organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Calixarene-based mol­ecular capsule from olefin metathesis

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 15 May 2013; accepted 24 May 2013; online 8 June 2013)

The reaction of tetra­kis­(all­yloxy)calix[4]arene with the first-generation Grubbs catalyst, followed by catalytic hydrogenation, gave the novel bis-calixarene 15,20,46,51,64,69,74,79-octa­oxatridecacyclo[32.28.8.83,28.113,53.122,44.09,14.021,26.038,70.040,45.052,57.059,63.07,80.032,73]octa­conta-1(63),3,5,7(80),9(14),10,12,21,23,25,28(73),29,31,34,36,38(70),40,42,44,52,54,56,59,61-tetra­cosa­ene benzene monosolvate, C72H72O8·C6H6. The structure consists of two calix[4]arene units connected by four-carbon chains at each of the four O atoms on their narrow rims, to form a cage. Each of the calix[4]arene units has a flattened cone conformation in which two of the opposite aryl groups are closer together and nearly parallel [dihedral angle between planes = 7.35 (16)°], and the other two aryl groups are splayed outward [dihedral angle between planes = 72.20 (8)°]. While the cavity contains no solvent or other guest mol­ecule, there is benzene solvent mol­ecule in the lattice. Two of the alkyl linking arms were disordered over two conformations with occupancies of 0.582 (3)/0.418 (3) and 0.33 (4)/0.467 (4). They were constrained to have similar metrical and thermal parameters.

Related literature

For literature related to the use of calixarenes as easily isolable reaction products, see: Asfari et al. (2001[Asfari, Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.]); Gutsche (2008[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.]). For literature related to the preparation of bridged calixarenes, see: Yang & Swager (2007[Yang, Y. & Swager, T. M. (2007). Macromolecules, 40, 7437-7440.]); Hailu et al. (2012[Hailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2012). Acta Cryst. E68, o1833-o1834.]). For literature related to the conformation of calixarenes, see: Arduini et al. (1995[Arduini, A., Fanni, S., Manfredi, G., Pochini, A., Ungaro, R., Sicuri, A. R. & Ugozzoli, F. (1995). J. Org. Chem. 60, 1448-1453.], 1996[Arduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996). J. Org. Chem. 61, 6881-6887.]); Drew et al. (1997[Drew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472-474.]). For literature related to starting material and catalyst used, see: Ho et al. (1996[Ho, Z., Ku, M., Shu, C. & Lin, L. (1996). Tetrahedron, 52, 13189-13200.]); Vougioukalakis & Grubbs (2010[Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746-1787.]).

[Scheme 1]

Experimental

Crystal data
  • C72H72O8·C6H6

  • Mr = 1143.40

  • Monoclinic, P 21 /c

  • a = 14.8804 (10) Å

  • b = 17.3004 (11) Å

  • c = 12.1888 (8) Å

  • β = 103.929 (7)°

  • V = 3045.6 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 123 K

  • 0.87 × 0.35 × 0.03 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]; Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.795, Tmax = 0.982

  • 9972 measured reflections

  • 9972 independent reflections

  • 5548 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.249

  • S = 1.00

  • 9972 reflections

  • 415 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Calixarenes are macrocyclic molecules made up of phenol and methylene units. The ease of their preparation and chemical modification coupled with the easily isolable reaction products makes them ideal starting materials for the construction of host molecules with different properties (Asfari et al., 2001, Gutsche, 2008). Unsubstituted calixarenes have flexible conformations at higher temperatures, and controlling the conformations of calixarenes is an important subject to pursue for better knowledge of the complexing ability of these molecules for various guest ions and molecules. An olefin metathesis reaction (Vougioukalakis & Grubbs, 2010) has been used to prepare bridged calixarenes (Yang & Swager, 2007). In our first attempt to prepare a bridged calixarene by olefin metathesis, the reaction of tetrakis(allyloxy)calix[4]arene with the first generation Grubbs catalyst gave a novel dimeric calixarene with a complex chiral structure (Hailu et al., 2012). In our further investigation of this approach, catalytic hydrogenation of the initial metathesis product gave a small amount of a novel bis-calixarene. In contrast to the chiral structure prepared earlier, the present compound has a very symmetric structure. The two calix[4]arene units which are joined by covalent bonds of (CH2)4 groups have flattened cone conformations. The degree of flattening of a cone calix[4]arene has been characterized (Arduini et al., 1995; Arduini et al., 1996; Drew et al., 1997) using the dihedral angles between the plane of the four methylene linkers with the phenolic rings. These angles are 83.02 (8)° and 89.67 (8)° for rings B and D, respectively, which are almost parallel to each other, and 145.47 (8)° and 142.32 (7)° for rings A and C, respectively, which are inclined outwards.

Figure 2 shows the molecular packing for the bis-calix[4]arene, C72H72O8. The recrystallization solvent, benzene, used in this experiment is shown in the lattice but outside the calixarene cavity.

Related literature top

For literature related to the use of calixarenes as easily isolable reaction products, see: Asfari et al. (2001); Gutsche (2008). For literature related to the preparation of bridged calixarenes, see: Yang & Swager (2007); Hailu et al. (2012). For literature related to the conformation of calixarenes, see: Arduini et al. (1995, 1996); Drew et al. (1997). For literature related to starting material and catalyst used, see: Ho et al. (1996); Vougioukalakis & Grubbs (2010).

Experimental top

A 20-mg (0.024 mmol) sample of first-generation Grubbs catalyst measured under nitrogen atmosphere in a glove bag was placed in a 100-ml three-necked flask on a nitrogen line. To this 92 mg (0.157 mmol) of tetrakis(allyloxy)calix[4]arene (Ho et al., 1996) and 40 ml of dichloromethane (distilled from CaH2) was added. The mixture was then stirred under reflux in a N2 atmosphere at 45 °C (oil bath temperature) for 2 h. Solvent was removed by rotary evaporator to give 92 mg of black solid residue. The residue was then dissolved in 3 ml of dichloromethane and chromatographed (34 g of silica gel, 2.5 x 22.5 cm, gradient elution with hexane/dichloromethane). A black residue (presumably catalyst) remained on top of the column, and the fractions were all combined. After removal of solvent by rotary evaporator, a white powder was obtained.

The product was suspended in 7 ml of ethyl acetate and placed on a nitrogen line. Then 20 mg of Pd on powdered charcoal (10%) and 33 ml of ethyl acetate were added while flushing nitrogen through the flask. The flask was then fitted with a stopcock adapter attached to a hydrogen-filled balloon. The connection to the N2 line was closed, the stopcock to the hydrogen-filled balloon was opened, and a small amount of hydrogen was allowed to sweep through the flask for few s by slightly opening the glass stopper on one of the necks. The reaction mixture was stirred at room temperature for 6 h. The mixture was then filtered on Celite and solvent removed by rotary evaporator to give 68 mg of white solid product. The product was then chromatographed (8.56 g of silica gel, 1.2 x 18 cm, gradient elution with hexane/dichloromethane). Attempted recrystallization of an 8-mg fraction (which showed only one spot on TLC) using CH2Cl2 and MeOH, and finally benzene gave white crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C).

Structure description top

Calixarenes are macrocyclic molecules made up of phenol and methylene units. The ease of their preparation and chemical modification coupled with the easily isolable reaction products makes them ideal starting materials for the construction of host molecules with different properties (Asfari et al., 2001, Gutsche, 2008). Unsubstituted calixarenes have flexible conformations at higher temperatures, and controlling the conformations of calixarenes is an important subject to pursue for better knowledge of the complexing ability of these molecules for various guest ions and molecules. An olefin metathesis reaction (Vougioukalakis & Grubbs, 2010) has been used to prepare bridged calixarenes (Yang & Swager, 2007). In our first attempt to prepare a bridged calixarene by olefin metathesis, the reaction of tetrakis(allyloxy)calix[4]arene with the first generation Grubbs catalyst gave a novel dimeric calixarene with a complex chiral structure (Hailu et al., 2012). In our further investigation of this approach, catalytic hydrogenation of the initial metathesis product gave a small amount of a novel bis-calixarene. In contrast to the chiral structure prepared earlier, the present compound has a very symmetric structure. The two calix[4]arene units which are joined by covalent bonds of (CH2)4 groups have flattened cone conformations. The degree of flattening of a cone calix[4]arene has been characterized (Arduini et al., 1995; Arduini et al., 1996; Drew et al., 1997) using the dihedral angles between the plane of the four methylene linkers with the phenolic rings. These angles are 83.02 (8)° and 89.67 (8)° for rings B and D, respectively, which are almost parallel to each other, and 145.47 (8)° and 142.32 (7)° for rings A and C, respectively, which are inclined outwards.

Figure 2 shows the molecular packing for the bis-calix[4]arene, C72H72O8. The recrystallization solvent, benzene, used in this experiment is shown in the lattice but outside the calixarene cavity.

For literature related to the use of calixarenes as easily isolable reaction products, see: Asfari et al. (2001); Gutsche (2008). For literature related to the preparation of bridged calixarenes, see: Yang & Swager (2007); Hailu et al. (2012). For literature related to the conformation of calixarenes, see: Arduini et al. (1995, 1996); Drew et al. (1997). For literature related to starting material and catalyst used, see: Ho et al. (1996); Vougioukalakis & Grubbs (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C72H72O8 illustrating the atom numbering scheme used. Thermal ellipsoids are at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing for C72H72O8 viewed down the b axis showing that the benzene solvate is not encapsulated by the calixarene.
15,20,46,51,64,69,74,79-Octaoxatridecacyclo[32.28.8.83,28.113,53.122,44.09,14.021,26.038,70.040,45.052,57.059,63.07,80.032,73]octaconta-1(63),3,5,7(80),9(14),10,12,21,23,25,28(73),29,31,34,36,38(70),40,42,44,52,54,56,59,61-tetracosaene benzene monosolvate top
Crystal data top
C72H72O8·C6H6F(000) = 1220
Mr = 1143.40Dx = 1.247 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1980 reflections
a = 14.8804 (10) Åθ = 3.1–75.5°
b = 17.3004 (11) ŵ = 0.62 mm1
c = 12.1888 (8) ÅT = 123 K
β = 103.929 (7)°Plate, colorless
V = 3045.6 (3) Å30.87 × 0.35 × 0.03 mm
Z = 2
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9972 independent reflections
Radiation source: Enhance (Cu) X-ray Source5548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 75.9°, θmin = 3.1°
ω scansh = 1818
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012; Clark & Reid, 1995)
k = 2121
Tmin = 0.795, Tmax = 0.982l = 1514
9972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1443P)2]
where P = (Fo2 + 2Fc2)/3
9972 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 1.03 e Å3
10 restraintsΔρmin = 0.24 e Å3
Crystal data top
C72H72O8·C6H6V = 3045.6 (3) Å3
Mr = 1143.40Z = 2
Monoclinic, P21/cCu Kα radiation
a = 14.8804 (10) ŵ = 0.62 mm1
b = 17.3004 (11) ÅT = 123 K
c = 12.1888 (8) Å0.87 × 0.35 × 0.03 mm
β = 103.929 (7)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9972 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012; Clark & Reid, 1995)
5548 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.982Rint = 0.000
9972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07810 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.00Δρmax = 1.03 e Å3
9972 reflectionsΔρmin = 0.24 e Å3
415 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2012, Clark & Reid, 1995) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30199 (13)0.55520 (14)0.31841 (19)0.0602 (6)
O20.69820 (13)0.54928 (11)0.45949 (17)0.0472 (5)
O30.66583 (12)0.35803 (11)0.43693 (17)0.0492 (5)
O40.33639 (13)0.36946 (12)0.32522 (19)0.0568 (6)
C10.74710 (18)0.58325 (17)0.3899 (3)0.0485 (7)
C20.77581 (19)0.66002 (18)0.4122 (3)0.0573 (8)
C30.8277 (2)0.6930 (2)0.3425 (3)0.0691 (11)
H3A0.84890.74470.35580.083*
C40.8488 (2)0.6516 (3)0.2543 (3)0.0747 (11)
H4A0.88150.67570.20570.090*
C50.8222 (2)0.5757 (3)0.2378 (3)0.0691 (10)
H5A0.83910.54720.17930.083*
C60.77098 (19)0.5396 (2)0.3047 (3)0.0557 (8)
C70.7496 (2)0.4546 (2)0.2948 (3)0.0567 (8)
H7A0.76580.43370.22650.068*
H7B0.68240.44660.28680.068*
C80.80383 (19)0.41190 (17)0.3989 (3)0.0493 (7)
C90.8995 (2)0.42163 (18)0.4304 (3)0.0531 (7)
H9A0.92920.45130.38370.064*
C100.95165 (19)0.38909 (18)0.5278 (3)0.0564 (8)
H10A1.01700.39560.54810.068*
C110.90806 (19)0.34675 (18)0.5961 (3)0.0555 (8)
H11A0.94420.32450.66360.067*
C120.8129 (2)0.33586 (16)0.5687 (3)0.0516 (7)
C130.76157 (18)0.36740 (16)0.4673 (3)0.0459 (6)
C140.7682 (2)0.29599 (19)0.6526 (3)0.0672 (10)
H14A0.70020.29490.62250.081*
H14B0.79050.24200.66360.081*
C150.6360 (3)0.2828 (3)0.3918 (5)0.0497 (11)0.582 (3)
H15A0.66520.24220.44590.060*0.582 (3)
H15B0.65490.27460.32010.060*0.582 (3)
C160.5311 (4)0.2779 (3)0.3707 (4)0.0532 (10)0.582 (3)
H16A0.51280.22290.35870.064*0.582 (3)
H16B0.51330.29540.43980.064*0.582 (3)
C170.4767 (4)0.3238 (3)0.2723 (5)0.0580 (11)0.582 (3)
H17A0.49440.37890.28500.070*0.582 (3)
H17D0.49550.30690.20350.070*0.582 (3)
C180.3738 (4)0.3183 (4)0.2498 (6)0.0591 (14)0.582 (3)
H18A0.34620.33250.17020.071*0.582 (3)
H18B0.35620.26420.26090.071*0.582 (3)
C15B0.6356 (4)0.3113 (4)0.3308 (7)0.0497 (11)0.418 (3)
H15C0.65130.25620.34660.060*0.418 (3)
H15D0.66750.32970.27310.060*0.418 (3)
C16B0.5309 (5)0.3207 (4)0.2876 (6)0.0532 (10)0.418 (3)
H16C0.51720.37670.27840.064*0.418 (3)
H16D0.51240.29700.21160.064*0.418 (3)
C17B0.4721 (5)0.2880 (5)0.3568 (7)0.0580 (11)0.418 (3)
H17B0.48680.31500.43060.070*0.418 (3)
H17C0.48950.23310.37150.070*0.418 (3)
C18B0.3699 (5)0.2917 (5)0.3101 (8)0.0591 (14)0.418 (3)
H18C0.35480.27850.22870.071*0.418 (3)
H18D0.33890.25380.34940.071*0.418 (3)
C190.23955 (18)0.37101 (16)0.3028 (3)0.0508 (7)
C200.1945 (2)0.33526 (16)0.3766 (3)0.0513 (7)
C210.0987 (2)0.33485 (18)0.3495 (3)0.0564 (8)
H21A0.06700.30990.39850.068*
C220.0481 (2)0.3706 (2)0.2514 (3)0.0613 (9)
H22A0.01770.36850.23240.074*
C230.0938 (2)0.4086 (2)0.1829 (3)0.0617 (9)
H23A0.05890.43410.11740.074*
C240.1900 (2)0.4110 (2)0.2062 (3)0.0555 (8)
C250.2460 (2)0.29988 (17)0.4875 (3)0.0621 (9)
H25A0.22930.24460.48860.075*
H25B0.31350.30310.49330.075*
C260.2364 (2)0.4584 (2)0.1310 (3)0.0735 (11)
H26A0.30440.45350.15810.088*
H26B0.21850.43780.05290.088*
C270.2098 (2)0.5424 (2)0.1301 (3)0.0646 (9)
C280.1481 (2)0.5766 (3)0.0381 (3)0.0770 (12)
H28A0.12630.54760.02930.092*
C290.1186 (2)0.6510 (3)0.0433 (3)0.0811 (13)
H29A0.07800.67360.02090.097*
C300.1469 (2)0.6929 (2)0.1395 (3)0.0738 (12)
H30A0.12450.74410.14220.089*
C310.2087 (2)0.6620 (2)0.2352 (3)0.0618 (9)
C320.24148 (19)0.5878 (2)0.2264 (3)0.0616 (9)
C330.3978 (4)0.5395 (3)0.2990 (5)0.0500 (9)0.533 (4)
H33A0.42860.49700.34850.060*0.533 (4)
H33B0.39310.52480.21930.060*0.533 (4)
C340.4508 (4)0.6121 (3)0.3265 (5)0.0540 (10)0.533 (4)
H34A0.44080.63220.39860.065*0.533 (4)
H34D0.42510.65060.26700.065*0.533 (4)
C350.5543 (6)0.6059 (6)0.3371 (13)0.055 (2)0.533 (4)
H35A0.58340.65610.36380.066*0.533 (4)
H35B0.56500.59600.26130.066*0.533 (4)
C360.6019 (19)0.5425 (19)0.418 (2)0.061 (3)0.533 (4)
H36A0.57310.54100.48300.073*0.533 (4)
H36B0.58900.49230.37820.073*0.533 (4)
C33B0.3947 (4)0.5932 (4)0.3494 (5)0.0500 (9)0.467 (4)
H33C0.38770.64990.34010.060*0.467 (4)
H33D0.42540.58210.42930.060*0.467 (4)
C34B0.4506 (4)0.5629 (4)0.2750 (6)0.0540 (10)0.467 (4)
H34B0.42710.58490.19840.065*0.467 (4)
H34C0.44230.50610.26900.065*0.467 (4)
C35B0.5533 (7)0.5807 (8)0.3147 (15)0.055 (2)0.467 (4)
H35C0.56160.63750.31710.066*0.467 (4)
H35D0.58520.56000.25840.066*0.467 (4)
C36B0.600 (2)0.547 (2)0.431 (3)0.061 (3)0.467 (4)
H36C0.57750.57660.48900.073*0.467 (4)
H36D0.57960.49310.43380.073*0.467 (4)
C2B0.5952 (3)0.5016 (3)0.0310 (3)0.0789 (11)
H2BA0.66090.50340.05280.095*
C3B0.5466 (3)0.5696 (3)0.0090 (3)0.0832 (12)
H3BA0.57870.61740.01480.100*
C1B0.5521 (3)0.4318 (3)0.0225 (3)0.0842 (12)
H1BA0.58680.38520.03710.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0406 (10)0.0834 (16)0.0504 (12)0.0035 (10)0.0015 (9)0.0210 (11)
O20.0453 (10)0.0508 (11)0.0466 (11)0.0008 (8)0.0132 (8)0.0061 (9)
O30.0388 (9)0.0511 (11)0.0523 (12)0.0009 (8)0.0003 (8)0.0101 (9)
O40.0406 (10)0.0584 (12)0.0637 (14)0.0027 (9)0.0025 (9)0.0163 (10)
C10.0362 (13)0.0587 (17)0.0468 (16)0.0026 (11)0.0023 (11)0.0181 (13)
C20.0413 (14)0.0564 (18)0.066 (2)0.0024 (12)0.0041 (13)0.0259 (15)
C30.0461 (16)0.069 (2)0.082 (3)0.0011 (15)0.0058 (16)0.042 (2)
C40.0524 (18)0.108 (3)0.060 (2)0.0006 (19)0.0060 (16)0.046 (2)
C50.0526 (17)0.110 (3)0.0413 (17)0.0066 (18)0.0043 (14)0.0273 (18)
C60.0400 (14)0.085 (2)0.0373 (15)0.0043 (14)0.0010 (11)0.0198 (15)
C70.0507 (16)0.079 (2)0.0385 (15)0.0010 (15)0.0070 (12)0.0100 (15)
C80.0463 (14)0.0545 (16)0.0438 (16)0.0046 (12)0.0046 (12)0.0125 (13)
C90.0446 (14)0.0636 (18)0.0504 (17)0.0008 (13)0.0102 (13)0.0051 (14)
C100.0358 (14)0.0645 (19)0.064 (2)0.0009 (13)0.0032 (13)0.0028 (16)
C110.0440 (14)0.0493 (16)0.065 (2)0.0010 (13)0.0035 (14)0.0053 (14)
C120.0454 (14)0.0413 (14)0.0619 (19)0.0020 (11)0.0009 (13)0.0011 (13)
C130.0386 (13)0.0436 (14)0.0505 (16)0.0002 (11)0.0008 (11)0.0098 (12)
C140.0467 (16)0.0586 (19)0.085 (3)0.0114 (14)0.0074 (16)0.0227 (18)
C150.0473 (19)0.036 (2)0.058 (3)0.0012 (18)0.002 (2)0.0046 (18)
C160.054 (2)0.050 (2)0.048 (2)0.006 (2)0.001 (2)0.0067 (17)
C170.049 (2)0.061 (3)0.059 (3)0.004 (2)0.003 (2)0.003 (2)
C180.048 (2)0.059 (4)0.067 (4)0.011 (2)0.009 (3)0.014 (3)
C15B0.0473 (19)0.036 (2)0.058 (3)0.0012 (18)0.002 (2)0.0046 (18)
C16B0.054 (2)0.050 (2)0.048 (2)0.006 (2)0.001 (2)0.0067 (17)
C17B0.049 (2)0.061 (3)0.059 (3)0.004 (2)0.003 (2)0.003 (2)
C18B0.048 (2)0.059 (4)0.067 (4)0.011 (2)0.009 (3)0.014 (3)
C190.0403 (14)0.0467 (15)0.0576 (18)0.0043 (11)0.0032 (13)0.0185 (13)
C200.0488 (15)0.0410 (15)0.0584 (18)0.0012 (12)0.0018 (13)0.0105 (13)
C210.0490 (15)0.0551 (18)0.0598 (19)0.0039 (13)0.0030 (14)0.0102 (15)
C220.0389 (14)0.085 (2)0.0549 (19)0.0049 (14)0.0009 (13)0.0135 (17)
C230.0460 (16)0.086 (2)0.0461 (17)0.0164 (15)0.0026 (14)0.0141 (16)
C240.0485 (16)0.070 (2)0.0447 (17)0.0037 (14)0.0043 (13)0.0140 (14)
C250.0463 (15)0.0436 (16)0.088 (3)0.0006 (12)0.0001 (16)0.0109 (16)
C260.0520 (18)0.126 (3)0.0403 (17)0.0173 (19)0.0073 (14)0.0030 (19)
C270.0454 (16)0.104 (3)0.0426 (17)0.0038 (16)0.0069 (13)0.0215 (18)
C280.0524 (18)0.130 (4)0.0441 (18)0.002 (2)0.0025 (15)0.026 (2)
C290.0578 (19)0.111 (3)0.062 (2)0.010 (2)0.0089 (17)0.047 (2)
C300.0516 (17)0.083 (2)0.078 (3)0.0124 (16)0.0023 (17)0.048 (2)
C310.0421 (14)0.071 (2)0.064 (2)0.0143 (14)0.0024 (13)0.0342 (17)
C320.0358 (14)0.092 (3)0.0531 (19)0.0039 (14)0.0035 (13)0.0313 (18)
C330.049 (2)0.053 (2)0.045 (2)0.003 (2)0.0049 (19)0.0055 (17)
C340.052 (2)0.061 (3)0.050 (3)0.003 (2)0.013 (2)0.0011 (19)
C350.0464 (17)0.060 (7)0.055 (6)0.000 (3)0.007 (2)0.010 (5)
C360.0468 (18)0.076 (4)0.060 (5)0.0029 (19)0.013 (3)0.014 (4)
C33B0.049 (2)0.053 (2)0.045 (2)0.003 (2)0.0049 (19)0.0055 (17)
C34B0.052 (2)0.061 (3)0.050 (3)0.003 (2)0.013 (2)0.0011 (19)
C35B0.0464 (17)0.060 (7)0.055 (6)0.000 (3)0.007 (2)0.010 (5)
C36B0.0468 (18)0.076 (4)0.060 (5)0.0029 (19)0.013 (3)0.014 (4)
C2B0.064 (2)0.123 (3)0.0475 (19)0.002 (2)0.0073 (17)0.005 (2)
C3B0.082 (3)0.124 (4)0.0413 (18)0.001 (2)0.0098 (17)0.001 (2)
C1B0.083 (3)0.117 (4)0.048 (2)0.001 (2)0.0080 (19)0.004 (2)
Geometric parameters (Å, º) top
O1—C321.379 (3)C18B—H18C0.9900
O1—C33B1.492 (7)C18B—H18D0.9900
O1—C331.525 (6)C19—C201.390 (5)
O2—C11.375 (3)C19—C241.411 (4)
O2—C361.41 (3)C20—C211.383 (4)
O2—C36B1.42 (3)C20—C251.513 (4)
O3—C131.393 (3)C21—C221.395 (5)
O3—C151.440 (5)C21—H21A0.9500
O3—C15B1.500 (7)C22—C231.366 (5)
O4—C191.401 (3)C22—H22A0.9500
O4—C18B1.461 (8)C23—C241.391 (4)
O4—C181.478 (6)C23—H23A0.9500
C1—C61.398 (5)C24—C261.516 (5)
C1—C21.402 (4)C25—C2i1.508 (5)
C2—C31.400 (5)C25—H25A0.9900
C2—C25i1.508 (5)C25—H25B0.9900
C3—C41.389 (6)C26—C271.505 (5)
C3—H3A0.9500C26—H26A0.9900
C4—C51.372 (6)C26—H26B0.9900
C4—H4A0.9500C27—C321.397 (5)
C5—C61.391 (5)C27—C281.399 (4)
C5—H5A0.9500C28—C291.366 (6)
C6—C71.502 (5)C28—H28A0.9500
C7—C81.522 (4)C29—C301.356 (6)
C7—H7A0.9900C29—H29A0.9500
C7—H7B0.9900C30—C311.406 (4)
C8—C131.392 (4)C30—H30A0.9500
C8—C91.392 (4)C31—C321.386 (5)
C9—C101.374 (5)C31—C14i1.513 (5)
C9—H9A0.9500C33—C341.478 (7)
C10—C111.382 (5)C33—H33A0.9900
C10—H10A0.9500C33—H33B0.9900
C11—C121.387 (4)C34—C351.518 (10)
C11—H11A0.9500C34—H34A0.9900
C12—C131.398 (4)C34—H34D0.9900
C12—C141.514 (5)C35—C361.528 (13)
C14—C31i1.513 (5)C35—H35A0.9900
C14—H14A0.9900C35—H35B0.9900
C14—H14B0.9900C36—H36A0.9900
C15—C161.521 (7)C36—H36B0.9900
C15—H15A0.9900C33B—C34B1.467 (8)
C15—H15B0.9900C33B—H33C0.9900
C16—C171.503 (7)C33B—H33D0.9900
C16—H16A0.9900C34B—C35B1.519 (11)
C16—H16B0.9900C34B—H34B0.9900
C17—C181.492 (7)C34B—H34C0.9900
C17—H17A0.9900C35B—C36B1.531 (15)
C17—H17D0.9900C35B—H35C0.9900
C18—H18A0.9900C35B—H35D0.9900
C18—H18B0.9900C36B—H36C0.9900
C15B—C16B1.529 (9)C36B—H36D0.9900
C15B—H15C0.9900C2B—C1B1.361 (6)
C15B—H15D0.9900C2B—C3B1.372 (6)
C16B—C17B1.466 (10)C2B—H2BA0.9500
C16B—H16C0.9900C3B—C1Bii1.426 (6)
C16B—H16D0.9900C3B—H3BA0.9500
C17B—C18B1.492 (9)C1B—C3Bii1.426 (6)
C17B—H17B0.9900C1B—H1BA0.9500
C17B—H17C0.9900
C32—O1—C33B114.1 (3)C20—C19—C24121.4 (3)
C32—O1—C33113.5 (3)O4—C19—C24118.6 (3)
C1—O2—C36117.2 (12)C21—C20—C19118.5 (3)
C1—O2—C36B121.7 (12)C21—C20—C25118.9 (3)
C13—O3—C15114.1 (3)C19—C20—C25122.6 (3)
C13—O3—C15B111.6 (3)C20—C21—C22121.0 (3)
C19—O4—C18B111.0 (4)C20—C21—H21A119.5
C19—O4—C18114.5 (3)C22—C21—H21A119.5
O2—C1—C6119.6 (3)C23—C22—C21119.4 (3)
O2—C1—C2117.9 (3)C23—C22—H22A120.3
C6—C1—C2122.4 (3)C21—C22—H22A120.3
C3—C2—C1117.1 (4)C22—C23—C24121.9 (3)
C3—C2—C25i124.2 (3)C22—C23—H23A119.0
C1—C2—C25i118.5 (3)C24—C23—H23A119.0
C4—C3—C2121.3 (4)C23—C24—C19117.5 (3)
C4—C3—H3A119.3C23—C24—C26119.3 (3)
C2—C3—H3A119.3C19—C24—C26123.2 (3)
C5—C4—C3119.7 (3)C2i—C25—C20112.1 (2)
C5—C4—H4A120.1C2i—C25—H25A109.2
C3—C4—H4A120.1C20—C25—H25A109.2
C4—C5—C6121.6 (4)C2i—C25—H25B109.2
C4—C5—H5A119.2C20—C25—H25B109.2
C6—C5—H5A119.2H25A—C25—H25B107.9
C5—C6—C1117.7 (3)C27—C26—C24111.6 (3)
C5—C6—C7121.9 (3)C27—C26—H26A109.3
C1—C6—C7120.1 (3)C24—C26—H26A109.3
C6—C7—C8110.4 (2)C27—C26—H26B109.3
C6—C7—H7A109.6C24—C26—H26B109.3
C8—C7—H7A109.6H26A—C26—H26B108.0
C6—C7—H7B109.6C32—C27—C28117.3 (4)
C8—C7—H7B109.6C32—C27—C26120.2 (3)
H7A—C7—H7B108.1C28—C27—C26122.4 (4)
C13—C8—C9118.8 (3)C29—C28—C27121.2 (4)
C13—C8—C7122.9 (3)C29—C28—H28A119.4
C9—C8—C7118.2 (3)C27—C28—H28A119.4
C10—C9—C8121.1 (3)C30—C29—C28120.5 (3)
C10—C9—H9A119.5C30—C29—H29A119.8
C8—C9—H9A119.5C28—C29—H29A119.8
C9—C10—C11119.3 (3)C29—C30—C31121.3 (4)
C9—C10—H10A120.4C29—C30—H30A119.3
C11—C10—H10A120.4C31—C30—H30A119.3
C10—C11—C12121.8 (3)C32—C31—C30117.3 (4)
C10—C11—H11A119.1C32—C31—C14i120.5 (3)
C12—C11—H11A119.1C30—C31—C14i122.0 (4)
C11—C12—C13118.0 (3)O1—C32—C31119.3 (3)
C11—C12—C14119.2 (3)O1—C32—C27118.3 (3)
C13—C12—C14122.6 (3)C31—C32—C27122.2 (3)
C8—C13—O3119.1 (2)C34—C33—O1106.3 (4)
C8—C13—C12121.1 (2)C34—C33—H33A110.5
O3—C13—C12119.8 (3)O1—C33—H33A110.5
C31i—C14—C12110.5 (2)C34—C33—H33B110.5
C31i—C14—H14A109.6O1—C33—H33B110.5
C12—C14—H14A109.6H33A—C33—H33B108.7
C31i—C14—H14B109.6C33—C34—C35115.7 (6)
C12—C14—H14B109.6C33—C34—H34A108.3
H14A—C14—H14B108.1C35—C34—H34A108.3
O3—C15—C16109.0 (4)C33—C34—H34D108.3
O3—C15—H15A109.9C35—C34—H34D108.3
C16—C15—H15A109.9H34A—C34—H34D107.4
O3—C15—H15B109.9C34—C35—C36114.2 (13)
C16—C15—H15B109.9C34—C35—H35A108.7
H15A—C15—H15B108.3C36—C35—H35A108.7
C17—C16—C15116.0 (5)C34—C35—H35B108.7
C17—C16—H16A108.3C36—C35—H35B108.7
C15—C16—H16A108.3H35A—C35—H35B107.6
C17—C16—H16B108.3O2—C36—C35117 (2)
C15—C16—H16B108.3O2—C36—H36A108.1
H16A—C16—H16B107.4C35—C36—H36A108.1
C18—C17—C16116.4 (5)O2—C36—H36B108.1
C18—C17—H17A108.2C35—C36—H36B108.1
C16—C17—H17A108.2H36A—C36—H36B107.3
C18—C17—H17D108.2C34B—C33B—O1108.2 (5)
C16—C17—H17D108.2C34B—C33B—H33C110.1
H17A—C17—H17D107.3O1—C33B—H33C110.1
O4—C18—C17111.8 (5)C34B—C33B—H33D110.1
O4—C18—H18A109.3O1—C33B—H33D110.1
C17—C18—H18A109.3H33C—C33B—H33D108.4
O4—C18—H18B109.3C33B—C34B—C35B114.0 (7)
C17—C18—H18B109.3C33B—C34B—H34B108.7
H18A—C18—H18B107.9C35B—C34B—H34B108.7
O3—C15B—C16B108.0 (5)C33B—C34B—H34C108.7
O3—C15B—H15C110.1C35B—C34B—H34C108.7
C16B—C15B—H15C110.1H34B—C34B—H34C107.6
O3—C15B—H15D110.1C34B—C35B—C36B114.5 (15)
C16B—C15B—H15D110.1C34B—C35B—H35C108.6
H15C—C15B—H15D108.4C36B—C35B—H35C108.6
C17B—C16B—C15B117.4 (7)C34B—C35B—H35D108.6
C17B—C16B—H16C108.0C36B—C35B—H35D108.6
C15B—C16B—H16C108.0H35C—C35B—H35D107.6
C17B—C16B—H16D108.0O2—C36B—C35B115 (2)
C15B—C16B—H16D108.0O2—C36B—H36C108.4
H16C—C16B—H16D107.2C35B—C36B—H36C108.4
C16B—C17B—C18B117.3 (7)O2—C36B—H36D108.4
C16B—C17B—H17B108.0C35B—C36B—H36D108.4
C18B—C17B—H17B108.0H36C—C36B—H36D107.5
C16B—C17B—H17C108.0C1B—C2B—C3B122.0 (4)
C18B—C17B—H17C108.0C1B—C2B—H2BA119.0
H17B—C17B—H17C107.2C3B—C2B—H2BA119.0
O4—C18B—C17B109.8 (6)C2B—C3B—C1Bii119.9 (5)
O4—C18B—H18C109.7C2B—C3B—H3BA120.0
C17B—C18B—H18C109.7C1Bii—C3B—H3BA120.0
O4—C18B—H18D109.7C2B—C1B—C3Bii118.1 (5)
C17B—C18B—H18D109.7C2B—C1B—H1BA121.0
H18C—C18B—H18D108.2C3Bii—C1B—H1BA121.0
C20—C19—O4119.9 (3)
C36—O2—C1—C681.0 (18)C18—O4—C19—C20107.8 (4)
C36B—O2—C1—C688 (2)C18B—O4—C19—C24111.5 (5)
C36—O2—C1—C2102.7 (17)C18—O4—C19—C2473.8 (4)
C36B—O2—C1—C295 (2)O4—C19—C20—C21177.2 (2)
O2—C1—C2—C3178.3 (2)C24—C19—C20—C214.5 (4)
C6—C1—C2—C32.0 (4)O4—C19—C20—C255.5 (4)
O2—C1—C2—C25i1.7 (4)C24—C19—C20—C25172.8 (3)
C6—C1—C2—C25i174.6 (2)C19—C20—C21—C221.1 (5)
C1—C2—C3—C40.7 (4)C25—C20—C21—C22176.3 (3)
C25i—C2—C3—C4177.1 (3)C20—C21—C22—C232.0 (5)
C2—C3—C4—C53.0 (5)C21—C22—C23—C241.9 (5)
C3—C4—C5—C62.6 (5)C22—C23—C24—C191.4 (5)
C4—C5—C6—C10.1 (4)C22—C23—C24—C26176.2 (3)
C4—C5—C6—C7173.9 (3)C20—C19—C24—C234.6 (4)
O2—C1—C6—C5178.6 (2)O4—C19—C24—C23177.0 (3)
C2—C1—C6—C52.5 (4)C20—C19—C24—C26172.8 (3)
O2—C1—C6—C74.6 (4)O4—C19—C24—C265.5 (4)
C2—C1—C6—C7171.6 (3)C21—C20—C25—C2i60.7 (4)
C5—C6—C7—C8109.6 (3)C19—C20—C25—C2i116.6 (3)
C1—C6—C7—C864.2 (3)C23—C24—C26—C2759.7 (4)
C6—C7—C8—C13122.4 (3)C19—C24—C26—C27117.7 (3)
C6—C7—C8—C953.7 (4)C24—C26—C27—C3269.7 (4)
C13—C8—C9—C100.9 (5)C24—C26—C27—C28105.5 (4)
C7—C8—C9—C10175.3 (3)C32—C27—C28—C291.4 (5)
C8—C9—C10—C110.7 (5)C26—C27—C28—C29174.0 (3)
C9—C10—C11—C120.3 (5)C27—C28—C29—C301.7 (6)
C10—C11—C12—C131.7 (5)C28—C29—C30—C311.5 (6)
C10—C11—C12—C14173.8 (3)C29—C30—C31—C321.8 (5)
C9—C8—C13—O3179.4 (3)C29—C30—C31—C14i172.4 (3)
C7—C8—C13—O33.3 (4)C33B—O1—C32—C3167.4 (4)
C9—C8—C13—C123.0 (4)C33—O1—C32—C31115.3 (4)
C7—C8—C13—C12173.1 (3)C33B—O1—C32—C27117.5 (4)
C15—O3—C13—C8105.6 (4)C33—O1—C32—C2769.6 (4)
C15B—O3—C13—C867.4 (4)C30—C31—C32—O1179.8 (3)
C15—O3—C13—C1278.0 (4)C14i—C31—C32—O15.6 (4)
C15B—O3—C13—C12116.2 (4)C30—C31—C32—C275.0 (5)
C11—C12—C13—C83.4 (4)C14i—C31—C32—C27169.3 (3)
C14—C12—C13—C8171.9 (3)C28—C27—C32—O1179.7 (3)
C11—C12—C13—O3179.7 (3)C26—C27—C32—O14.2 (5)
C14—C12—C13—O34.4 (4)C28—C27—C32—C314.8 (5)
C11—C12—C14—C31i56.5 (4)C26—C27—C32—C31170.7 (3)
C13—C12—C14—C31i118.8 (3)C32—O1—C33—C3485.6 (5)
C13—O3—C15—C16175.6 (4)C33B—O1—C33—C3415.3 (5)
C15B—O3—C15—C1690.7 (7)O1—C33—C34—C35167.7 (8)
O3—C15—C16—C1772.4 (6)C33—C34—C35—C3652.3 (18)
C15—C16—C17—C18179.0 (5)C1—O2—C36—C3532 (3)
C19—O4—C18—C17175.6 (4)C36B—O2—C36—C3595 (19)
C18B—O4—C18—C1792.3 (8)C34—C35—C36—O2160 (2)
C16—C17—C18—O480.8 (6)C32—O1—C33B—C34B81.5 (6)
C13—O3—C15B—C16B166.0 (5)C33—O1—C33B—C34B17.9 (5)
C15—O3—C15B—C16B92.3 (8)O1—C33B—C34B—C35B165.5 (8)
O3—C15B—C16B—C17B66.8 (8)C33B—C34B—C35B—C36B60 (2)
C15B—C16B—C17B—C18B175.3 (7)C1—O2—C36B—C35B4 (4)
C19—O4—C18B—C17B168.4 (6)C36—O2—C36B—C35B53 (16)
C18—O4—C18B—C17B88.7 (9)C34B—C35B—C36B—O2168 (2)
C16B—C17B—C18B—O478.3 (9)C1B—C2B—C3B—C1Bii0.8 (7)
C18B—O4—C19—C2070.1 (5)C3B—C2B—C1B—C3Bii0.7 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC72H72O8·C6H6
Mr1143.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.8804 (10), 17.3004 (11), 12.1888 (8)
β (°) 103.929 (7)
V3)3045.6 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.87 × 0.35 × 0.03
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2012; Clark & Reid, 1995)
Tmin, Tmax0.795, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9972, 9972, 5548
Rint0.000
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.249, 1.00
No. of reflections9972
No. of parameters415
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. STH wishes to acknowledge the Howard University Graduate School for a Teaching Assistantship.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationArduini, A., Fanni, S., Manfredi, G., Pochini, A., Ungaro, R., Sicuri, A. R. & Ugozzoli, F. (1995). J. Org. Chem. 60, 1448–1453.  CSD CrossRef CAS Web of Science Google Scholar
First citationArduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996). J. Org. Chem. 61, 6881–6887.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationAsfari, Z., Böhmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDrew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472–474.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationHailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2012). Acta Cryst. E68, o1833–o1834.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHo, Z., Ku, M., Shu, C. & Lin, L. (1996). Tetrahedron, 52, 13189–13200.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746–1787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, Y. & Swager, T. M. (2007). Macromolecules, 40, 7437–7440.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds