metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,4,7,10,13,16-Hexaoxa­cyclo­octa­decane-κ6O)bis­­(tetra­hydro­furan-κO)potassium bis­­[(1,2,3,4-η)-anthracene]cobalt(−I) tetra­hydro­furan monosolvate

aTechnische Universität München, Department of Chemistry, Lichtenbergstrasse 4, 85747 Garching, Germany
*Correspondence e-mail: thomas.faessler@lrz.tum.de

(Received 25 November 2013; accepted 29 November 2013; online 7 December 2013)

The asymmetric unit of the title compound, [K(C12H24O6)(C4H8O)2][Co(C14H10)2]·C4H8O, consists of one cationic potassium complex, one anionic cobalt dianthracene complex and one tetra­hydro­furan solvent mol­ecule. The potassium cation is situated at the centre of an 18-crown-6 mol­ecule and between two tetra­hydro­furan mol­ecules, the latter coordin­ating above and below the mean plane formed by the O atoms of the crown ether mol­ecule. The Co atom is coordinated by eight C atoms of two anthracene mol­ecules in an η4 manner. The third free tetra­hydro­furan mol­ecule shows orientational disorder on two partially occupied positions [occupancy ratio 0.561 (8):0.439 (8)].

Related literature

For the synthesis, see: Brennessel, Young & Ellis (2002[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211-1215.]); Brennessel & Ellis (2012[Brennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076-9094.]). Other homoleptic transition metal-anthracene complexes are reported by Elschenbroich et al. (1984[Elschenbroich, C., Möckel, R. & Bilger, L. (1984). Z. Naturforsch. Teil B, 39, 375-383.]); Brennessel, Ellis, Pomije et al. (2002[Brennessel, W. W., Ellis, J. E., Pomije, M. K., Sussman, V. J., Urnezius, E. & Young, V. G. Jr (2002). J. Am. Chem. Soc. 124, 10258-10259.]), Brennessel, Ellis, Roush et al. (2002[Brennessel, W. W., Ellis, J. E., Roush, S. N., Strandberg, B. R., Woisetschläger, O. E. & Young, V. G. Jr (2002). Chem. Commun. pp. 2356-2357.]); Brennessel et al. (2007[Brennessel, W. W., Jilek, R. E. & Ellis, J. E. (2007). Angew. Chem. Int. Ed. 46, 6132-6136.]); Jilek et al. (2008[Jilek, R. E., Jang, M., Smolensky, E. D., Britton, J. D. & Ellis, J. E. (2008). Angew. Chem. Int. Ed. 47, 8692-8695.]). For related structures, see: Hanic & Mills (1968[Hanic, F. & Mills, O. S. (1968). J. Organomet. Chem. 11, 151-158.]); Veauthier et al. (2000[Veauthier, J. M., Chow, A., Fraenkel, G., Geib, S. J. & Cooper, N. J. (2000). Organometallics, 19, 661-671.]); Wang & Fässler (2009[Wang, J. Q. & Fässler, T. F. (2009). Z. Naturforsch. Teil B, 64, 985-988.]); Woolf et al. (2011[Woolf, A., Chaplin, A. B., McGrady, J. E., Alibadi, M. A. M., Rees, N., Draper, S., Murphy, F. & Weller, A. S. (2011). Eur. J. Inorg. Chem. pp. 1614-1625.]); Zhu et al. (2006[Zhu, G., Janak, K. E., Figueroa, J. S. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 5452-5461.]). Zintl compounds and their chemistry are reviewed by Scharfe et al. (2011[Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. (2011). Angew. Chem. Int. Ed. 50, 3630-3670.]). For a description of the Cambridge Structural database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C12H24O6)(C4H8O)2][Co(C14H10)2]·C4H8O

  • Mr = 935.09

  • Orthorhombic, P 21 21 21

  • a = 13.0428 (10) Å

  • b = 13.3557 (10) Å

  • c = 27.4939 (17) Å

  • V = 4789.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 150 K

  • 0.60 × 0.30 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.787, Tmax = 0.975

  • 62002 measured reflections

  • 9364 independent reflections

  • 4717 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.076

  • S = 0.77

  • 9364 reflections

  • 604 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4164 Friedel pairs

  • Absolute structure parameter: −0.005 (14)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organometallic compounds with transition metals in a low oxidation state are important precursors for the formation of intermetalloid clusters from Zintl anions (Scharfe et al., 2011). Transition metal complexes with polycyclic aromatic hydrocarbons as ligands can serve as storable, but reactive sources of low-valent metal atoms or even anions (Brennessel & Ellis, 2012). Within this group of compounds, anthracene has been found as a prominent, sometimes favoured ligand (Zhu et al., 2006), which can act as a η2 (Woolf et al., 2011), η4, and η6 (Hanic & Mills, 1968; Elschenbroich et al., 1984), in its monohydrogenated form even as a η5 (Veauthier et al., 2000) ligand. Regarding the entries of the Cambridge Structural Database (Allen, 2002), it is interesting that homoleptic anthracene complexes have been obtained exclusively with η4 coordination of the transition metals Ti, Zr, Hf (Jilek et al., 2008), Nb (Brennessel, Ellis, Roush et al., 2002), Ta (Brennessel, Ellis, Pomije et al., 2002), Fe ((Brennessel et al., 2007), and Co (Brennessel, Young & Ellis, 2002).

The title compound was obtained via reduction of CoBr2 by potassium anthracene in THF. Although the reaction conditions were very similar to those described by Brennessel, Young & Ellis (2002), we found the compound to crystallize including an additional free solvent molecule (Fig.1). Consequently different from the literature, our indexation resulted in the orthorhombic, but acentric space group P212121 instead of P1. Besides these differences, those structural entities, which are present in both compounds, show almost the same shape (Fig.2).

The Co atom is sandwiched by two anthracene molecules in 1,2,3,4-η4 coordination, respectively, with a slight tilt of 10.2° for the two planes formed by the respective coordinating atoms C1—C4. The C6 rings, which are directly bond to the Co atom, are in eclipsed position, but the main molecule axes form an angle of about 65°. The anthracene molecules are folded at an axis running through the C1 and C4 atoms, the angles between the planes formed by C1, C2, C3, and C4 and by C1, and C4—C14 are almost identical (29.18° and 28.99° for both molecules).

Related literature top

For the synthesis, see: Brennessel, Young & Ellis (2002); Brennessel & Ellis (2012). Other homoleptic transition metal-anthracene complexes are reported by Elschenbroich et al. (1984); Brennessel, Ellis, Pomije et al. (2002), Brennessel, Ellis, Roush et al. (2002); Brennessel et al. (2007); Jilek et al. (2008). For other related structures, see: Hanic & Mills (1968); Veauthier et al. (2000); Wang & Fässler (2009), Woolf et al. (2011); Zhu et al. (2006). Zintl compounds and their chemistry are reviewed by Scharfe et al. (2011). For a description of the Cambridge Structural database, see: Allen (2002).

Experimental top

To a deep-blue solution of K[C14H10] (3.43 mmol) in tetrahydrofuran (THF) (30 ml, -78°C) was added a bright-blue solution of CoBr2 (0.25 g, 1.15 mmol) in THF (30 ml, -78°C). The reaction was stirred overnight and warmed slowly to room temperature, the colour of the solution gradually changed to deep-pinkish-red. It was filtered to remove KBr, and 18-crown-6 (0.302 g, 1.15 mmol) in THF (10 ml) was added to the filtrate. Hexane (20 ml) was added and the volume was reduced to about 20 ml in vacuum. The brown-black needle-like product was crystallized at -40°C by diffusion of diethyl ether (50 ml) which yields the title compound (Yield: 41% based on CoBr2). The energy-dispersive X-ray analysis (EDX) shows an atomic ratio of Co/K close to 1:1 in all the analysed crystals of [K(C12H24O6)(C4H8O)2][Co(C14H10)2](C4H8O).

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq (parent C atom) for the aromatic, C—H = 0.97 Å with Uiso(H) = 1.2 Ueq (parent C atom) for the crown ether, and C—H = 0.97 Å with Uiso(H) = 1.5 Ueq (parent C atom) for the tetrahydrofuran H atoms. The free solvent molecule shows disorder and was refined at two positions with partial occupations of 56% and 44%, respectively. Two C atoms of the THF molecule with lower occupation have been refined with isotropic thermal displacement parameters.

Structure description top

Organometallic compounds with transition metals in a low oxidation state are important precursors for the formation of intermetalloid clusters from Zintl anions (Scharfe et al., 2011). Transition metal complexes with polycyclic aromatic hydrocarbons as ligands can serve as storable, but reactive sources of low-valent metal atoms or even anions (Brennessel & Ellis, 2012). Within this group of compounds, anthracene has been found as a prominent, sometimes favoured ligand (Zhu et al., 2006), which can act as a η2 (Woolf et al., 2011), η4, and η6 (Hanic & Mills, 1968; Elschenbroich et al., 1984), in its monohydrogenated form even as a η5 (Veauthier et al., 2000) ligand. Regarding the entries of the Cambridge Structural Database (Allen, 2002), it is interesting that homoleptic anthracene complexes have been obtained exclusively with η4 coordination of the transition metals Ti, Zr, Hf (Jilek et al., 2008), Nb (Brennessel, Ellis, Roush et al., 2002), Ta (Brennessel, Ellis, Pomije et al., 2002), Fe ((Brennessel et al., 2007), and Co (Brennessel, Young & Ellis, 2002).

The title compound was obtained via reduction of CoBr2 by potassium anthracene in THF. Although the reaction conditions were very similar to those described by Brennessel, Young & Ellis (2002), we found the compound to crystallize including an additional free solvent molecule (Fig.1). Consequently different from the literature, our indexation resulted in the orthorhombic, but acentric space group P212121 instead of P1. Besides these differences, those structural entities, which are present in both compounds, show almost the same shape (Fig.2).

The Co atom is sandwiched by two anthracene molecules in 1,2,3,4-η4 coordination, respectively, with a slight tilt of 10.2° for the two planes formed by the respective coordinating atoms C1—C4. The C6 rings, which are directly bond to the Co atom, are in eclipsed position, but the main molecule axes form an angle of about 65°. The anthracene molecules are folded at an axis running through the C1 and C4 atoms, the angles between the planes formed by C1, C2, C3, and C4 and by C1, and C4—C14 are almost identical (29.18° and 28.99° for both molecules).

For the synthesis, see: Brennessel, Young & Ellis (2002); Brennessel & Ellis (2012). Other homoleptic transition metal-anthracene complexes are reported by Elschenbroich et al. (1984); Brennessel, Ellis, Pomije et al. (2002), Brennessel, Ellis, Roush et al. (2002); Brennessel et al. (2007); Jilek et al. (2008). For other related structures, see: Hanic & Mills (1968); Veauthier et al. (2000); Wang & Fässler (2009), Woolf et al. (2011); Zhu et al. (2006). Zintl compounds and their chemistry are reviewed by Scharfe et al. (2011). For a description of the Cambridge Structural database, see: Allen (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Unit cell of the title compound, view along [1 1 0].
[Figure 2] Fig. 2. Asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level, H atoms and atoms of the disordered atoms of the free THF molecule are omitted for clarity.
(1,4,7,10,13,16-Hexaoxacyclooctadecane-κ6O)bis(tetrahydrofuran-κO)potassium bis[(1,2,3,4-η)-anthracene]cobalt(-I) tetrahydrofuran monosolvate top
Crystal data top
[K(C12H24O6)(C4H8O)2][Co(C14H10)2]·C4H8OF(000) = 1992
Mr = 935.09Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8368 reflections
a = 13.0428 (10) Åθ = 3.0–37.0°
b = 13.3557 (10) ŵ = 0.50 mm1
c = 27.4939 (17) ÅT = 150 K
V = 4789.3 (6) Å3Plate, brown-black
Z = 40.6 × 0.3 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
9364 independent reflections
Radiation source: Enhance (Mo) X-ray Source4717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 16.0238 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω and φ scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1616
Tmin = 0.787, Tmax = 0.975l = 3333
62002 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.77(Δ/σ)max = 0.001
9364 reflectionsΔρmax = 0.96 e Å3
604 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 4164 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (14)
Crystal data top
[K(C12H24O6)(C4H8O)2][Co(C14H10)2]·C4H8OV = 4789.3 (6) Å3
Mr = 935.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.0428 (10) ŵ = 0.50 mm1
b = 13.3557 (10) ÅT = 150 K
c = 27.4939 (17) Å0.6 × 0.3 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
9364 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4717 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.975Rint = 0.105
62002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.96 e Å3
S = 0.77Δρmin = 0.37 e Å3
9364 reflectionsAbsolute structure: Flack (1983), 4164 Friedel pairs
604 parametersAbsolute structure parameter: 0.005 (14)
0 restraints
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.34d (release 27-02-2009 CrysAlis171 .NET) (compiled Feb 27 2009,15:38:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.53937 (4)0.06723 (4)0.164895 (18)0.03905 (16)
C10.4723 (3)0.0533 (3)0.20524 (12)0.0363 (10)
H1A0.49120.06120.23950.044*
C20.4052 (3)0.0236 (3)0.19268 (15)0.0414 (11)
H2A0.36960.06320.21750.050*
C30.3975 (3)0.0471 (3)0.14262 (14)0.0406 (11)
H3A0.35540.10300.13100.049*
C40.4585 (3)0.0103 (3)0.11044 (13)0.0340 (10)
H4A0.46540.01290.07680.041*
C50.4841 (3)0.1143 (3)0.12119 (13)0.0312 (10)
C60.4895 (3)0.1372 (3)0.17228 (13)0.0317 (10)
C70.5148 (3)0.2325 (3)0.18608 (13)0.0357 (11)
H7A0.51880.24750.21910.043*
C80.5034 (3)0.1878 (3)0.08783 (13)0.0328 (11)
H8A0.49920.17230.05490.039*
C90.5291 (3)0.2855 (3)0.10141 (14)0.0347 (10)
C100.5349 (3)0.3083 (3)0.15194 (14)0.0353 (10)
C110.5544 (3)0.4078 (3)0.16562 (16)0.0463 (11)
H110.55520.42430.19850.056*
C120.5723 (3)0.4807 (3)0.13190 (18)0.0546 (13)
H12A0.58460.54630.14170.066*
C130.5719 (3)0.4563 (4)0.08267 (18)0.0560 (14)
H13A0.58720.50540.05980.067*
C140.5495 (3)0.3612 (3)0.06738 (15)0.0433 (11)
H14A0.54780.34670.03430.052*
C150.7000 (3)0.0552 (3)0.16042 (13)0.0359 (10)
H15A0.73170.01000.16700.043*
C160.6616 (3)0.1113 (4)0.20014 (14)0.0471 (13)
H16A0.67410.09020.23380.056*
C170.6016 (3)0.1934 (4)0.18996 (17)0.0517 (13)
H17A0.56910.23300.21570.062*
C180.5812 (3)0.2105 (3)0.14003 (16)0.0434 (12)
H18A0.52630.25750.13160.052*
C190.6563 (3)0.1875 (3)0.10353 (14)0.0324 (11)
C200.7222 (3)0.1040 (3)0.11462 (13)0.0308 (10)
C210.7949 (3)0.0757 (3)0.08149 (13)0.0300 (10)
H21A0.83820.02250.08900.036*
C220.6683 (3)0.2359 (3)0.05967 (15)0.0375 (11)
H22A0.62580.28970.05240.045*
C230.7429 (3)0.2064 (3)0.02550 (14)0.0311 (11)
C240.8064 (3)0.1245 (3)0.03617 (14)0.0294 (10)
C250.8818 (3)0.0975 (3)0.00161 (14)0.0383 (11)
H25A0.92470.04350.00810.046*
C260.8929 (4)0.1485 (4)0.04079 (15)0.0486 (13)
H26A0.94190.12790.06320.058*
C270.8327 (4)0.2301 (4)0.05085 (16)0.0530 (14)
H27A0.84270.26610.07940.064*
C280.7575 (4)0.2585 (3)0.01869 (15)0.0463 (12)
H280.71560.31280.02610.056*
K10.03957 (7)0.53903 (6)0.14969 (3)0.0335 (2)
O10.12066 (19)0.4278 (2)0.18781 (8)0.0373 (7)
O20.0500 (2)0.59109 (19)0.24092 (9)0.0443 (7)
O30.1468 (2)0.6590 (2)0.21494 (9)0.0417 (8)
O40.2056 (2)0.6488 (2)0.11633 (9)0.0398 (7)
O50.1262 (2)0.49597 (19)0.05842 (8)0.0378 (7)
O60.0561 (2)0.40644 (18)0.08827 (9)0.0394 (7)
C290.1834 (3)0.4796 (3)0.22131 (14)0.0486 (12)
H29A0.23460.43460.23460.058*
H29B0.21850.53420.20500.058*
C300.1184 (3)0.5193 (3)0.26089 (14)0.0446 (12)
H30A0.16090.55030.28560.054*
H30B0.08000.46530.27590.054*
C310.0203 (4)0.6271 (3)0.27595 (15)0.0577 (13)
H31A0.06130.57220.28840.069*
H31B0.01650.65700.30290.069*
C320.0879 (4)0.7032 (3)0.25261 (16)0.0653 (15)
H32A0.04630.75680.23930.078*
H32B0.13330.73180.27680.078*
C330.2139 (3)0.7294 (3)0.19290 (15)0.0485 (13)
H33A0.26030.75640.21720.058*
H33B0.17440.78430.17940.058*
C340.2738 (3)0.6798 (3)0.15356 (15)0.0459 (12)
H34A0.32390.72620.14040.055*
H34B0.31010.62230.16650.055*
C350.2594 (3)0.6084 (3)0.07566 (15)0.0487 (13)
H35A0.30050.55160.08580.058*
H35B0.30470.65870.06200.058*
C360.1829 (3)0.5760 (3)0.03834 (13)0.0429 (11)
H36A0.13760.63120.03020.051*
H36B0.21770.55450.00900.051*
C370.0553 (3)0.4539 (3)0.02498 (12)0.0390 (10)
H37A0.09100.43090.00390.047*
H37B0.00530.50380.01530.047*
C380.0032 (3)0.3683 (3)0.04914 (13)0.0419 (11)
H38A0.04080.33390.02610.050*
H38B0.05350.32100.06120.050*
C390.1043 (3)0.3312 (3)0.11580 (14)0.0431 (11)
H39A0.05330.29330.13370.052*
H39B0.14050.28560.09440.052*
C400.1786 (3)0.3792 (3)0.15067 (15)0.0447 (12)
H40A0.22100.42750.13370.054*
H40B0.22280.32870.16490.054*
O70.1415 (3)0.3777 (3)0.18754 (11)0.0738 (11)
C410.2195 (4)0.3313 (4)0.16068 (19)0.0842 (17)
H41A0.23070.36660.13030.101*
H41B0.20110.26250.15340.101*
C420.3122 (4)0.3344 (4)0.19089 (17)0.0776 (17)
H42A0.34990.39630.18610.093*
H42B0.35690.27810.18420.093*
C430.2681 (4)0.3285 (5)0.24082 (18)0.091 (2)
H43A0.25890.25950.25080.110*
H43B0.31170.36230.26420.110*
C440.1701 (4)0.3792 (4)0.23591 (16)0.0718 (16)
H44A0.11870.34560.25550.086*
H44B0.17600.44780.24710.086*
O80.0901 (3)0.6752 (3)0.11277 (14)0.1021 (15)
C450.1710 (6)0.7154 (5)0.1368 (2)0.147 (3)
H45A0.22550.66620.13950.176*
H45B0.15040.73450.16940.176*
C460.2049 (5)0.7953 (5)0.1129 (3)0.105 (2)
H46A0.16860.85480.12340.126*
H46B0.27750.80490.11880.126*
C470.1865 (5)0.7771 (4)0.0613 (2)0.097 (2)
H47A0.15810.83570.04530.116*
H47B0.24870.75680.04460.116*
C480.1109 (7)0.6943 (6)0.0635 (2)0.195 (5)
H48A0.13870.63480.04810.234*
H48B0.04850.71310.04670.234*
O90.1283 (5)1.0242 (5)0.0337 (2)0.074 (3)0.561 (8)
C490.1160 (9)1.0277 (10)0.0850 (4)0.048 (4)0.561 (8)
H49A0.04421.03600.09340.072*0.561 (8)
H49B0.15421.08350.09850.072*0.561 (8)
C500.1548 (17)0.9331 (15)0.1044 (5)0.128 (7)0.561 (8)
H50A0.09890.88830.11260.192*0.561 (8)
H50B0.19620.94430.13330.192*0.561 (8)
C510.218 (2)0.892 (2)0.0643 (13)0.118 (12)0.561 (8)
H51A0.28610.87540.07570.177*0.561 (8)
H51B0.18640.83160.05120.177*0.561 (8)
C520.2216 (7)0.9687 (8)0.0283 (4)0.068 (3)0.561 (8)
H52A0.22620.94000.00400.102*0.561 (8)
H52B0.28051.01170.03350.102*0.561 (8)
O100.0540 (11)0.9506 (9)0.1099 (4)0.112 (4)0.439 (8)
C530.095 (2)1.037 (3)0.0972 (11)0.169 (16)*0.439 (8)
H53A0.12871.07070.12410.254*0.439 (8)
H53B0.04611.08170.08180.254*0.439 (8)
C540.1791 (13)0.9867 (11)0.0571 (6)0.056 (4)*0.439 (8)
H54A0.15781.00260.02420.084*0.439 (8)
H54B0.24651.01550.06230.084*0.439 (8)
C550.185 (2)0.872 (3)0.0633 (11)0.066 (8)0.439 (8)
H55A0.23720.85110.08600.099*0.439 (8)
H55B0.19170.83680.03270.099*0.439 (8)
C560.0744 (11)0.8671 (12)0.0848 (5)0.094 (5)0.439 (8)
H56A0.02510.85960.05860.141*0.439 (8)
H56B0.06850.80930.10600.141*0.439 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0313 (3)0.0510 (4)0.0348 (3)0.0066 (3)0.0057 (3)0.0050 (3)
C10.034 (3)0.052 (3)0.023 (2)0.003 (3)0.0025 (19)0.007 (2)
C20.042 (3)0.041 (3)0.041 (3)0.009 (2)0.006 (2)0.003 (2)
C30.042 (3)0.039 (3)0.040 (3)0.001 (2)0.003 (2)0.007 (2)
C40.029 (3)0.044 (3)0.028 (2)0.007 (3)0.002 (2)0.011 (2)
C50.019 (3)0.047 (3)0.028 (2)0.008 (2)0.0011 (18)0.008 (2)
C60.021 (2)0.044 (3)0.030 (2)0.0082 (19)0.0003 (18)0.005 (2)
C70.028 (3)0.051 (3)0.028 (2)0.008 (2)0.0022 (19)0.005 (2)
C80.030 (3)0.047 (3)0.021 (2)0.005 (2)0.0027 (18)0.001 (2)
C90.031 (3)0.038 (3)0.035 (3)0.006 (2)0.001 (2)0.001 (2)
C100.020 (2)0.039 (3)0.047 (3)0.002 (2)0.000 (2)0.015 (2)
C110.028 (3)0.057 (3)0.054 (3)0.008 (2)0.000 (2)0.013 (3)
C120.038 (3)0.042 (3)0.084 (4)0.005 (2)0.004 (3)0.013 (3)
C130.042 (3)0.056 (4)0.069 (3)0.001 (3)0.012 (2)0.012 (3)
C140.041 (3)0.045 (3)0.043 (3)0.002 (3)0.002 (2)0.001 (2)
C150.032 (2)0.040 (3)0.035 (2)0.002 (2)0.002 (2)0.003 (2)
C160.040 (3)0.073 (4)0.029 (3)0.010 (3)0.007 (2)0.006 (2)
C170.035 (3)0.073 (4)0.047 (3)0.002 (3)0.012 (2)0.023 (3)
C180.026 (3)0.044 (3)0.060 (3)0.001 (2)0.007 (2)0.010 (2)
C190.035 (3)0.030 (3)0.033 (3)0.009 (2)0.001 (2)0.011 (2)
C200.022 (2)0.039 (3)0.031 (2)0.006 (2)0.0011 (19)0.006 (2)
C210.020 (2)0.027 (2)0.044 (2)0.004 (2)0.0037 (19)0.006 (2)
C220.035 (3)0.026 (3)0.051 (3)0.005 (2)0.005 (2)0.001 (2)
C230.034 (3)0.028 (3)0.031 (3)0.006 (2)0.001 (2)0.004 (2)
C240.028 (3)0.027 (3)0.034 (2)0.008 (2)0.004 (2)0.005 (2)
C250.036 (3)0.032 (3)0.047 (3)0.001 (2)0.004 (2)0.002 (2)
C260.053 (3)0.058 (3)0.035 (3)0.022 (3)0.015 (2)0.006 (3)
C270.069 (4)0.057 (4)0.033 (3)0.025 (3)0.006 (3)0.012 (3)
C280.059 (4)0.040 (3)0.040 (3)0.000 (3)0.015 (3)0.009 (2)
K10.0288 (5)0.0366 (5)0.0352 (5)0.0008 (5)0.0023 (4)0.0025 (4)
O10.0298 (17)0.0412 (17)0.0408 (15)0.0051 (15)0.0016 (14)0.0076 (15)
O20.0363 (19)0.0461 (19)0.0506 (17)0.0129 (17)0.0057 (16)0.0120 (14)
O30.042 (2)0.041 (2)0.0417 (18)0.0060 (16)0.0012 (15)0.0150 (15)
O40.0295 (19)0.0456 (19)0.0441 (18)0.0011 (15)0.0018 (15)0.0061 (15)
O50.0342 (18)0.0434 (18)0.0357 (15)0.0048 (15)0.0004 (14)0.0001 (14)
O60.0381 (19)0.0425 (18)0.0375 (16)0.0005 (16)0.0042 (14)0.0034 (14)
C290.048 (3)0.049 (3)0.049 (3)0.009 (3)0.017 (3)0.001 (2)
C300.034 (3)0.051 (3)0.049 (3)0.000 (3)0.005 (2)0.012 (2)
C310.051 (3)0.073 (3)0.049 (3)0.012 (3)0.017 (3)0.034 (3)
C320.052 (4)0.074 (4)0.070 (4)0.007 (3)0.002 (3)0.037 (3)
C330.041 (3)0.052 (3)0.052 (3)0.018 (3)0.015 (3)0.002 (3)
C340.034 (3)0.047 (3)0.057 (3)0.008 (2)0.001 (3)0.004 (3)
C350.034 (3)0.054 (3)0.059 (3)0.005 (2)0.017 (2)0.002 (2)
C360.043 (3)0.046 (3)0.039 (2)0.002 (3)0.014 (2)0.005 (2)
C370.040 (3)0.045 (3)0.031 (2)0.006 (2)0.002 (2)0.005 (2)
C380.032 (3)0.044 (3)0.049 (3)0.000 (2)0.007 (2)0.009 (2)
C390.036 (3)0.041 (3)0.052 (3)0.013 (2)0.008 (2)0.010 (3)
C400.028 (3)0.050 (3)0.055 (3)0.006 (2)0.002 (2)0.008 (2)
O70.066 (3)0.109 (3)0.046 (2)0.044 (2)0.0049 (19)0.0008 (19)
C410.093 (5)0.103 (5)0.056 (3)0.030 (4)0.005 (4)0.007 (4)
C420.045 (4)0.130 (5)0.058 (3)0.021 (3)0.001 (3)0.034 (4)
C430.072 (5)0.139 (6)0.063 (4)0.047 (4)0.010 (3)0.012 (4)
C440.068 (4)0.100 (4)0.048 (3)0.011 (3)0.007 (3)0.005 (3)
O80.105 (3)0.132 (3)0.069 (3)0.091 (3)0.007 (2)0.018 (3)
C450.210 (9)0.127 (7)0.104 (6)0.107 (6)0.051 (6)0.044 (5)
C460.086 (5)0.091 (5)0.138 (7)0.039 (4)0.013 (5)0.004 (5)
C470.152 (7)0.091 (5)0.049 (4)0.045 (4)0.031 (4)0.007 (3)
C480.290 (11)0.207 (9)0.088 (6)0.195 (8)0.016 (6)0.016 (5)
O90.074 (6)0.076 (5)0.072 (5)0.019 (4)0.012 (4)0.008 (4)
C490.048 (7)0.058 (8)0.037 (6)0.015 (6)0.028 (5)0.006 (6)
C500.148 (19)0.148 (17)0.088 (11)0.058 (15)0.015 (11)0.071 (12)
C510.10 (2)0.035 (11)0.22 (2)0.012 (13)0.087 (19)0.002 (13)
C520.056 (8)0.058 (8)0.091 (8)0.022 (6)0.034 (6)0.015 (7)
O100.106 (11)0.084 (8)0.146 (9)0.006 (8)0.012 (8)0.025 (7)
C550.067 (18)0.07 (2)0.059 (12)0.014 (12)0.012 (10)0.020 (10)
C560.059 (12)0.105 (14)0.119 (12)0.023 (10)0.007 (9)0.018 (10)
Geometric parameters (Å, º) top
Co1—C12.142 (4)C29—H29A0.9700
Co1—C21.997 (4)C29—H29B0.9700
Co1—C31.967 (4)C30—H30A0.9700
Co1—C42.104 (4)C30—H30B0.9700
Co1—C152.105 (4)C31—C321.491 (5)
Co1—C161.956 (4)C31—H31A0.9700
Co1—C171.993 (4)C31—H31B0.9700
Co1—C182.103 (4)C32—H32A0.9700
C1—C21.393 (5)C32—H32B0.9700
C1—C61.458 (5)C33—C341.490 (5)
C1—H1A0.9800C33—H33A0.9700
C2—C31.415 (5)C33—H33B0.9700
C2—H2A0.9800C34—H34A0.9700
C3—C41.415 (5)C34—H34B0.9700
C3—H3A0.9800C35—C361.495 (5)
C4—C51.459 (5)C35—H35A0.9700
C4—H4A0.9800C35—H35B0.9700
C5—C81.367 (5)C36—H36A0.9700
C5—C61.439 (5)C36—H36B0.9700
C6—C71.368 (5)C37—C381.487 (4)
C7—C101.406 (5)C37—H37A0.9700
C7—H7A0.9300C37—H37B0.9700
C8—C91.398 (5)C38—H38A0.9700
C8—H8A0.9300C38—H38B0.9700
C9—C141.402 (5)C39—C401.506 (5)
C9—C101.424 (5)C39—H39A0.9700
C10—C111.404 (5)C39—H39B0.9700
C11—C121.365 (5)C40—H40A0.9700
C11—H110.9300C40—H40B0.9700
C12—C131.392 (5)O7—C441.382 (4)
C12—H12A0.9300O7—C411.401 (5)
C13—C141.370 (5)C41—C421.468 (6)
C13—H13A0.9300C41—H41A0.9700
C14—H14A0.9300C41—H41B0.9700
C15—C161.416 (5)C42—C431.490 (6)
C15—C201.448 (5)C42—H42A0.9700
C15—H15A0.9800C42—H42B0.9700
C16—C171.375 (5)C43—C441.453 (6)
C16—H16A0.9800C43—H43A0.9700
C17—C181.417 (5)C43—H43B0.9700
C17—H17A0.9800C44—H44A0.9700
C18—C191.436 (5)C44—H44B0.9700
C18—H18A0.9800O8—C451.356 (6)
C19—C221.377 (5)O8—C481.405 (6)
C19—C201.441 (5)C45—C461.329 (6)
C20—C211.368 (4)C45—H45A0.9700
C21—C241.414 (5)C45—H45B0.9700
C21—H21A0.9300C46—C471.460 (6)
C22—C231.409 (5)C46—H46A0.9700
C22—H22A0.9300C46—H46B0.9700
C23—C241.403 (5)C47—C481.482 (7)
C23—C281.413 (5)C47—H47A0.9700
C24—C251.414 (5)C47—H47B0.9700
C25—C261.358 (5)C48—H48A0.9700
C25—H25A0.9300C48—H48B0.9700
C26—C271.372 (6)O9—C491.422 (13)
C26—H26A0.9300O9—C521.433 (11)
C27—C281.374 (6)C49—C501.46 (2)
C27—H27A0.9300C49—H49A0.9700
C28—H280.9300C49—H49B0.9700
K1—O82.683 (3)C50—C511.48 (4)
K1—O72.738 (3)C50—H50A0.9700
K1—O62.746 (2)C50—H50B0.9700
K1—O12.770 (3)C51—C521.43 (3)
K1—O42.771 (3)C51—H51A0.9700
K1—O32.782 (3)C51—H51B0.9700
K1—O52.811 (2)C52—H52A0.9700
K1—O22.853 (3)C52—H52B0.9700
O1—C401.426 (4)O10—C531.32 (3)
O1—C291.413 (4)O10—C561.340 (16)
O2—C301.420 (4)C53—C541.69 (3)
O2—C311.414 (4)C53—H53A0.9700
O3—C321.418 (4)C53—H53B0.9700
O3—C331.420 (4)C54—C551.54 (4)
O4—C341.419 (4)C54—H54A0.9700
O4—C351.426 (4)C54—H54B0.9700
O5—C361.413 (4)C55—C561.56 (3)
O5—C371.419 (4)C55—H55A0.9700
O6—C381.419 (4)C55—H55B0.9700
O6—C391.406 (4)C56—H56A0.9700
C29—C301.477 (5)C56—H56B0.9700
C16—Co1—C3164.10 (19)C36—O5—K1113.8 (2)
C16—Co1—C1740.74 (16)C37—O5—K1113.4 (2)
C3—Co1—C17127.3 (2)C39—O6—C38113.3 (3)
C16—Co1—C2127.78 (16)C39—O6—K1109.4 (2)
C3—Co1—C241.83 (14)C38—O6—K1116.8 (2)
C17—Co1—C2118.14 (17)O1—C29—C30108.9 (3)
C16—Co1—C1871.10 (17)O1—C29—H29A109.9
C3—Co1—C18105.48 (17)C30—C29—H29A109.9
C17—Co1—C1840.36 (15)O1—C29—H29B109.9
C2—Co1—C18128.11 (17)C30—C29—H29B109.9
C16—Co1—C4155.38 (18)H29A—C29—H29B108.3
C3—Co1—C440.52 (14)O2—C30—C29108.5 (3)
C17—Co1—C4150.03 (18)O2—C30—H30A110.0
C2—Co1—C471.89 (16)C29—C30—H30A110.0
C18—Co1—C4110.26 (16)O2—C30—H30B110.0
C16—Co1—C1540.61 (15)C29—C30—H30B110.0
C3—Co1—C15155.14 (16)H30A—C30—H30B108.4
C17—Co1—C1571.30 (16)O2—C31—C32108.8 (4)
C2—Co1—C15150.74 (17)O2—C31—H31A109.9
C18—Co1—C1578.04 (16)C32—C31—H31A109.9
C4—Co1—C15114.81 (15)O2—C31—H31B109.9
C16—Co1—C1107.61 (16)C32—C31—H31B109.9
C3—Co1—C170.99 (15)H31A—C31—H31B108.3
C17—Co1—C1128.51 (17)O3—C32—C31110.5 (3)
C2—Co1—C139.14 (14)O3—C32—H32A109.5
C18—Co1—C1163.30 (15)C31—C32—H32A109.5
C4—Co1—C178.10 (13)O3—C32—H32B109.5
C15—Co1—C1112.28 (16)C31—C32—H32B109.5
C2—C1—C6120.6 (3)H32A—C32—H32B108.1
C2—C1—Co164.8 (2)O3—C33—C34109.8 (3)
C6—C1—Co1101.1 (2)O3—C33—H33A109.7
C2—C1—H1A118.4C34—C33—H33A109.7
C6—C1—H1A118.4O3—C33—H33B109.7
Co1—C1—H1A118.4C34—C33—H33B109.7
C1—C2—C3116.7 (4)H33A—C33—H33B108.2
C1—C2—Co176.1 (3)O4—C34—C33108.9 (3)
C3—C2—Co168.0 (2)O4—C34—H34A109.9
C1—C2—H2A121.6C33—C34—H34A109.9
C3—C2—H2A121.6O4—C34—H34B109.9
Co1—C2—H2A121.6C33—C34—H34B109.9
C4—C3—C2116.6 (4)H34A—C34—H34B108.3
C4—C3—Co174.9 (2)O4—C35—C36108.6 (3)
C2—C3—Co170.2 (2)O4—C35—H35A110.0
C4—C3—H3A121.6C36—C35—H35A110.0
C2—C3—H3A121.6O4—C35—H35B110.0
Co1—C3—H3A121.6C36—C35—H35B110.0
C3—C4—C5121.2 (3)H35A—C35—H35B108.4
C3—C4—Co164.6 (2)O5—C36—C35107.5 (3)
C5—C4—Co1102.1 (2)O5—C36—H36A110.2
C3—C4—H4A118.1C35—C36—H36A110.2
C5—C4—H4A118.1O5—C36—H36B110.2
Co1—C4—H4A118.1C35—C36—H36B110.2
C8—C5—C6119.5 (4)H36A—C36—H36B108.5
C8—C5—C4126.2 (3)O5—C37—C38108.2 (3)
C6—C5—C4114.3 (3)O5—C37—H37A110.1
C7—C6—C5118.7 (3)C38—C37—H37A110.1
C7—C6—C1125.4 (3)O5—C37—H37B110.1
C5—C6—C1115.8 (4)C38—C37—H37B110.1
C6—C7—C10122.0 (3)H37A—C37—H37B108.4
C6—C7—H7A119.0O6—C38—C37108.2 (3)
C10—C7—H7A119.0O6—C38—H38A110.1
C5—C8—C9122.4 (3)C37—C38—H38A110.1
C5—C8—H8A118.8O6—C38—H38B110.1
C9—C8—H8A118.8C37—C38—H38B110.1
C8—C9—C14122.6 (3)H38A—C38—H38B108.4
C8—C9—C10118.2 (3)O6—C39—C40109.1 (3)
C14—C9—C10119.2 (4)O6—C39—K148.14 (16)
C11—C10—C7122.4 (4)C40—C39—K180.6 (2)
C11—C10—C9118.2 (4)O6—C39—H39A109.9
C7—C10—C9119.2 (3)C40—C39—H39A109.9
C12—C11—C10121.6 (4)K1—C39—H39A84.9
C12—C11—H11119.2O6—C39—H39B109.9
C10—C11—H11119.2C40—C39—H39B109.9
C11—C12—C13119.5 (4)K1—C39—H39B157.9
C11—C12—H12A120.3H39A—C39—H39B108.3
C13—C12—H12A120.3O1—C40—C39108.0 (3)
C14—C13—C12121.1 (4)O1—C40—H40A110.1
C14—C13—H13A119.5C39—C40—H40A110.1
C12—C13—H13A119.5O1—C40—H40B110.1
C13—C14—C9120.2 (4)C39—C40—H40B110.1
C13—C14—H14A119.9H40A—C40—H40B108.4
C9—C14—H14A119.9C44—O7—C41108.5 (4)
C16—C15—C20120.2 (4)C44—O7—K1119.1 (3)
C16—C15—Co164.0 (2)C41—O7—K1120.0 (3)
C20—C15—Co1102.5 (2)O7—C41—C42106.7 (4)
C16—C15—H15A118.5O7—C41—H41A110.4
C20—C15—H15A118.5C42—C41—H41A110.4
Co1—C15—H15A118.5O7—C41—H41B110.4
C17—C16—C15117.8 (4)C42—C41—H41B110.4
C17—C16—Co171.1 (3)H41A—C41—H41B108.6
C15—C16—Co175.3 (2)C41—C42—C43101.6 (4)
C17—C16—H16A121.1C41—C42—H42A111.4
C15—C16—H16A121.1C43—C42—H42A111.4
Co1—C16—H16A121.1C41—C42—H42B111.4
C16—C17—C18115.7 (4)C43—C42—H42B111.4
C16—C17—Co168.2 (3)H42A—C42—H42B109.3
C18—C17—Co174.0 (3)C44—C43—C42103.2 (4)
C16—C17—H17A122.0C44—C43—H43A111.1
C18—C17—H17A122.0C42—C43—H43A111.1
Co1—C17—H17A122.0C44—C43—H43B111.1
C17—C18—C19120.9 (4)C42—C43—H43B111.1
C17—C18—Co165.6 (3)H43A—C43—H43B109.1
C19—C18—Co1102.1 (3)O7—C44—C43108.7 (4)
C17—C18—H18A118.0O7—C44—H44A110.0
C19—C18—H18A118.0C43—C44—H44A110.0
Co1—C18—H18A118.0O7—C44—H44B110.0
C22—C19—C18126.1 (4)C43—C44—H44B110.0
C22—C19—C20118.7 (4)H44A—C44—H44B108.3
C18—C19—C20115.1 (4)C45—O8—C48104.4 (5)
C21—C20—C19119.1 (4)C45—O8—K1125.1 (4)
C21—C20—C15126.4 (4)C48—O8—K1127.6 (4)
C19—C20—C15114.4 (3)C46—C45—O8109.6 (6)
C20—C21—C24122.2 (4)C46—C45—H45A109.8
C20—C21—H21A118.9O8—C45—H45A109.8
C24—C21—H21A118.9C46—C45—H45B109.8
C19—C22—C23122.1 (4)O8—C45—H45B109.8
C19—C22—H22A118.9H45A—C45—H45B108.2
C23—C22—H22A118.9C45—C46—C47107.0 (5)
C24—C23—C22119.1 (4)C45—C46—H46A110.3
C24—C23—C28119.0 (4)C47—C46—H46A110.3
C22—C23—C28121.9 (4)C45—C46—H46B110.3
C23—C24—C25118.0 (4)C47—C46—H46B110.3
C23—C24—C21118.8 (4)H46A—C46—H46B108.6
C25—C24—C21123.2 (4)C46—C47—C48101.1 (5)
C26—C25—C24121.5 (4)C46—C47—H47A111.5
C26—C25—H25A119.2C48—C47—H47A111.5
C24—C25—H25A119.2C46—C47—H47B111.5
C25—C26—C27120.7 (4)C48—C47—H47B111.5
C25—C26—H26A119.7H47A—C47—H47B109.4
C27—C26—H26A119.7O8—C48—C47107.7 (5)
C26—C27—C28119.9 (4)O8—C48—H48A110.2
C26—C27—H27A120.0C47—C48—H48A110.2
C28—C27—H27A120.0O8—C48—H48B110.2
C27—C28—C23120.9 (4)C47—C48—H48B110.2
C27—C28—H28119.6H48A—C48—H48B108.5
C23—C28—H28119.6C49—O9—C52102.5 (8)
O8—K1—O7169.58 (13)O9—C49—C50107.1 (12)
O8—K1—O685.30 (11)O9—C49—H49A110.3
O7—K1—O686.94 (9)C50—C49—H49A110.3
O8—K1—O191.78 (11)O9—C49—H49B110.3
O7—K1—O178.47 (9)C50—C49—H49B110.3
O6—K1—O162.88 (8)H49A—C49—H49B108.5
O8—K1—O490.50 (11)C49—C50—C51104.1 (17)
O7—K1—O499.38 (9)C49—C50—H50A110.9
O6—K1—O4119.50 (8)C51—C50—H50A110.9
O1—K1—O4176.85 (8)C49—C50—H50B110.9
O8—K1—O399.82 (11)C51—C50—H50B110.9
O7—K1—O387.94 (9)H50A—C50—H50B109.0
O6—K1—O3174.87 (8)C52—C51—C50105 (2)
O1—K1—O3116.37 (8)C52—C51—H51A110.7
O4—K1—O361.05 (8)C50—C51—H51A110.7
O8—K1—O593.11 (10)C52—C51—H51B110.7
O7—K1—O589.04 (9)C50—C51—H51B110.7
O6—K1—O560.12 (8)H51A—C51—H51B108.8
O1—K1—O5122.08 (8)C51—C52—O9105.7 (17)
O4—K1—O559.92 (8)C51—C52—H52A110.6
O3—K1—O5119.43 (9)O9—C52—H52A110.6
O8—K1—O284.79 (10)C51—C52—H52B110.6
O7—K1—O293.24 (9)O9—C52—H52B110.6
O6—K1—O2120.77 (9)H52A—C52—H52B108.7
O1—K1—O259.27 (8)C53—O10—C56120.7 (16)
O4—K1—O2118.82 (8)O10—C53—C5495.1 (19)
O3—K1—O259.92 (8)O10—C53—H53A112.7
O5—K1—O2177.58 (8)C54—C53—H53A112.7
O8—K1—C3995.71 (12)O10—C53—H53B112.7
O7—K1—C3974.66 (11)C54—C53—H53B112.7
O6—K1—C3922.42 (7)H53A—C53—H53B110.2
O1—K1—C3942.80 (8)C55—C54—C53111 (2)
O4—K1—C39139.04 (9)C55—C54—H54A109.5
O3—K1—C39154.63 (9)C53—C54—H54A109.5
O5—K1—C3979.30 (9)C55—C54—H54B109.5
O2—K1—C39102.07 (9)C53—C54—H54B109.5
C29—O1—C40112.5 (3)H54A—C54—H54B108.1
C29—O1—K1114.9 (2)C54—C55—C5692 (2)
C40—O1—K1111.9 (2)C54—C55—H55A113.2
C31—O2—C30111.9 (3)C56—C55—H55A113.2
C31—O2—K1114.6 (2)C54—C55—H55B113.2
C30—O2—K1115.6 (2)C56—C55—H55B113.2
C32—O3—C33111.7 (3)H55A—C55—H55B110.6
C32—O3—K1116.0 (2)O10—C56—C55110.1 (16)
C33—O3—K1114.6 (2)O10—C56—H56A109.7
C34—O4—C35111.5 (3)C55—C56—H56A109.7
C34—O4—K1114.0 (2)O10—C56—H56B109.7
C35—O4—K1116.4 (2)C55—C56—H56B109.7
C36—O5—C37112.8 (3)H56A—C56—H56B108.2
C1—C2—C3—C40.3 (6)C18—C19—C22—C23178.4 (4)
C6—C1—C2—C332.1 (5)C20—C19—C22—C230.1 (6)
C2—C3—C4—C530.9 (6)C19—C22—C23—C240.7 (6)
Co1—C1—C2—C356.2 (3)C19—C22—C23—C28177.6 (4)
Co1—C2—C3—C460.7 (3)C22—C23—C24—C25179.0 (4)
C1—C2—C3—Co160.4 (3)C28—C23—C24—C250.6 (5)
C2—C3—C4—Co158.2 (3)C22—C23—C24—C211.5 (5)
C6—C1—C2—Co188.2 (3)C28—C23—C24—C21176.9 (4)
Co1—C3—C4—C589.1 (4)C20—C21—C24—C231.8 (6)
C2—C1—C6—C532.8 (5)C20—C21—C24—C25179.2 (4)
C3—C4—C5—C629.3 (5)C23—C24—C25—C260.1 (6)
C2—C1—C6—C7150.6 (4)C21—C24—C25—C26177.6 (4)
C3—C4—C5—C8151.3 (4)C24—C25—C26—C271.7 (6)
C4—C5—C6—C12.0 (5)C25—C26—C27—C282.5 (7)
C8—C5—C6—C70.6 (5)C26—C27—C28—C231.8 (7)
C4—C5—C6—C7178.9 (3)C24—C23—C28—C270.2 (6)
C8—C5—C6—C1177.4 (3)C22—C23—C28—C27178.2 (4)
C5—C6—C7—C100.4 (5)C40—O1—C29—C30174.6 (3)
C1—C6—C7—C10177.0 (4)C31—O2—C30—C29175.5 (3)
C6—C5—C8—C90.5 (6)O1—C29—C30—O264.4 (4)
C4—C5—C8—C9178.9 (4)C30—O2—C31—C32178.9 (3)
C5—C8—C9—C14179.6 (4)C33—O3—C32—C31178.5 (4)
C5—C8—C9—C100.2 (6)O2—C31—C32—O363.1 (5)
C6—C7—C10—C11175.8 (4)C32—O3—C33—C34179.8 (3)
C6—C7—C10—C90.2 (6)C35—O4—C34—C33175.0 (3)
C8—C9—C10—C11176.1 (4)O3—C33—C34—O464.6 (4)
C14—C9—C10—C114.0 (6)C34—O4—C35—C36179.2 (3)
C8—C9—C10—C70.1 (6)C37—O5—C36—C35175.9 (3)
C14—C9—C10—C7179.8 (4)O4—C35—C36—O565.6 (4)
C7—C10—C11—C12179.0 (4)C36—O5—C37—C38177.8 (3)
C9—C10—C11—C123.0 (6)C39—O6—C38—C37176.4 (3)
C10—C11—C12—C130.4 (6)O5—C37—C38—O665.3 (4)
C11—C12—C13—C142.9 (6)C38—O6—C39—C40170.6 (3)
C12—C13—C14—C91.8 (7)C29—O1—C40—C39177.1 (3)
C8—C9—C14—C13178.4 (4)O6—C39—C40—O172.0 (4)
C10—C9—C14—C131.7 (6)C44—O7—C41—C4218.9 (6)
C15—C16—C17—C182.5 (6)O7—C41—C42—C4331.5 (6)
C20—C15—C16—C1730.8 (6)C41—C42—C43—C4431.8 (6)
C16—C17—C18—C1934.3 (6)C41—O7—C44—C432.3 (6)
Co1—C15—C16—C1758.9 (4)C42—C43—C44—O722.0 (6)
Co1—C16—C17—C1858.6 (4)C48—O8—C45—C4632.4 (8)
C15—C16—C17—Co161.1 (3)O8—C45—C46—C4731.7 (9)
C16—C17—C18—Co155.5 (3)C45—C46—C47—C4817.0 (8)
C20—C15—C16—Co189.7 (3)C45—O8—C48—C4720.0 (8)
Co1—C17—C18—C1989.8 (4)C46—C47—C48—O82.1 (8)
C16—C15—C20—C1932.2 (5)C52—O9—C49—C5034.7 (11)
C17—C18—C19—C2031.7 (5)O9—C49—C50—C5117.2 (18)
C16—C15—C20—C21150.7 (4)C49—C50—C51—C527 (2)
C17—C18—C19—C22149.9 (4)C50—C51—C52—O929 (2)
C18—C19—C20—C151.5 (5)C49—O9—C52—C5139.4 (15)
C22—C19—C20—C210.4 (5)C56—O10—C53—C5411 (3)
C18—C19—C20—C21178.8 (3)O10—C53—C54—C5513 (3)
C22—C19—C20—C15177.0 (3)C53—C54—C55—C5626 (2)
C19—C20—C21—C241.2 (6)C53—O10—C56—C5531 (3)
C15—C20—C21—C24175.8 (3)C54—C55—C56—O1032 (2)

Experimental details

Crystal data
Chemical formula[K(C12H24O6)(C4H8O)2][Co(C14H10)2]·C4H8O
Mr935.09
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)13.0428 (10), 13.3557 (10), 27.4939 (17)
V3)4789.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.6 × 0.3 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur 3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.787, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
62002, 9364, 4717
Rint0.105
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.076, 0.77
No. of reflections9364
No. of parameters604
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.37
Absolute structureFlack (1983), 4164 Friedel pairs
Absolute structure parameter0.005 (14)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012).

 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. HH thanks the Chinese Scholarship Council for support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076–9094.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrennessel, W. W., Ellis, J. E., Pomije, M. K., Sussman, V. J., Urnezius, E. & Young, V. G. Jr (2002). J. Am. Chem. Soc. 124, 10258–10259.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrennessel, W. W., Ellis, J. E., Roush, S. N., Strandberg, B. R., Woisetschläger, O. E. & Young, V. G. Jr (2002). Chem. Commun. pp. 2356–2357.  Web of Science CSD CrossRef Google Scholar
First citationBrennessel, W. W., Jilek, R. E. & Ellis, J. E. (2007). Angew. Chem. Int. Ed. 46, 6132–6136.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211–1215.  CrossRef CAS Google Scholar
First citationElschenbroich, C., Möckel, R. & Bilger, L. (1984). Z. Naturforsch. Teil B, 39, 375–383.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHanic, F. & Mills, O. S. (1968). J. Organomet. Chem. 11, 151–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationJilek, R. E., Jang, M., Smolensky, E. D., Britton, J. D. & Ellis, J. E. (2008). Angew. Chem. Int. Ed. 47, 8692–8695.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationScharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. (2011). Angew. Chem. Int. Ed. 50, 3630–3670.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeauthier, J. M., Chow, A., Fraenkel, G., Geib, S. J. & Cooper, N. J. (2000). Organometallics, 19, 661–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J. Q. & Fässler, T. F. (2009). Z. Naturforsch. Teil B, 64, 985–988.  CAS Google Scholar
First citationWoolf, A., Chaplin, A. B., McGrady, J. E., Alibadi, M. A. M., Rees, N., Draper, S., Murphy, F. & Weller, A. S. (2011). Eur. J. Inorg. Chem. pp. 1614–1625.  Web of Science CSD CrossRef Google Scholar
First citationZhu, G., Janak, K. E., Figueroa, J. S. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 5452–5461.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds