Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of meso-1,2-bis­(pyridin-2-yl)ethane-1,2-diol, C12H12N2O2, at 180 K, the mol­ecules lie on inversion centres and are linked into ribbons by complementary O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805005222/hg6145sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805005222/hg6145Isup2.hkl
Contains datablock I

CCDC reference: 269789

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.147
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.588 0.992 Tmin' and Tmax expected: 0.971 0.992 RR' = 0.606 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.61
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: APEX2 v.1.0-22 (Bruker-Nonius, 2004); cell refinement: SAINT v.7.06a (Bruker, 2003); data reduction: SAINT v.7.06a (Bruker, 2003); program(s) used to solve structure: SHELXTL v.6.10 (Sheldrick, 2000); program(s) used to refine structure: SHELXTL v.6.10 (Sheldrick, 2000); molecular graphics: SHELXTL v.6.10 (Sheldrick, 2000); software used to prepare material for publication: SHELXTL v.6.10 (Sheldrick, 2000).

meso-1,2-bis(pyridin-2-yl)-ethane-1,2-diol top
Crystal data top
C12H12N2O2F(000) = 228
Mr = 216.24Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1853 reflections
a = 5.3155 (14) Åθ = 3.8–25.1°
b = 8.108 (2) ŵ = 0.10 mm1
c = 11.737 (3) ÅT = 180 K
β = 90.196 (10)°Needle, pale orange
V = 505.8 (2) Å30.30 × 0.08 × 0.08 mm
Z = 2
Data collection top
Bruker-Nonius X8APEX-II CCD
diffractometer
1236 independent reflections
Radiation source: fine-focus sealed tube1026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
thin–slice ω and φ scansθmax = 28.3°, θmin = 3.8°
Absorption correction: multi-scan
SADABS v.2.10 (Sheldrick, 2003) Ratio of minimum to maximum apparent transmission: 0.592890
h = 76
Tmin = 0.588, Tmax = 0.992k = 108
6075 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2558P]
where P = (Fo2 + 2Fc2)/3
1236 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. Crystal is monoclinic with beta close to 90 °. and is twinned to appear orthorhombic: Twin law (1 0 0, 0 - 1 0, 0 0 - 1), BASF: 0.386 (3).

H atom of OH group added in calculated position and allowed to rotate about the C—O bond to the position of maximum electron density (AFIX 147).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2162 (3)0.1732 (2)0.49298 (15)0.0331 (5)
H10.33660.17130.44680.050*
N10.3968 (4)0.1194 (3)0.66357 (17)0.0318 (5)
C10.1884 (5)0.0311 (3)0.6412 (2)0.0279 (5)
C20.0389 (6)0.0309 (3)0.7274 (2)0.0334 (6)
H2A0.10910.09160.70980.040*
C30.1081 (6)0.0033 (3)0.8400 (2)0.0363 (6)
H3A0.00900.04580.90050.044*
C40.3233 (6)0.0870 (3)0.8629 (2)0.0355 (6)
H4A0.37470.10790.93920.043*
C50.4599 (5)0.1453 (3)0.7733 (2)0.0354 (6)
H5A0.60740.20750.78920.042*
C60.1359 (5)0.0076 (3)0.5162 (2)0.0302 (6)
H6A0.23620.06970.46800.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0437 (10)0.0305 (9)0.0250 (9)0.0066 (8)0.0041 (8)0.0037 (8)
N10.0324 (11)0.0366 (11)0.0265 (9)0.0023 (9)0.0010 (9)0.0053 (9)
C10.0351 (13)0.0292 (12)0.0195 (10)0.0012 (10)0.0004 (10)0.0028 (9)
C20.0400 (15)0.0358 (14)0.0245 (12)0.0068 (11)0.0029 (11)0.0008 (10)
C30.0533 (16)0.0316 (12)0.0240 (11)0.0030 (12)0.0027 (12)0.0024 (11)
C40.0537 (17)0.0356 (14)0.0170 (10)0.0097 (13)0.0083 (11)0.0075 (10)
C50.0341 (14)0.0360 (13)0.0361 (15)0.0012 (11)0.0036 (11)0.0092 (11)
C60.0404 (14)0.0322 (12)0.0179 (10)0.0034 (10)0.0042 (10)0.0013 (9)
Geometric parameters (Å, º) top
O1—C61.435 (3)C3—C41.384 (4)
O1—H10.840C3—H3A0.950
N1—C11.344 (3)C4—C51.365 (4)
N1—C51.347 (3)C4—H4A0.950
C1—C21.383 (3)C5—H5A0.950
C1—C61.525 (3)C6—C6i1.498 (5)
C2—C31.389 (4)C6—H6A1.000
C2—H2A0.950
C6—O1—H1109.5C5—C4—H4A120.8
C1—N1—C5118.2 (2)C3—C4—H4A120.8
N1—C1—C2121.8 (2)N1—C5—C4123.5 (3)
N1—C1—C6116.4 (2)N1—C5—H5A118.3
C2—C1—C6121.7 (2)C4—C5—H5A118.3
C1—C2—C3119.1 (3)O1—C6—C6i108.4 (3)
C1—C2—H2A120.5O1—C6—C1108.79 (19)
C3—C2—H2A120.5C6i—C6—C1113.6 (3)
C4—C3—C2119.1 (3)O1—C6—H6A108.6
C4—C3—H3A120.4C6i—C6—H6A108.6
C2—C3—H3A120.4C1—C6—H6A108.6
C5—C4—C3118.4 (2)
C5—N1—C1—C20.7 (4)C1—N1—C5—C40.1 (4)
C5—N1—C1—C6175.0 (2)C3—C4—C5—N10.1 (4)
N1—C1—C2—C31.0 (4)N1—C1—C6—O199.9 (2)
C6—C1—C2—C3174.5 (2)C2—C1—C6—O175.8 (3)
C1—C2—C3—C40.7 (4)N1—C1—C6—C6i139.2 (3)
C2—C3—C4—C50.1 (4)C2—C1—C6—C6i45.1 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.841.972.797 (3)169
Symmetry code: (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds