reproducibility to organize the ions in space (Braga & Grepioni, 1999).

Experimental top

NiL (Black & Moss, 1987; Li et al., 2003 Li, Liao et al. or Li, Yang et al.?) (0.044 mmol), Zn(ClO4)2·6H2O (0.088 mmol) and CH3OH (40 ml) were mixed. The mixture was stirred and heated under reflux. After a few minutes, the mixture became a clear orange solution. This solution was stored for 12 weeks at room temperature, and orange [Red below?] crystals of (I) suitable for X-ray single-crystal investigation were obtained. The solid product was washed with CH3OH and dried in vacuum to yield 39%. Spectroscopic analysis: IR (KBr, ν, cm−1): 3450, 1730, 1615, 1605, 1590, 1100. (IR spectra were recorded on a BIO-RAD FTS 3000 infrared spectrophotometer). The complex decomposes at 561–563 K. Analysis, required for [ZnII(NiIIL)2(CH3OH)2](ClO4)2: C 43.81, H 3.82, N 8.18%; found: C 43.94, H 3.70, N 8.39%.

Refinement top

The anion is disordered over two different orientations with the same refined occupancies of 0.50 and 0.50 (s.u. values?). The two CH3OH molecules coordinated to Zn2+ are disordered over two different positions with refined occupancies of 0.55 and 0.45 (s.u. values?). The two ethoxy groups (involving atoms C17 and C18) of the complex ligand are disordered over two different positions with the same refined occupancies of 0.50 and 0.50 (s.u. values?). Standard DFIX restraints were used for the dimensions of the disordered anion. All H atoms were located in a difference Fourier map and were refined as riding, with O—H = 0.93 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C,O). [Please check added text.]

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the trinuclear cation of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, H atoms have been omitted.
[Figure 2] Fig. 2. A portion of the one-dimensional chains of the trinuclear cations linked by ππ interactions. [Symmetry codes: (A) −x, 1 − y, −z; (B) −x, 2 − y, −z; (C) x, 1 + y, z.]
bis(µ-diethyl 5,6,7,8,15,16-hexahydro-6,7-dioxo-5,8,14,17- tetraazadibenzo[a,g]cyclotetradecine-13,18- dicarboxylate)-1κ4N:2κ2O6,O7;2κO6,O7:3κ4N- dimethanoldinickel(II)zinc(II) bis(perchlorate) top
Crystal data top
[Ni2Zn(C24H22N4O6)2(CH4O)2](ClO4)2F(000) = 1408
Mr = 1370.69Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4578 reflections
a = 10.4582 (16) Åθ = 2.5–26.4°
b = 12.8031 (19) ŵ = 1.28 mm1
c = 21.161 (3) ÅT = 293 K
β = 99.308 (2)°Block, red
V = 2796.1 (7) Å30.32 × 0.22 × 0.14 mm
Z = 2
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
4941 independent reflections
Radiation source: fine-focus sealed tube4033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.674, Tmax = 0.836k = 1513
14921 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0666P)2 + 2.4619P]
where P = (Fo2 + 2Fc2)/3
4941 reflections(Δ/σ)max = 0.001
450 parametersΔρmax = 0.57 e Å3
66 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni2Zn(C24H22N4O6)2(CH4O)2](ClO4)2V = 2796.1 (7) Å3
Mr = 1370.69Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.4582 (16) ŵ = 1.28 mm1
b = 12.8031 (19) ÅT = 293 K
c = 21.161 (3) Å0.32 × 0.22 × 0.14 mm
β = 99.308 (2)°
Data collection top
Bruker APEX-II CCD area-detector
diffractometer
4941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4033 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.836Rint = 0.022
14921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03766 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
4941 reflectionsΔρmin = 0.46 e Å3
450 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.50000.00000.03950 (16)
Ni10.09841 (4)0.87155 (3)0.092050 (17)0.03067 (13)
O10.1630 (2)0.59102 (16)0.03684 (11)0.0426 (6)
O20.0858 (2)0.64318 (16)0.00006 (11)0.0412 (5)
O30.1554 (3)1.19502 (19)0.07869 (12)0.0579 (7)
O40.2393 (3)1.09412 (18)0.14823 (13)0.0544 (7)
O50.4839 (3)1.0338 (2)0.21190 (14)0.0693 (8)
O60.4382 (3)0.9111 (2)0.27852 (12)0.0647 (8)
O70.0360 (3)0.4733 (2)0.09456 (12)0.0648 (8)
H7A0.03040.44530.12420.078*
N10.0029 (3)0.9840 (2)0.10981 (12)0.0350 (6)
N20.2241 (3)0.9188 (2)0.15815 (12)0.0360 (6)
N30.2022 (2)0.76111 (19)0.07293 (12)0.0320 (6)
N40.0337 (2)0.81323 (19)0.03222 (11)0.0314 (6)
C10.1308 (3)0.6820 (2)0.04652 (14)0.0333 (7)
C20.0101 (3)0.7129 (2)0.02423 (14)0.0328 (7)
C30.1520 (3)0.8586 (2)0.00444 (14)0.0332 (7)
C40.2291 (3)0.8145 (3)0.04862 (16)0.0416 (8)
H40.20270.75300.06600.050*
C50.3446 (3)0.8609 (3)0.07584 (17)0.0456 (8)
H50.39440.83030.11140.055*
C60.3867 (3)0.9512 (3)0.05123 (17)0.0450 (8)
H60.46580.98050.06890.054*
C70.3103 (3)0.9980 (3)0.00003 (16)0.0408 (8)
H70.33811.05990.01630.049*
C80.1918 (3)0.9546 (2)0.02839 (14)0.0337 (7)
C90.1157 (3)1.0114 (2)0.08114 (15)0.0347 (7)
C100.1730 (3)1.1123 (3)0.10166 (16)0.0397 (8)
C110.2838 (5)1.1837 (3)0.1820 (2)0.0656 (12)
H11A0.37771.18750.17390.079*
H11B0.24961.24810.16720.079*
C120.2371 (6)1.1693 (4)0.2508 (3)0.0906 (17)
H12A0.25561.09940.26300.136*
H12B0.27991.21810.27480.136*
H12C0.14531.18110.25960.136*
C130.0640 (4)1.0516 (3)0.16191 (17)0.0464 (8)
H13A0.00251.07730.18800.056*
H13B0.10311.11110.14400.056*
C140.1661 (4)0.9873 (3)0.20177 (17)0.0474 (9)
H14A0.23191.03220.22530.057*
H14B0.12810.94570.23230.057*
C150.3458 (3)0.8956 (2)0.16970 (15)0.0364 (7)
C160.4316 (3)0.9550 (3)0.22274 (17)0.0465 (8)
C170.5396 (16)0.9642 (14)0.3252 (5)0.096 (7)0.50
H17A0.62240.95950.31030.116*0.50
H17B0.51791.03760.32790.116*0.50
C180.5503 (13)0.9164 (12)0.3890 (4)0.083 (4)0.50
H18A0.61590.95190.41820.124*0.50
H18B0.57330.84410.38650.124*0.50
H18C0.46870.92180.40400.124*0.50
C17'0.5032 (15)0.9727 (10)0.3347 (4)0.063 (4)0.50
H17C0.59490.97980.33280.076*0.50
H17D0.46571.04210.33410.076*0.50
C18'0.4855 (15)0.9174 (14)0.3948 (4)0.103 (5)0.50
H18D0.52560.95710.43120.155*0.50
H18E0.52470.84960.39570.155*0.50
H18F0.39460.91010.39630.155*0.50
C190.4083 (3)0.8237 (2)0.13170 (14)0.0350 (7)
C200.5447 (3)0.8198 (3)0.14174 (18)0.0474 (8)
H200.59120.86070.17390.057*
C210.6109 (3)0.7573 (3)0.10531 (18)0.0509 (9)
H210.70090.75540.11270.061*
C220.5414 (4)0.6975 (3)0.05767 (18)0.0527 (9)
H220.58540.65710.03160.063*
C230.4079 (3)0.6963 (3)0.04780 (17)0.0440 (8)
H230.36330.65400.01590.053*
C240.3388 (3)0.7578 (2)0.08496 (14)0.0339 (7)
C250.1622 (6)0.4970 (9)0.1162 (5)0.091 (3)0.55
H25A0.15650.47920.16060.137*0.55
H25B0.23000.45700.09130.137*0.55
H25C0.18110.57010.11060.137*0.55
C25'0.0848 (15)0.5460 (8)0.1408 (5)0.092 (4)0.45
H25D0.08770.51010.18040.138*0.45
H25E0.17020.56970.12310.138*0.45
H25F0.02760.60500.14870.138*0.45
Cl10.13532 (11)0.31465 (8)0.23432 (5)0.0682 (3)
O80.0090 (10)0.3197 (11)0.1982 (7)0.154 (7)0.50
O90.1541 (12)0.3932 (7)0.2800 (5)0.110 (4)0.50
O100.2299 (16)0.3271 (17)0.1925 (8)0.310 (13)0.50
O110.1535 (16)0.2166 (5)0.2648 (5)0.139 (5)0.50
O8'0.2364 (8)0.2447 (8)0.2286 (6)0.105 (3)0.50
O9'0.0479 (11)0.3093 (7)0.1760 (4)0.114 (6)0.50
O10'0.1810 (14)0.4145 (6)0.2482 (6)0.152 (7)0.50
O11'0.0700 (13)0.2790 (13)0.2861 (5)0.204 (7)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0447 (3)0.0254 (3)0.0457 (3)0.0019 (2)0.0010 (2)0.0052 (2)
Ni10.0331 (2)0.0274 (2)0.0311 (2)0.00017 (15)0.00369 (16)0.00426 (15)
O10.0400 (13)0.0276 (12)0.0572 (14)0.0048 (10)0.0008 (11)0.0072 (10)
O20.0402 (13)0.0278 (11)0.0512 (14)0.0004 (10)0.0060 (10)0.0059 (10)
O30.086 (2)0.0345 (14)0.0568 (16)0.0077 (13)0.0227 (14)0.0039 (12)
O40.0719 (18)0.0347 (13)0.0654 (16)0.0086 (12)0.0374 (14)0.0039 (12)
O50.075 (2)0.0592 (18)0.0658 (18)0.0268 (16)0.0135 (15)0.0027 (14)
O60.079 (2)0.0704 (19)0.0386 (14)0.0145 (15)0.0091 (13)0.0017 (13)
O70.077 (2)0.0708 (19)0.0471 (15)0.0181 (16)0.0105 (14)0.0089 (13)
N10.0420 (16)0.0298 (14)0.0342 (14)0.0012 (11)0.0089 (12)0.0055 (11)
N20.0420 (16)0.0334 (14)0.0322 (14)0.0016 (12)0.0052 (11)0.0055 (11)
N30.0310 (14)0.0302 (13)0.0341 (13)0.0010 (11)0.0035 (11)0.0022 (11)
N40.0339 (14)0.0269 (13)0.0322 (13)0.0023 (10)0.0018 (10)0.0036 (10)
C10.0372 (17)0.0308 (17)0.0312 (15)0.0011 (13)0.0031 (13)0.0016 (13)
C20.0354 (17)0.0313 (16)0.0309 (15)0.0017 (13)0.0026 (12)0.0030 (13)
C30.0359 (17)0.0292 (16)0.0350 (16)0.0012 (13)0.0071 (13)0.0035 (13)
C40.045 (2)0.0330 (17)0.0441 (18)0.0036 (14)0.0023 (15)0.0031 (14)
C50.045 (2)0.0408 (19)0.0459 (19)0.0002 (15)0.0078 (16)0.0023 (15)
C60.0369 (18)0.045 (2)0.051 (2)0.0055 (15)0.0025 (15)0.0101 (16)
C70.0420 (19)0.0358 (18)0.0461 (19)0.0100 (14)0.0118 (15)0.0051 (15)
C80.0381 (17)0.0314 (16)0.0332 (16)0.0016 (13)0.0108 (13)0.0026 (13)
C90.0412 (18)0.0301 (16)0.0346 (16)0.0020 (14)0.0121 (14)0.0030 (13)
C100.0461 (19)0.0338 (18)0.0396 (18)0.0050 (14)0.0078 (15)0.0021 (14)
C110.080 (3)0.043 (2)0.084 (3)0.013 (2)0.042 (2)0.013 (2)
C120.109 (4)0.082 (4)0.083 (4)0.003 (3)0.024 (3)0.041 (3)
C130.050 (2)0.0393 (19)0.050 (2)0.0022 (16)0.0072 (16)0.0178 (16)
C140.050 (2)0.051 (2)0.0404 (19)0.0012 (17)0.0052 (16)0.0165 (16)
C150.0396 (19)0.0348 (17)0.0331 (16)0.0065 (14)0.0013 (13)0.0033 (13)
C160.044 (2)0.051 (2)0.042 (2)0.0033 (17)0.0014 (15)0.0033 (16)
C170.096 (9)0.124 (10)0.068 (8)0.025 (7)0.009 (6)0.024 (7)
C180.097 (8)0.078 (6)0.067 (6)0.012 (6)0.008 (5)0.012 (5)
C17'0.082 (7)0.064 (6)0.034 (5)0.002 (5)0.017 (5)0.017 (4)
C18'0.119 (9)0.109 (8)0.072 (7)0.006 (8)0.012 (6)0.018 (6)
C190.0357 (17)0.0338 (17)0.0346 (16)0.0031 (13)0.0025 (13)0.0039 (13)
C200.0383 (19)0.051 (2)0.051 (2)0.0040 (16)0.0005 (16)0.0009 (17)
C210.0322 (18)0.059 (2)0.060 (2)0.0032 (16)0.0055 (16)0.0030 (19)
C220.043 (2)0.061 (2)0.056 (2)0.0091 (18)0.0125 (17)0.0021 (19)
C230.0401 (19)0.047 (2)0.0440 (19)0.0024 (15)0.0039 (15)0.0071 (16)
C240.0333 (16)0.0334 (16)0.0344 (16)0.0023 (13)0.0037 (13)0.0055 (13)
C250.096 (6)0.099 (7)0.084 (6)0.014 (5)0.027 (5)0.016 (5)
C25'0.107 (8)0.092 (7)0.086 (7)0.024 (6)0.041 (6)0.022 (6)
Cl10.0716 (7)0.0520 (6)0.0722 (7)0.0023 (5)0.0150 (6)0.0114 (5)
O80.071 (6)0.158 (12)0.210 (16)0.007 (7)0.049 (8)0.048 (10)
O90.144 (9)0.074 (6)0.101 (8)0.031 (6)0.013 (6)0.045 (5)
O100.34 (3)0.39 (3)0.26 (2)0.07 (2)0.23 (2)0.01 (2)
O110.211 (13)0.057 (5)0.112 (8)0.005 (7)0.081 (9)0.014 (5)
O8'0.077 (5)0.092 (7)0.136 (9)0.018 (5)0.013 (5)0.050 (6)
O9'0.171 (13)0.046 (4)0.093 (6)0.022 (6)0.076 (8)0.005 (4)
O10'0.219 (15)0.078 (7)0.144 (12)0.062 (8)0.015 (11)0.031 (7)
O11'0.208 (15)0.240 (18)0.181 (13)0.037 (14)0.079 (12)0.078 (13)
Geometric parameters (Å, º) top
Zn1—O22.041 (2)C12—H12A0.9600
Zn1—O2i2.041 (2)C12—H12B0.9600
Zn1—O1i2.107 (2)C12—H12C0.9600
Zn1—O12.107 (2)C13—C141.497 (5)
Zn1—O7i2.123 (3)C13—H13A0.9700
Zn1—O72.123 (3)C13—H13B0.9700
Ni1—N21.859 (3)C14—H14A0.9700
Ni1—N11.862 (3)C14—H14B0.9700
Ni1—N31.866 (2)C15—C191.446 (5)
Ni1—N41.872 (2)C15—C161.523 (5)
O1—C11.239 (4)C17—C181.471 (10)
O2—C21.247 (4)C17—H17A0.9700
O3—C101.192 (4)C17—H17B0.9700
O4—C101.315 (4)C18—H18A0.9600
O4—C111.467 (4)C18—H18B0.9600
O5—C161.188 (5)C18—H18C0.9600
O6—C161.299 (4)C17'—C18'1.493 (10)
O6—C171.491 (9)C17'—H17C0.9700
O6—C17'1.496 (8)C17'—H17D0.9700
O7—C251.4965 (11)C18'—H18D0.9600
O7—C25'1.4988 (11)C18'—H18E0.9600
O7—H7A0.9300C18'—H18F0.9600
N1—C91.285 (4)C19—C241.409 (4)
N1—C131.484 (4)C19—C201.409 (5)
N2—C151.291 (4)C20—C211.373 (5)
N2—C141.473 (4)C20—H200.9300
N3—C11.327 (4)C21—C221.376 (5)
N3—C241.411 (4)C21—H210.9300
N4—C21.324 (4)C22—C231.377 (5)
N4—C31.407 (4)C22—H220.9300
C1—C21.525 (4)C23—C241.394 (5)
C3—C41.392 (4)C23—H230.9300
C3—C81.417 (4)C25—H25A0.9600
C4—C51.386 (5)C25—H25B0.9600
C4—H40.9300C25—H25C0.9600
C5—C61.369 (5)C25'—H25D0.9600
C5—H50.9300C25'—H25E0.9600
C6—C71.376 (5)C25'—H25F0.9600
C6—H60.9300Cl1—O10'1.379 (7)
C7—C81.402 (4)Cl1—O91.386 (6)
C7—H70.9300Cl1—O8'1.406 (6)
C8—C91.456 (4)Cl1—O111.410 (6)
C9—C101.517 (4)Cl1—O9'1.413 (6)
C11—C121.471 (7)Cl1—O81.417 (7)
C11—H11A0.9700Cl1—O101.439 (7)
C11—H11B0.9700Cl1—O11'1.455 (7)
O2i—Zn1—O2180.0N2—C14—H14A110.2
O2i—Zn1—O1i80.37 (8)C13—C14—H14A110.2
O2—Zn1—O1i99.64 (8)N2—C14—H14B110.2
O2i—Zn1—O199.64 (8)C13—C14—H14B110.2
O2—Zn1—O180.36 (8)H14A—C14—H14B108.5
O1i—Zn1—O1180.00 (15)N2—C15—C19124.2 (3)
O2i—Zn1—O790.00 (10)N2—C15—C16118.0 (3)
O2—Zn1—O790.00 (10)C19—C15—C16117.6 (3)
O1i—Zn1—O790.20 (11)O5—C16—O6125.8 (3)
O1—Zn1—O789.80 (11)O5—C16—C15121.1 (3)
O2i—Zn1—O7i90.00 (10)O6—C16—C15113.1 (3)
O2—Zn1—O7i90.00 (10)C18—C17—O6111.0 (9)
O1i—Zn1—O7i89.80 (11)C18—C17—H17A109.4
O1—Zn1—O7i90.20 (11)O6—C17—H17A109.4
O7—Zn1—O7i180.0C18—C17—H17B109.4
N2—Ni1—N187.28 (12)O6—C17—H17B109.4
N2—Ni1—N392.54 (11)H17A—C17—H17B108.0
N1—Ni1—N3178.49 (11)C17—C18—H18A109.5
N2—Ni1—N4173.47 (11)C17—C18—H18B109.5
N1—Ni1—N493.63 (11)H18A—C18—H18B109.5
N3—Ni1—N486.72 (10)C17—C18—H18C109.5
C1—O1—Zn1110.89 (19)H18A—C18—H18C109.5
C2—O2—Zn1113.1 (2)H18B—C18—H18C109.5
C10—O4—C11118.3 (3)C18'—C17'—O6108.9 (8)
C16—O6—C17109.4 (6)C18'—C17'—H17C109.9
C16—O6—C17'116.4 (5)O6—C17'—H17C109.9
C17—O6—C17'18.2 (12)C18'—C17'—H17D109.9
C25—O7—C25'42.6 (6)O6—C17'—H17D109.9
C25—O7—Zn1123.8 (5)H17C—C17'—H17D108.3
C25'—O7—Zn1130.3 (5)C17'—C18'—H18D109.5
C25—O7—H7A118.1C17'—C18'—H18E109.5
C25'—O7—H7A95.4H18D—C18'—H18E109.5
Zn1—O7—H7A118.1C17'—C18'—H18F109.5
C9—N1—C13118.6 (3)H18D—C18'—H18F109.5
C9—N1—Ni1128.6 (2)H18E—C18'—H18F109.5
C13—N1—Ni1112.7 (2)C24—C19—C20118.7 (3)
C15—N2—C14120.7 (3)C24—C19—C15122.9 (3)
C15—N2—Ni1128.5 (2)C20—C19—C15118.4 (3)
C14—N2—Ni1110.7 (2)C21—C20—C19121.7 (3)
C1—N3—C24122.5 (3)C21—C20—H20119.2
C1—N3—Ni1111.3 (2)C19—C20—H20119.2
C24—N3—Ni1126.2 (2)C20—C21—C22118.8 (3)
C2—N4—C3121.1 (3)C20—C21—H21120.6
C2—N4—Ni1109.9 (2)C22—C21—H21120.6
C3—N4—Ni1128.4 (2)C21—C22—C23121.3 (3)
O1—C1—N3129.7 (3)C21—C22—H22119.4
O1—C1—C2117.8 (3)C23—C22—H22119.4
N3—C1—C2112.5 (3)C22—C23—C24120.9 (3)
O2—C2—N4128.9 (3)C22—C23—H23119.6
O2—C2—C1117.3 (3)C24—C23—H23119.6
N4—C2—C1113.8 (3)C23—C24—C19118.6 (3)
C4—C3—N4121.7 (3)C23—C24—N3121.2 (3)
C4—C3—C8118.4 (3)C19—C24—N3120.1 (3)
N4—C3—C8119.8 (3)O7—C25—H25A109.5
C5—C4—C3120.9 (3)O7—C25—H25B109.5
C5—C4—H4119.5H25A—C25—H25B109.5
C3—C4—H4119.5O7—C25—H25C109.5
C6—C5—C4121.1 (3)H25A—C25—H25C109.5
C6—C5—H5119.5H25B—C25—H25C109.5
C4—C5—H5119.5O7—C25'—H25D109.5
C5—C6—C7119.1 (3)O7—C25'—H25E109.5
C5—C6—H6120.5H25D—C25'—H25E109.5
C7—C6—H6120.5O7—C25'—H25F109.5
C6—C7—C8121.7 (3)H25D—C25'—H25F109.5
C6—C7—H7119.1H25E—C25'—H25F109.5
C8—C7—H7119.1O10'—Cl1—O934.4 (6)
C7—C8—C3118.7 (3)O10'—Cl1—O8'111.6 (6)
C7—C8—C9117.8 (3)O9—Cl1—O8'119.9 (6)
C3—C8—C9123.5 (3)O10'—Cl1—O11135.3 (6)
N1—C9—C8124.9 (3)O9—Cl1—O11109.5 (5)
N1—C9—C10118.1 (3)O8'—Cl1—O1154.8 (6)
C8—C9—C10116.9 (3)O10'—Cl1—O9'112.5 (6)
O3—C10—O4126.7 (3)O9—Cl1—O9'130.0 (6)
O3—C10—C9123.1 (3)O8'—Cl1—O9'106.5 (5)
O4—C10—C9110.1 (3)O11—Cl1—O9'112.1 (5)
O4—C11—C12107.7 (4)O10'—Cl1—O8109.5 (9)
O4—C11—H11A110.2O9—Cl1—O8111.0 (6)
C12—C11—H11A110.2O8'—Cl1—O8129.2 (7)
O4—C11—H11B110.2O11—Cl1—O8109.4 (6)
C12—C11—H11B110.2O9'—Cl1—O827.9 (9)
H11A—C11—H11B108.5O10'—Cl1—O1077.2 (9)
C11—C12—H12A109.5O9—Cl1—O10108.4 (7)
C11—C12—H12B109.5O8'—Cl1—O1054.3 (7)
H12A—C12—H12B109.5O11—Cl1—O10108.9 (7)
C11—C12—H12C109.5O9'—Cl1—O1083.1 (10)
H12A—C12—H12C109.5O8—Cl1—O10109.7 (7)
H12B—C12—H12C109.5O10'—Cl1—O11'108.7 (6)
N1—C13—C14107.8 (3)O9—Cl1—O11'74.6 (7)
N1—C13—H13A110.2O8'—Cl1—O11'108.4 (6)
C14—C13—H13A110.2O11—Cl1—O11'54.7 (6)
N1—C13—H13B110.2O9'—Cl1—O11'109.0 (6)
C14—C13—H13B110.2O8—Cl1—O11'84.9 (9)
H13A—C13—H13B108.5O10—Cl1—O11'162.0 (8)
N2—C14—C13107.7 (3)
O2i—Zn1—O1—C1174.0 (2)C8—C3—C4—C52.6 (5)
O2—Zn1—O1—C16.0 (2)C3—C4—C5—C60.3 (5)
O1i—Zn1—O1—C115 (60)C4—C5—C6—C72.2 (5)
O7—Zn1—O1—C184.0 (2)C5—C6—C7—C81.2 (5)
O7i—Zn1—O1—C196.0 (2)C6—C7—C8—C31.8 (5)
O2i—Zn1—O2—C2152 (100)C6—C7—C8—C9178.1 (3)
O1—Zn1—O2—C24.5 (2)C4—C3—C8—C73.6 (4)
O1i—Zn1—O2—C2175.5 (2)N4—C3—C8—C7179.8 (3)
O7—Zn1—O2—C285.3 (2)C4—C3—C8—C9176.3 (3)
O7i—Zn1—O2—C294.7 (2)N4—C3—C8—C90.4 (4)
O2i—Zn1—O7—C25135.3 (6)C13—N1—C9—C8178.6 (3)
O2—Zn1—O7—C2544.7 (6)Ni1—N1—C9—C82.7 (5)
O1—Zn1—O7—C25125.0 (6)C13—N1—C9—C101.0 (4)
O1i—Zn1—O7—C2555.0 (6)Ni1—N1—C9—C10174.9 (2)
O7i—Zn1—O7—C2527 (100)C7—C8—C9—N1176.6 (3)
O2i—Zn1—O7—C25'171.1 (8)C3—C8—C9—N13.3 (5)
O2—Zn1—O7—C25'8.9 (8)C7—C8—C9—C101.0 (4)
O1—Zn1—O7—C25'71.4 (8)C3—C8—C9—C10179.1 (3)
O1i—Zn1—O7—C25'108.6 (8)C11—O4—C10—O38.4 (6)
O7i—Zn1—O7—C25'27 (100)C11—O4—C10—C9169.9 (3)
N2—Ni1—N1—C9178.1 (3)N1—C9—C10—O389.0 (4)
N3—Ni1—N1—C995 (4)C8—C9—C10—O388.8 (4)
N4—Ni1—N1—C98.4 (3)N1—C9—C10—O489.4 (4)
N2—Ni1—N1—C132.0 (2)C8—C9—C10—O492.8 (3)
N3—Ni1—N1—C1381 (4)C10—O4—C11—C12125.7 (4)
N4—Ni1—N1—C13175.5 (2)C9—N1—C13—C14160.3 (3)
N1—Ni1—N2—C15162.4 (3)Ni1—N1—C13—C1423.2 (3)
N3—Ni1—N2—C1516.1 (3)C15—N2—C14—C13144.9 (3)
N4—Ni1—N2—C1599.4 (10)Ni1—N2—C14—C1337.7 (3)
N1—Ni1—N2—C1420.5 (2)N1—C13—C14—N238.2 (4)
N3—Ni1—N2—C14161.0 (2)C14—N2—C15—C19175.8 (3)
N4—Ni1—N2—C1477.7 (10)Ni1—N2—C15—C191.1 (5)
N2—Ni1—N3—C1153.1 (2)C14—N2—C15—C1610.2 (4)
N1—Ni1—N3—C1124 (4)Ni1—N2—C15—C16172.9 (2)
N4—Ni1—N3—C120.4 (2)C17—O6—C16—O59.8 (10)
N2—Ni1—N3—C2426.0 (2)C17'—O6—C16—O58.4 (9)
N1—Ni1—N3—C2457 (4)C17—O6—C16—C15171.0 (9)
N4—Ni1—N3—C24160.5 (2)C17'—O6—C16—C15170.8 (8)
N2—Ni1—N4—C261.7 (10)N2—C15—C16—O589.7 (5)
N1—Ni1—N4—C2159.5 (2)C19—C15—C16—O584.7 (5)
N3—Ni1—N4—C222.0 (2)N2—C15—C16—O689.5 (4)
N2—Ni1—N4—C3109.8 (10)C19—C15—C16—O696.0 (4)
N1—Ni1—N4—C312.0 (3)C16—O6—C17—C18179.8 (12)
N3—Ni1—N4—C3166.6 (3)C17'—O6—C17—C1864 (3)
Zn1—O1—C1—N3175.2 (3)C16—O6—C17'—C18'172.1 (10)
Zn1—O1—C1—C26.5 (3)C17—O6—C17'—C18'117 (4)
C24—N3—C1—O111.8 (5)N2—C15—C19—C2411.4 (5)
Ni1—N3—C1—O1167.3 (3)C16—C15—C19—C24174.5 (3)
C24—N3—C1—C2166.6 (3)N2—C15—C19—C20168.2 (3)
Ni1—N3—C1—C214.3 (3)C16—C15—C19—C205.8 (4)
Zn1—O2—C2—N4179.4 (3)C24—C19—C20—C212.9 (5)
Zn1—O2—C2—C12.6 (3)C15—C19—C20—C21176.7 (3)
C3—N4—C2—O29.1 (5)C19—C20—C21—C220.3 (6)
Ni1—N4—C2—O2163.0 (3)C20—C21—C22—C232.6 (6)
C3—N4—C2—C1168.9 (3)C21—C22—C23—C241.5 (6)
Ni1—N4—C2—C118.9 (3)C22—C23—C24—C191.8 (5)
O1—C1—C2—O22.9 (4)C22—C23—C24—N3176.7 (3)
N3—C1—C2—O2178.5 (3)C20—C19—C24—C233.9 (5)
O1—C1—C2—N4175.3 (3)C15—C19—C24—C23175.7 (3)
N3—C1—C2—N43.3 (4)C20—C19—C24—N3178.9 (3)
C2—N4—C3—C422.6 (4)C15—C19—C24—N30.8 (5)
Ni1—N4—C3—C4166.8 (2)C1—N3—C24—C2327.7 (4)
C2—N4—C3—C8160.9 (3)Ni1—N3—C24—C23153.3 (3)
Ni1—N4—C3—C89.8 (4)C1—N3—C24—C19157.5 (3)
N4—C3—C4—C5179.2 (3)Ni1—N3—C24—C1921.4 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.932.282.9264126
O7—H7A···O90.932.052.7681133

Experimental details

Crystal data
Chemical formula[Ni2Zn(C24H22N4O6)2(CH4O)2](ClO4)2
Mr1370.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4582 (16), 12.8031 (19), 21.161 (3)
β (°) 99.308 (2)
V3)2796.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.32 × 0.22 × 0.14
Data collection
DiffractometerBruker APEX-II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.674, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
14921, 4941, 4033
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections4941
No. of parameters450
No. of restraints66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.46

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—O22.041 (2)Ni1—N41.872 (2)
Zn1—O12.107 (2)N1—C91.285 (4)
Zn1—O72.123 (3)N2—C151.291 (4)
Ni1—N21.859 (3)N3—C241.411 (4)
Ni1—N11.862 (3)N4—C31.407 (4)
Ni1—N31.866 (2)
O2i—Zn1—O2180.0O2—Zn1—O7i90.00 (10)
O2—Zn1—O1i99.64 (8)O1—Zn1—O7i90.20 (11)
O2i—Zn1—O199.64 (8)O7—Zn1—O7i180.0
O2—Zn1—O180.36 (8)N2—Ni1—N187.28 (12)
O1i—Zn1—O1180.00 (15)N2—Ni1—N392.54 (11)
O2i—Zn1—O790.00 (10)N1—Ni1—N3178.49 (11)
O2—Zn1—O790.00 (10)N2—Ni1—N4173.47 (11)
O1i—Zn1—O790.20 (11)N1—Ni1—N493.63 (11)
O1—Zn1—O789.80 (11)N3—Ni1—N486.72 (10)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O80.932.282.9264126
O7—H7A···O9'0.932.052.7681133
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds