research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the 1:2 adduct of bis­­(piperidinium) sulfate and 1,3-di­methyl­thio­urea

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by P. C. Healy, Griffith University, Australia (Received 18 March 2017; accepted 28 March 2017; online 4 April 2017)

In the title compound, 2C5H12N+·SO42−·2C3H8N2S, the C=S groups of the two independent 1,3-di­methyl­urea mol­ecules and the sulfur atom of the anion lie on twofold axes. The packing is centred on bis­(piperidinium) sulfate ribbons parallel to the c axis; the cations are hydrogen bonded to the sulfate by N—H⋯O and C—H⋯O inter­actions. The 1,3-di­methyl­urea mol­ecules are also hydrogen bonded to sulfate O atoms, and project outwards from the ribbon parallel to the b axis.

1. Chemical context

We are inter­ested in the structures of adducts of urea and thio­urea, and simple derivatives of these compounds, with neutral mol­ecules. We have published two reports on adducts of dioxane and morpholine with various methyl­thio­ureas (Jones et al., 2013[Jones, P. G., Taouss, C., Teschmit, N. & Thomas, L. (2013). Acta Cryst. B69, 405-413.]; Taouss & Jones, 2016[Taouss, C. & Jones, P. G. (2016). Z. Naturforsch. Teil B, 71, 905-907.]). In the course of our current investigations, we attempted to obtain adducts of methyl­thio­ureas with piperidine, although mono­amines are not good adduct partners for ureas and thio­ureas. Indeed, no simple adducts were obtained. In one case, however, we overlayered a solution of 1,3-di­methyl­thio­urea (1,3-DMT) in piperidine with diethyl ether and obtained colourless crystals, the structure of which is reported here.

[Scheme 1]

2. Structural commentary

The crystals proved to be a 1:2 adduct of bis­(piperidinium) sulfate and 1,3-DMT (Fig. 1[link]), with the sulfate anion presumably generated by partial hydrolysis and/or decomposition of the 1,3-DMT under the influence of peroxides in the ether. The C=S bonds of both 1,3-DMT mol­ecules lie along twofold axes. The sulfate sulfur atom also lies on a twofold axis. The piperidine lies on a general position. Mol­ecular dimensions may be regarded as normal. Both 1,3-DMT mol­ecules are essentially planar (r.m.s. deviation of non-H atoms: 0.004 and 0.010 Å). Both NH functions of each 1,3-DMT are trans to the C=S double bond across the respective C—N bond (associated with the hydrogen-bonding pattern, see below), so that the methyl groups are cis, with Cmeth­yl—N—C=S torsion angles are close to zero [C11—N1—C1—S1 = 0.9 (2)° and S2—C2—N2—C21 = −2.05 (17)°]. Free 1,3-DMT crystallizes with four independent mol­ecules, each of which has one NH group cis and one trans to C=S, but the structure is severely disordered (Jones et al., 2013[Jones, P. G., Taouss, C., Teschmit, N. & Thomas, L. (2013). Acta Cryst. B69, 405-413.]).

[Figure 1]
Figure 1
The structure of the title compound in the crystal. Only the asymmetric unit is labelled. Displacement ellipsoids represent 50% probability levels. The dashed lines represent hydrogen bonds.

3. Supra­molecular features

The packing is based on bis­(piperidinium) sulfate ribbons parallel to the c axis in the region x, y ≃ 1/2 (Fig. 2[link]) and also at x, y ≃ 0, etc.; the cations are hydrogen bonded to the sulfate by N—H⋯O inter­actions, as expected, but also by a short inter­action C15—H15A⋯O2 (Table 1[link]). Each pair of successive sulfate ions in the ribbon is bridged by two piperidinium cations. The 1,3-DMT mol­ecules are also hydrogen bonded to sulfate oxygens (Figs. 1[link] and 3[link]); each 1,3-DMT bridges two oxygens of the same anion and projects outwards from the ribbons parallel to the b axis. In the presence of the sulfate oxygen atoms as strong hydrogen-bond acceptors, the 1,3-DMT sulfur atoms do not accept any classical hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H03⋯O1 0.86 (3) 2.06 (3) 2.9062 (18) 173 (2)
N2—H04⋯O2 0.89 (2) 2.00 (2) 2.8874 (17) 172 (2)
N11—H01⋯O1i 0.83 (2) 1.98 (2) 2.7953 (18) 167.4 (19)
N11—H02⋯O2 0.91 (2) 1.85 (2) 2.7589 (17) 176 (2)
C12—H12A⋯S1ii 0.99 2.94 3.8213 (17) 150
C15—H15A⋯O2iii 0.99 2.49 3.435 (2) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound: the bis­(piperidinium) sulfate substructure viewed parallel to the b axis. Dashed lines represent hydrogen bonds. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
Packing diagram of the title compound: attachment of the thio­urea mol­ecules to the bis­(piperidinium) sulfate chain, viewed perpendicular to the bc plane. Dashed lines represent hydrogen bonds. Methyl­ene hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Database (Version 1.19; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found three adducts of 1,3-DMT, excluding metal complexes. The 1:2 adduct between 18-crown-6 and 1,3-DMT (Weber, 1983[Weber, G. (1983). Acta Cryst. C39, 896-899.]) also displays a trans geometry for both NH functions, but the 1:2 adduct between 1,4-dioxane and 1,3-DMT (Jones et al., 2013[Jones, P. G., Taouss, C., Teschmit, N. & Thomas, L. (2013). Acta Cryst. B69, 405-413.]) and a 1,3-DMT adduct of a 1,3-DMT-gold(I) complex (Eikens et al., 1994[Eikens, W., Jones, P. G., Lautner, J. & Thöne, C. (1994). Z. Naturforsch. Teil B, 49, 21-26.]) both have one NH function cis and one trans. Only one other piperidinium sulfate derivative was found, namely tris­(piperidinium) hydrogensulfate sulfate (Lukianova et al., 2015[Lukianova, T. J., Kinzhybalo, V. & Pietraszko, A. (2015). Acta Cryst. E71, 1444-1446.]).

5. Synthesis and crystallization

208 mg (2 mmol) 1,3-DMT were dissolved in 2 mL piperidine. The solution was overlayered with diethyl ether. Colourless needles formed overnight.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The asymmetric unit was chosen such that the occupied twofold axis is [1\over2], y, [1\over4]. The NH hydrogen atoms were refined freely. The H atoms of the methyl groups were identified in a difference synthesis, idealized and refined as rigid groups allowed to rotate but not tip (C—H 0.98 Å, H—C—H 109.5°). Methyl­ene H atoms were included using a riding model starting from calculated positions (C—H 0.99 Å).

Table 2
Experimental details

Crystal data
Chemical formula 2C5H12N+·SO42−·2C3H8N2S
Mr 476.72
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 12.5899 (5), 17.5691 (6), 11.8980 (5)
β (°) 101.326 (4)
V3) 2580.52 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.89
Crystal size (mm) 0.25 × 0.05 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Atlas, Nova
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.514, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21112, 2701, 2295
Rint 0.073
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.03
No. of reflections 2701
No. of parameters 152
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.38
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Bis(piperidin-1-ium) sulfate–1,3-dimethylthiourea (1/2) top
Crystal data top
2C5H12N+·SO42·2C3H8N2SF(000) = 1032
Mr = 476.72Dx = 1.227 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 6031 reflections
a = 12.5899 (5) Åθ = 4.4–76.2°
b = 17.5691 (6) ŵ = 2.89 mm1
c = 11.8980 (5) ÅT = 100 K
β = 101.326 (4)°Lath, colourless
V = 2580.52 (17) Å30.25 × 0.05 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Atlas, Nova
diffractometer
2701 independent reflections
Radiation source: sealed X-ray tube2295 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.073
Detector resolution: 10.3543 pixels mm-1θmax = 76.2°, θmin = 4.4°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 2222
Tmin = 0.514, Tmax = 1.000l = 1414
21112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.6886P]
where P = (Fo2 + 2Fc2)/3
2701 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50000.15866 (3)0.25000.03441 (16)
N10.50629 (13)0.29584 (8)0.34615 (12)0.0309 (3)
H030.509 (2)0.3444 (14)0.342 (2)0.043 (6)*
C10.50000.25465 (12)0.25000.0257 (4)
C110.5151 (2)0.26298 (12)0.45902 (17)0.0474 (5)
H11A0.45550.22710.45860.071*
H11B0.51160.30350.51480.071*
H11C0.58440.23610.48020.071*
S20.50000.85910 (3)0.25000.02659 (14)
C20.50000.76309 (12)0.25000.0225 (4)
N110.32010 (11)0.51380 (7)0.44604 (12)0.0221 (3)
H010.3664 (18)0.5141 (11)0.5057 (19)0.024 (5)*
H020.3518 (18)0.5281 (12)0.387 (2)0.033 (5)*
C120.23562 (13)0.57046 (9)0.46151 (15)0.0298 (3)
H12A0.18160.57560.38920.036*
H12B0.26970.62080.48090.036*
C130.18007 (15)0.54456 (11)0.55658 (17)0.0361 (4)
H13A0.12170.58090.56400.043*
H13B0.23300.54410.63010.043*
C140.13203 (15)0.46502 (11)0.53210 (16)0.0347 (4)
H14A0.09960.44810.59720.042*
H14B0.07390.46660.46270.042*
C150.21891 (14)0.40868 (10)0.51400 (14)0.0305 (4)
H15A0.27310.40310.58600.037*
H15B0.18550.35830.49360.037*
C160.27441 (13)0.43579 (9)0.41936 (15)0.0274 (3)
H16A0.33340.40010.41140.033*
H16B0.22170.43670.34570.033*
S30.50000.50921 (3)0.25000.01895 (12)
O10.52691 (9)0.46061 (6)0.35314 (9)0.0235 (2)
O20.40655 (9)0.55785 (6)0.26031 (9)0.0233 (2)
N20.40879 (11)0.72181 (8)0.24440 (12)0.0267 (3)
H040.4138 (19)0.6711 (13)0.246 (2)0.036 (6)*
C210.30262 (14)0.75398 (10)0.24149 (17)0.0331 (4)
H21A0.27710.77870.16730.050*
H21B0.30670.79160.30300.050*
H21C0.25210.71340.25220.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (3)0.0197 (3)0.0475 (4)0.0000.0000 (3)0.000
N10.0440 (8)0.0225 (7)0.0268 (7)0.0030 (6)0.0080 (6)0.0015 (5)
C10.0233 (10)0.0230 (10)0.0304 (12)0.0000.0047 (9)0.000
C110.0703 (15)0.0421 (11)0.0295 (10)0.0070 (10)0.0092 (10)0.0057 (8)
S20.0272 (3)0.0187 (2)0.0334 (3)0.0000.0047 (2)0.000
C20.0274 (11)0.0228 (10)0.0170 (9)0.0000.0038 (8)0.000
N110.0200 (6)0.0247 (6)0.0219 (6)0.0015 (5)0.0046 (6)0.0001 (5)
C120.0247 (8)0.0268 (8)0.0375 (9)0.0050 (6)0.0047 (7)0.0004 (6)
C130.0282 (8)0.0425 (10)0.0408 (10)0.0003 (7)0.0145 (8)0.0107 (8)
C140.0262 (8)0.0466 (10)0.0347 (9)0.0073 (7)0.0141 (7)0.0030 (7)
C150.0303 (8)0.0301 (8)0.0304 (8)0.0075 (6)0.0041 (7)0.0025 (6)
C160.0250 (8)0.0258 (8)0.0323 (9)0.0036 (6)0.0077 (6)0.0051 (6)
S30.0194 (2)0.0182 (2)0.0195 (2)0.0000.00437 (18)0.000
O10.0262 (5)0.0221 (5)0.0217 (5)0.0004 (4)0.0033 (4)0.0014 (4)
O20.0224 (5)0.0219 (5)0.0270 (6)0.0033 (4)0.0085 (4)0.0017 (4)
N20.0289 (7)0.0200 (6)0.0310 (7)0.0007 (5)0.0056 (6)0.0008 (5)
C210.0284 (8)0.0282 (8)0.0428 (10)0.0022 (6)0.0071 (7)0.0009 (7)
Geometric parameters (Å, º) top
S1—C11.687 (2)C13—H13A0.9900
N1—C11.3428 (19)C13—H13B0.9900
N1—C111.446 (2)C14—C151.522 (3)
N1—H030.86 (3)C14—H14A0.9900
C1—N1i1.3427 (19)C14—H14B0.9900
C11—H11A0.9800C15—C161.514 (2)
C11—H11B0.9800C15—H15A0.9900
C11—H11C0.9800C15—H15B0.9900
S2—C21.687 (2)C16—H16A0.9900
C2—N21.3487 (18)C16—H16B0.9900
C2—N2i1.3488 (18)S3—O21.4786 (10)
N11—C121.494 (2)S3—O2i1.4786 (10)
N11—C161.4961 (19)S3—O1i1.4787 (11)
N11—H010.83 (2)S3—O11.4787 (11)
N11—H020.91 (2)N2—C211.445 (2)
C12—C131.512 (3)N2—H040.89 (2)
C12—H12A0.9900C21—H21A0.9800
C12—H12B0.9900C21—H21B0.9800
C13—C141.528 (3)C21—H21C0.9800
C1—N1—C11123.85 (16)C15—C14—C13110.69 (14)
C1—N1—H03119.0 (16)C15—C14—H14A109.5
C11—N1—H03117.0 (16)C13—C14—H14A109.5
N1i—C1—N1114.8 (2)C15—C14—H14B109.5
N1i—C1—S1122.61 (10)C13—C14—H14B109.5
N1—C1—S1122.61 (10)H14A—C14—H14B108.1
N1—C11—H11A109.5C16—C15—C14110.50 (14)
N1—C11—H11B109.5C16—C15—H15A109.5
H11A—C11—H11B109.5C14—C15—H15A109.5
N1—C11—H11C109.5C16—C15—H15B109.5
H11A—C11—H11C109.5C14—C15—H15B109.5
H11B—C11—H11C109.5H15A—C15—H15B108.1
N2—C2—N2i114.94 (19)N11—C16—C15110.17 (13)
N2—C2—S2122.53 (9)N11—C16—H16A109.6
N2i—C2—S2122.53 (9)C15—C16—H16A109.6
C12—N11—C16112.53 (13)N11—C16—H16B109.6
C12—N11—H01106.8 (14)C15—C16—H16B109.6
C16—N11—H01111.5 (13)H16A—C16—H16B108.1
C12—N11—H02110.0 (14)O2—S3—O2i109.39 (9)
C16—N11—H02107.4 (14)O2—S3—O1i110.26 (6)
H01—N11—H02108.6 (19)O2i—S3—O1i108.74 (6)
N11—C12—C13109.67 (14)O2—S3—O1108.74 (6)
N11—C12—H12A109.7O2i—S3—O1110.26 (6)
C13—C12—H12A109.7O1i—S3—O1109.46 (9)
N11—C12—H12B109.7C2—N2—C21124.43 (14)
C13—C12—H12B109.7C2—N2—H04118.6 (15)
H12A—C12—H12B108.2C21—N2—H04116.9 (15)
C12—C13—C14110.89 (15)N2—C21—H21A109.5
C12—C13—H13A109.5N2—C21—H21B109.5
C14—C13—H13A109.5H21A—C21—H21B109.5
C12—C13—H13B109.5N2—C21—H21C109.5
C14—C13—H13B109.5H21A—C21—H21C109.5
H13A—C13—H13B108.0H21B—C21—H21C109.5
C11—N1—C1—N1i179.1 (2)C13—C14—C15—C1655.77 (19)
C11—N1—C1—S10.9 (2)C12—N11—C16—C1558.13 (18)
C16—N11—C12—C1357.99 (18)C14—C15—C16—N1156.16 (18)
N11—C12—C13—C1456.3 (2)N2i—C2—N2—C21177.95 (17)
C12—C13—C14—C1556.1 (2)S2—C2—N2—C212.05 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H03···O10.86 (3)2.06 (3)2.9062 (18)173 (2)
N2—H04···O20.89 (2)2.00 (2)2.8874 (17)172 (2)
N11—H01···O1ii0.83 (2)1.98 (2)2.7953 (18)167.4 (19)
N11—H02···O20.91 (2)1.85 (2)2.7589 (17)176 (2)
C12—H12A···S1iii0.992.943.8213 (17)150
C15—H15A···O2iv0.992.493.435 (2)158
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z; (iv) x, y+1, z+1/2.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationEikens, W., Jones, P. G., Lautner, J. & Thöne, C. (1994). Z. Naturforsch. Teil B, 49, 21–26.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Taouss, C., Teschmit, N. & Thomas, L. (2013). Acta Cryst. B69, 405–413.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLukianova, T. J., Kinzhybalo, V. & Pietraszko, A. (2015). Acta Cryst. E71, 1444–1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaouss, C. & Jones, P. G. (2016). Z. Naturforsch. Teil B, 71, 905–907.  CAS Google Scholar
First citationWeber, G. (1983). Acta Cryst. C39, 896–899.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds