organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o900-o901

2-(4-Bromo­phen­yl)-N-(3,4-di­fluoro­phen­yl)acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P.A.College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 6 May 2013; accepted 9 May 2013; online 18 May 2013)

In the title compound, C14H10BrF2NO, the dihedral angle between the mean planes of the 4-bromo­phenyl and 3,4-di­fluoro­phenyl rings is 66.4 (1)°. These two planes are twisted by 40.0 (5) and 86.3 (2)°, respectively, from that of the acetamide group. In the crystal, N—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯F inter­actions form infinite chains along [100].

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Praveen et al. (2011a[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.],b[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602-o2603.],c[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.], 2012[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o226-o227.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrF2NO

  • Mr = 326.14

  • Orthorhombic, P 21 21 21

  • a = 4.9136 (3) Å

  • b = 6.0218 (4) Å

  • c = 42.514 (2) Å

  • V = 1257.96 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.62 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.16 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.257, Tmax = 1.000

  • 6592 measured reflections

  • 2402 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.15

  • 2402 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack x determined using 915 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.97 2.851 (7) 175
C7—H7⋯O1ii 0.95 2.63 3.309 (8) 129
C13—H13⋯F1iii 0.95 2.50 3.426 (9) 164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a), N-(4-chloro-1,3-benzothiazol-2-yl)-2- (3-methylphenyl)acetamide monohydrate (Praveen et al., 2011b), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen et al., 2011c) and N-(4,6-dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide (Praveen et al., 2012) have been reported. In view of the importance of amides, we report here in the crystal structure of the title compound, C14H10BrF2NO, (I).

In (I) the dihedral angle between the mean planes of the 4-bromophenyl and 3,4-difluorophenyl rings is 66.4 (1)° (Fig. 1). These two planes are twisted by 40.0 (5)° and 86.3 (2)°, respectively, from that of the acetamide group. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds and weak C—H···O and C—H···F intermolecular interactions are observed forming a infinite chains along (100) and contribute to packing stability (Fig. 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c, 2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-bromophenylacetic acid (0.213 g, 1 mmol), 3,4-difluoro aniline (0.129 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL) (Fig. 3). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride by the slow evaporation method (m.p.: 423–425 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.88° (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite chains along (100). H atoms not involved in hydrogen bonding have been deleted for clarity.
[Figure 3] Fig. 3. Synthesis of (I).
2-(4-Bromophenyl)-N-(3,4-difluorophenyl)acetamide top
Crystal data top
C14H10BrF2NODx = 1.722 Mg m3
Mr = 326.14Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3482 reflections
a = 4.9136 (3) Åθ = 3.1–71.3°
b = 6.0218 (4) ŵ = 4.62 mm1
c = 42.514 (2) ÅT = 173 K
V = 1257.96 (13) Å3Block, colorless
Z = 40.48 × 0.32 × 0.16 mm
F(000) = 648
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2402 independent reflections
Radiation source: Enhance (Cu) X-ray Source2388 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.036
ω scansθmax = 71.4°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 54
Tmin = 0.257, Tmax = 1.000k = 77
6592 measured reflectionsl = 5152
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0518P)2 + 2.6477P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.001
wR(F2) = 0.106Δρmax = 0.87 e Å3
S = 1.15Δρmin = 0.59 e Å3
2402 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
173 parametersExtinction coefficient: 0.0034 (5)
0 restraintsAbsolute structure: Flack x determined using 915 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.01 (2)
Crystal data top
C14H10BrF2NOV = 1257.96 (13) Å3
Mr = 326.14Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.9136 (3) ŵ = 4.62 mm1
b = 6.0218 (4) ÅT = 173 K
c = 42.514 (2) Å0.48 × 0.32 × 0.16 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2388 reflections with I > 2σ(I)
Tmin = 0.257, Tmax = 1.000Rint = 0.036
6592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.87 e Å3
S = 1.15Δρmin = 0.59 e Å3
2402 reflectionsAbsolute structure: Flack x determined using 915 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
173 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05444 (13)1.14849 (10)0.52705 (2)0.0255 (2)
F10.8291 (12)0.2536 (11)0.73852 (13)0.0682 (16)
F21.2315 (12)0.3056 (8)0.69684 (13)0.0577 (14)
O10.5535 (9)0.4454 (8)0.63179 (10)0.0308 (9)
N10.9924 (9)0.3661 (9)0.64466 (11)0.0243 (11)
H11.16300.39880.64040.029*
C10.7964 (12)0.4695 (10)0.62744 (13)0.0203 (12)
C20.9134 (13)0.6097 (10)0.60058 (15)0.0283 (13)
H2A1.04890.71480.60930.034*
H2B1.00880.51090.58560.034*
C30.6979 (12)0.7387 (11)0.58317 (14)0.0222 (12)
C40.5905 (13)0.6561 (11)0.55519 (14)0.0274 (12)
H40.64910.51610.54740.033*
C50.3960 (12)0.7791 (10)0.53850 (14)0.0231 (13)
H50.32160.72380.51940.028*
C60.3155 (12)0.9796 (10)0.55018 (13)0.0206 (11)
C70.4148 (13)1.0645 (10)0.57804 (14)0.0235 (12)
H70.35311.20350.58580.028*
C80.6072 (12)0.9412 (11)0.59439 (13)0.0255 (13)
H80.67790.99700.61360.031*
C90.9424 (13)0.2099 (10)0.66883 (13)0.0247 (12)
C101.1086 (13)0.0238 (12)0.67050 (15)0.0300 (14)
H101.24960.00180.65550.036*
C111.0656 (16)0.1289 (11)0.69426 (16)0.0365 (15)
C120.8674 (15)0.0986 (14)0.71582 (17)0.0427 (19)
C130.7024 (15)0.0831 (15)0.71475 (16)0.0415 (19)
H130.56410.10220.73010.050*
C140.7366 (14)0.2408 (13)0.69109 (15)0.0305 (14)
H140.62170.36750.69010.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0229 (3)0.0270 (3)0.0266 (3)0.0051 (2)0.0000 (2)0.0054 (2)
F10.062 (3)0.089 (4)0.054 (3)0.020 (3)0.005 (3)0.045 (3)
F20.063 (3)0.045 (3)0.065 (3)0.010 (2)0.009 (3)0.009 (2)
O10.015 (2)0.045 (2)0.032 (2)0.003 (2)0.0007 (18)0.0076 (19)
N10.007 (2)0.037 (3)0.029 (2)0.001 (2)0.0003 (16)0.006 (2)
C10.011 (3)0.025 (3)0.025 (3)0.001 (2)0.000 (2)0.002 (2)
C20.016 (3)0.031 (3)0.038 (3)0.005 (3)0.005 (2)0.009 (2)
C30.012 (3)0.030 (3)0.024 (3)0.002 (2)0.004 (2)0.006 (2)
C40.026 (3)0.024 (3)0.032 (3)0.009 (3)0.005 (2)0.002 (2)
C50.023 (3)0.022 (3)0.024 (3)0.004 (2)0.000 (2)0.002 (2)
C60.013 (3)0.024 (3)0.024 (3)0.002 (2)0.003 (2)0.007 (2)
C70.021 (3)0.023 (3)0.027 (3)0.006 (3)0.002 (2)0.005 (2)
C80.024 (3)0.030 (3)0.022 (3)0.003 (3)0.001 (2)0.002 (2)
C90.017 (3)0.033 (3)0.024 (3)0.010 (3)0.006 (2)0.003 (2)
C100.022 (3)0.040 (4)0.027 (3)0.003 (3)0.000 (2)0.003 (3)
C110.038 (4)0.031 (3)0.041 (3)0.006 (4)0.013 (3)0.006 (3)
C120.036 (4)0.057 (5)0.035 (3)0.016 (3)0.012 (3)0.020 (3)
C130.025 (4)0.069 (6)0.029 (3)0.009 (4)0.001 (3)0.007 (3)
C140.024 (3)0.042 (4)0.025 (3)0.002 (3)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Br1—C61.909 (6)C5—C61.364 (9)
F1—C121.356 (8)C5—H50.9500
F2—C111.345 (9)C6—C71.379 (8)
O1—C11.217 (8)C7—C81.389 (9)
N1—C11.360 (7)C7—H70.9500
N1—C91.414 (8)C8—H80.9500
N1—H10.8800C9—C101.388 (10)
C1—C21.532 (8)C9—C141.398 (9)
C2—C31.508 (8)C10—C111.382 (9)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C121.350 (11)
C3—C81.383 (9)C12—C131.362 (12)
C3—C41.393 (9)C13—C141.394 (10)
C4—C51.402 (8)C13—H130.9500
C4—H40.9500C14—H140.9500
C1—N1—C9124.9 (5)C6—C7—C8118.2 (5)
C1—N1—H1117.5C6—C7—H7120.9
C9—N1—H1117.5C8—C7—H7120.9
O1—C1—N1123.9 (6)C3—C8—C7121.2 (6)
O1—C1—C2123.2 (6)C3—C8—H8119.4
N1—C1—C2112.8 (5)C7—C8—H8119.4
C3—C2—C1112.7 (5)C10—C9—C14119.9 (6)
C3—C2—H2A109.0C10—C9—N1118.2 (6)
C1—C2—H2A109.0C14—C9—N1122.0 (6)
C3—C2—H2B109.0C11—C10—C9119.0 (6)
C1—C2—H2B109.0C11—C10—H10120.5
H2A—C2—H2B107.8C9—C10—H10120.5
C8—C3—C4119.2 (6)F2—C11—C12119.3 (6)
C8—C3—C2120.7 (6)F2—C11—C10119.6 (7)
C4—C3—C2120.1 (6)C12—C11—C10121.1 (7)
C3—C4—C5120.1 (6)C11—C12—F1119.4 (8)
C3—C4—H4119.9C11—C12—C13121.0 (7)
C5—C4—H4119.9F1—C12—C13119.6 (8)
C6—C5—C4118.8 (6)C12—C13—C14120.0 (7)
C6—C5—H5120.6C12—C13—H13120.0
C4—C5—H5120.6C14—C13—H13120.0
C5—C6—C7122.5 (6)C13—C14—C9119.0 (7)
C5—C6—Br1118.6 (4)C13—C14—H14120.5
C7—C6—Br1118.9 (5)C9—C14—H14120.5
C9—N1—C1—O13.0 (10)C1—N1—C9—C10138.7 (6)
C9—N1—C1—C2173.6 (5)C1—N1—C9—C1442.7 (9)
O1—C1—C2—C38.0 (9)C14—C9—C10—C110.3 (9)
N1—C1—C2—C3175.4 (5)N1—C9—C10—C11179.0 (6)
C1—C2—C3—C883.5 (7)C9—C10—C11—F2177.5 (6)
C1—C2—C3—C497.5 (7)C9—C10—C11—C120.6 (10)
C8—C3—C4—C50.9 (9)F2—C11—C12—F13.9 (11)
C2—C3—C4—C5178.1 (5)C10—C11—C12—F1179.1 (6)
C3—C4—C5—C60.1 (9)F2—C11—C12—C13177.3 (7)
C4—C5—C6—C71.1 (9)C10—C11—C12—C130.3 (11)
C4—C5—C6—Br1179.1 (5)C11—C12—C13—C140.1 (11)
C5—C6—C7—C81.1 (9)F1—C12—C13—C14178.6 (7)
Br1—C6—C7—C8179.1 (5)C12—C13—C14—C90.4 (11)
C4—C3—C8—C71.0 (9)C10—C9—C14—C130.1 (10)
C2—C3—C8—C7178.0 (6)N1—C9—C14—C13178.5 (6)
C6—C7—C8—C30.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.851 (7)175
C7—H7···O1ii0.952.633.309 (8)129
C13—H13···F1iii0.952.503.426 (9)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10BrF2NO
Mr326.14
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)4.9136 (3), 6.0218 (4), 42.514 (2)
V3)1257.96 (13)
Z4
Radiation typeCu Kα
µ (mm1)4.62
Crystal size (mm)0.48 × 0.32 × 0.16
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.257, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6592, 2402, 2388
Rint0.036
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.15
No. of reflections2402
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.59
Absolute structureFlack x determined using 915 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.851 (7)175.1
C7—H7···O1ii0.952.633.309 (8)128.9
C13—H13···F1iii0.952.503.426 (9)163.9
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

ASP thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602–o2603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o226–o227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o900-o901
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds