organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-(4-Methyl­phen­yl)-8,9-di­hydro-7H-benzo[f]cyclo­penta­[b]quinolin-10(11H)-one

aThe First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
*Correspondence e-mail: ycs.bluespirit@gmail.com

(Received 30 July 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C23H19NO, the naphthalene ring system and the cyclo­pent-2-enone ring exhibit planar conformations with maximum deviations of 0.034 (1) and 0.02 (1) Å, respectively. The 1,4-dihydro­pyridine ring adopts an envelope conformation with the C atom bearing the p-tolyl ring as the flap atom. Inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For the medicinal use of quinoline and fused quinoline derivatives, see: Audisio et al. (2012[Audisio, D., Messaoudi, S., Cojean, S., Peyrat, J.-F., Brion, J.-D., Bories, C., Huteau, F., Loiseau, P. M. & Alami, M. (2012). Eur. J. Med. Chem. 52, 44-50.]); Kurasawa et al. (2012[Kurasawa, Y., Yoshida, K., Yamazaki, N., Kaji, E., Sasaki, K., Zamami, Y., Sakai, Y., Fujii, T. & Ito, H. (2012). J. Heterocycl. Chem. 49, 288-292.]); Pokhrel et al. (2012[Pokhrel, L., Kim, Y., Nguyen, T. D. T., Prior, A. M., Lu, J., Chang, K.-O. & Hua, D. H. (2012). Bioorg. Med. Chem. Lett. 22, 3480-3484.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19NO

  • Mr = 325.39

  • Monoclinic, P 21 /c

  • a = 8.727 (1) Å

  • b = 11.6820 (14) Å

  • c = 16.240 (2) Å

  • β = 98.938 (5)°

  • V = 1635.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClearSM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.981, Tmax = 0.986

  • 15928 measured reflections

  • 3899 independent reflections

  • 2991 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.07

  • 3899 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.902 (17) 1.983 (17) 2.8519 (13) 161.2 (14)
C15—H15⋯Cg1ii 0.95 3.00 3.8110 (15) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.

Data collection: CrystalClearSM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many efforts have been devoted to the synthesis of quinoline and fused quinoline derivaties due to their broad spectrum of bioactivities including anti-norovirus activity (Pokhrel et al. 2012), antikinetoplastid activity (Audisio et al. 2012), antimalarial activity (Kurasawa et al. 2012). These work inspired us to assemble various types of fused quinoline skeletons and evaluate their bioactivities to study the relationship between structure and activity (SAR). Determination of the accurate structure is crucial to do SAR research. During our work on the efficient synthesis and biological study of benzo[f]cyclopenta[b]quinolins, the title compound (I) was isolated and its structure was determined by X-ray diffraction. Herein we report its crystal structure.

In the molecular structure (Fig. 1), the quinoline ring and cyclopent-2-enone ring adopts planar conformations. The atoms with maximal deviation from the the two ring are C9 and ing systr C5 with the distance of 0.034 (1)Å and 0.02 (1) Å, respectively. The dihydropyridine ring is in an envelope (or half boat) conformation, since C1/C2/N1/C4/C5 is coplanar with the largest deviation of 0.040 (1)Å(N1). However, the distance of C3 and the plane consisting of the rest five atoms is 0.212 (1)Å. Cremer & Pople puckering parameters analysis also confirms that the dihydropyridine ring adopts a envelope conformation (Cremer & Pople, 1975). Its puckering amplitude (Q), θ and ϕ are 0.156 (1)Å, 102.7 (4)° and 0.7 (5)°, respectively. The linkage between p-tolyl and dihydropyridine ring can be described by the torsion angle of C2—C3—C17—C22 (45.46 (15)°) and C4—C3—C17—C22(-76.38 (13)°) respectively. The crystal packing is stabilized by intermolecular N—H···O hydrogen bond and C—H··· π interactions (Fig. 2, Table 1).

Related literature top

For the medicinal use of quinoline and fused quinoline derivatives, see: Audisio et al. (2012); Kurasawa et al. (2012); Pokhrel et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a dry 50 mL flask, cyclopentane-1,3-dione (0.10 g, 1 mmol), 4-methylbenzaldehyde (0.12 g, 1 mmol), naphthalen-2-amine (0.14 g,1 mmol), p-toluenesulfonic acid (0.2 g, 1 mmol) and water (10 mL) were mixed and then stirred at 373 K for 5 h. After completion of the reaction, as indicated by TLC, the solid product was collected by filtration and were purified by flash column chromatography (silica gel, mixtures of ethyl acetate / petroleum ether, 1:3, v/v) to afford the desired pure product. m. p.: 562-564 K; IR (KBr,ν, cm-1): 3165, 3080, 3013, 2962, 1666, 1632, 1584, 1522, 1468, 1397, 1269, 1239, 1220, 1012, 841, 806, 748, 688, 531; 1H NMR (400 MHz, DMSO-d6) (δ, ppm): 10.27 (s, 1H, NH), 7.80 (q, J = 8.4 Hz, 3H, ArH), 7.37-7.28 (m, 3H, ArH), 7.05 (d, J = 8.0 Hz, 2H, ArH), 6.94 (d, J = 8.0 Hz, 2H, ArH), 5.58 (s, 1H, CH), 2.71-2.63 (m, 2H, CH2), 2.34-2.20 (m, 2H, CH2), 2.14 (s, 3H, CH3); HRMS (ESI) m/z: Calcd. for C23H19NONa [M+Na]+ 348.1364, found: 348.1345.The single-crystal suitable for X-ray diffraction was obtained through slow evaporation of the ethanol solution of the title compound.

Refinement top

The hydrogen atom bonded to nitrogen atom was positioned from a Fourier difference map refined freely. All other H atoms were placed in calculated positions, with C—H = 0.95 Å, 0.98 Å, 0.99 Å or 1.00 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClearSM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClearSM Expert (Rigaku/MSC, 2009); data reduction: CrystalClearSM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1 The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2 The packing diagram of (I), Hydrogen bond represented by the dashed line, Cg is the centroid of the ring of C17/C18/C19/C20/C21/C22, Hydrogen atoms not involved in Hydrogen bond were omitted for clarity.
11-(4-Methylphenyl)-8,9-dihydro-7H- benzo[f]cyclopenta[b]quinolin-10(11H)-one top
Crystal data top
C23H19NOF(000) = 688
Mr = 325.39Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5530 reflections
a = 8.727 (1) Åθ = 1.7–27.9°
b = 11.6820 (14) ŵ = 0.08 mm1
c = 16.240 (2) ÅT = 113 K
β = 98.938 (5)°Prism, colorless
V = 1635.5 (3) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
3899 independent reflections
Radiation source: rotating anode2991 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.031
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
k = 1515
Tmin = 0.981, Tmax = 0.986l = 2119
15928 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.041P]
where P = (Fo2 + 2Fc2)/3
3899 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H19NOV = 1635.5 (3) Å3
Mr = 325.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.727 (1) ŵ = 0.08 mm1
b = 11.6820 (14) ÅT = 113 K
c = 16.240 (2) Å0.24 × 0.20 × 0.18 mm
β = 98.938 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3899 independent reflections
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
2991 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.031
15928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.36 e Å3
3899 reflectionsΔρmin = 0.32 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35410 (9)0.68276 (7)0.17550 (5)0.0239 (2)
N10.67402 (12)1.00971 (9)0.20388 (6)0.0210 (2)
C10.71537 (13)1.01482 (10)0.12380 (7)0.0189 (3)
C20.67622 (12)0.92753 (9)0.06669 (7)0.0181 (2)
C30.59399 (13)0.81856 (9)0.08934 (7)0.0181 (3)
H30.50390.80360.04460.022*
C40.53334 (13)0.83755 (10)0.17008 (7)0.0190 (3)
C50.57787 (13)0.92659 (10)0.22198 (7)0.0198 (3)
C60.50911 (14)0.92521 (10)0.30110 (8)0.0238 (3)
H6A0.45060.99640.30750.029*
H6B0.59030.91550.35040.029*
C70.40108 (14)0.82132 (10)0.28894 (8)0.0227 (3)
H7A0.42890.76540.33460.027*
H7B0.29190.84510.28790.027*
C80.42339 (13)0.76912 (10)0.20551 (8)0.0204 (3)
C90.79777 (13)1.11263 (10)0.10358 (8)0.0216 (3)
H90.82581.17020.14450.026*
C100.83712 (13)1.12502 (10)0.02645 (8)0.0229 (3)
H100.89041.19200.01340.027*
C110.79946 (13)1.03903 (10)0.03478 (8)0.0199 (3)
C120.72028 (13)0.93887 (10)0.01424 (7)0.0188 (2)
C130.69057 (13)0.85257 (11)0.07591 (8)0.0227 (3)
H130.63780.78490.06390.027*
C140.73616 (14)0.86444 (11)0.15246 (8)0.0251 (3)
H140.71570.80480.19250.030*
C150.81319 (14)0.96438 (11)0.17238 (8)0.0258 (3)
H150.84410.97240.22570.031*
C160.84296 (13)1.04920 (10)0.11474 (8)0.0240 (3)
H160.89411.11670.12850.029*
C170.70253 (13)0.71503 (10)0.09513 (7)0.0183 (2)
C180.65617 (14)0.61097 (10)0.05873 (7)0.0232 (3)
H180.55360.60290.02960.028*
C190.75686 (14)0.51809 (11)0.06393 (8)0.0253 (3)
H190.72200.44760.03850.030*
C200.90795 (14)0.52715 (10)0.10585 (8)0.0230 (3)
C210.95452 (14)0.63162 (11)0.14195 (8)0.0239 (3)
H211.05760.64030.17020.029*
C220.85309 (14)0.72368 (10)0.13750 (8)0.0218 (3)
H220.88720.79380.16390.026*
C231.01741 (15)0.42637 (11)0.11254 (9)0.0319 (3)
H23A1.12440.45400.11710.038*
H23B0.99300.37830.06280.038*
H23C1.00590.38130.16210.038*
H10.6867 (18)1.0689 (14)0.2399 (10)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (4)0.0226 (5)0.0270 (5)0.0030 (3)0.0040 (4)0.0034 (3)
N10.0233 (5)0.0206 (5)0.0197 (5)0.0025 (4)0.0054 (4)0.0022 (4)
C10.0162 (5)0.0199 (6)0.0208 (6)0.0016 (4)0.0033 (5)0.0012 (5)
C20.0160 (5)0.0189 (6)0.0192 (6)0.0008 (4)0.0023 (4)0.0015 (4)
C30.0175 (5)0.0181 (6)0.0185 (6)0.0013 (4)0.0024 (5)0.0007 (4)
C40.0171 (5)0.0194 (6)0.0208 (6)0.0011 (4)0.0034 (5)0.0026 (5)
C50.0175 (5)0.0212 (6)0.0208 (6)0.0023 (4)0.0033 (5)0.0019 (5)
C60.0252 (6)0.0265 (7)0.0209 (7)0.0007 (5)0.0075 (5)0.0002 (5)
C70.0220 (6)0.0233 (6)0.0237 (7)0.0015 (4)0.0066 (5)0.0044 (5)
C80.0176 (5)0.0199 (6)0.0232 (6)0.0032 (4)0.0019 (5)0.0058 (5)
C90.0206 (6)0.0179 (6)0.0262 (7)0.0000 (4)0.0036 (5)0.0021 (5)
C100.0205 (6)0.0177 (6)0.0313 (7)0.0003 (4)0.0071 (5)0.0033 (5)
C110.0170 (5)0.0198 (6)0.0233 (6)0.0030 (4)0.0037 (5)0.0044 (5)
C120.0162 (5)0.0204 (6)0.0196 (6)0.0025 (4)0.0023 (5)0.0030 (4)
C130.0222 (6)0.0237 (6)0.0217 (6)0.0018 (5)0.0015 (5)0.0007 (5)
C140.0271 (6)0.0273 (6)0.0202 (6)0.0007 (5)0.0020 (5)0.0009 (5)
C150.0257 (6)0.0310 (7)0.0221 (7)0.0059 (5)0.0077 (5)0.0059 (5)
C160.0232 (6)0.0238 (6)0.0264 (7)0.0029 (5)0.0086 (5)0.0072 (5)
C170.0195 (5)0.0201 (6)0.0163 (6)0.0023 (4)0.0060 (5)0.0015 (4)
C180.0199 (6)0.0244 (6)0.0249 (7)0.0032 (5)0.0020 (5)0.0024 (5)
C190.0270 (6)0.0213 (6)0.0284 (7)0.0025 (5)0.0066 (5)0.0043 (5)
C200.0239 (6)0.0240 (6)0.0228 (6)0.0016 (5)0.0090 (5)0.0013 (5)
C210.0189 (6)0.0261 (6)0.0261 (7)0.0015 (5)0.0016 (5)0.0030 (5)
C220.0225 (6)0.0208 (6)0.0222 (6)0.0029 (4)0.0033 (5)0.0011 (5)
C230.0312 (7)0.0278 (7)0.0376 (8)0.0055 (5)0.0081 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C81.2366 (14)C11—C161.4134 (17)
N1—C51.3454 (15)C11—C121.4245 (15)
N1—C11.4039 (16)C12—C131.4163 (17)
N1—H10.902 (17)C13—C141.3700 (17)
C1—C21.3849 (16)C13—H130.9500
C1—C91.4156 (15)C14—C151.4097 (17)
C2—C121.4318 (16)C14—H140.9500
C2—C31.5338 (15)C15—C161.3601 (18)
C3—C41.5049 (16)C15—H150.9500
C3—C171.5301 (15)C16—H160.9500
C3—H31.0000C17—C181.3844 (16)
C4—C51.3571 (16)C17—C221.3889 (17)
C4—C81.4360 (16)C18—C191.3904 (16)
C5—C61.5002 (16)C18—H180.9500
C6—C71.5308 (16)C19—C201.3908 (18)
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—C211.3872 (17)
C7—C81.5257 (17)C20—C231.5093 (16)
C7—H7A0.9900C21—C221.3876 (16)
C7—H7B0.9900C21—H210.9500
C9—C101.3571 (17)C22—H220.9500
C9—H90.9500C23—H23A0.9800
C10—C111.4158 (17)C23—H23B0.9800
C10—H100.9500C23—H23C0.9800
C5—N1—C1119.46 (10)C16—C11—C10121.29 (11)
C5—N1—H1115.4 (10)C16—C11—C12119.57 (11)
C1—N1—H1123.1 (10)C10—C11—C12119.11 (11)
C2—C1—N1121.12 (10)C13—C12—C11117.47 (11)
C2—C1—C9121.35 (11)C13—C12—C2122.52 (11)
N1—C1—C9117.52 (10)C11—C12—C2120.01 (11)
C1—C2—C12118.24 (10)C14—C13—C12121.50 (11)
C1—C2—C3121.76 (10)C14—C13—H13119.2
C12—C2—C3119.95 (10)C12—C13—H13119.2
C4—C3—C17111.17 (9)C13—C14—C15120.54 (12)
C4—C3—C2109.12 (9)C13—C14—H14119.7
C17—C3—C2111.26 (9)C15—C14—H14119.7
C4—C3—H3108.4C16—C15—C14119.50 (12)
C17—C3—H3108.4C16—C15—H15120.3
C2—C3—H3108.4C14—C15—H15120.3
C5—C4—C8108.82 (11)C15—C16—C11121.41 (11)
C5—C4—C3123.27 (10)C15—C16—H16119.3
C8—C4—C3127.91 (11)C11—C16—H16119.3
N1—C5—C4123.07 (11)C18—C17—C22117.82 (11)
N1—C5—C6122.75 (11)C18—C17—C3122.06 (10)
C4—C5—C6114.18 (11)C22—C17—C3120.12 (10)
C5—C6—C7102.61 (10)C17—C18—C19121.28 (11)
C5—C6—H6A111.2C17—C18—H18119.4
C7—C6—H6A111.2C19—C18—H18119.4
C5—C6—H6B111.2C18—C19—C20120.83 (11)
C7—C6—H6B111.2C18—C19—H19119.6
H6A—C6—H6B109.2C20—C19—H19119.6
C8—C7—C6105.69 (9)C21—C20—C19117.84 (11)
C8—C7—H7A110.6C21—C20—C23121.01 (11)
C6—C7—H7A110.6C19—C20—C23121.15 (11)
C8—C7—H7B110.6C20—C21—C22121.15 (11)
C6—C7—H7B110.6C20—C21—H21119.4
H7A—C7—H7B108.7C22—C21—H21119.4
O1—C8—C4127.77 (12)C21—C22—C17121.07 (11)
O1—C8—C7123.64 (10)C21—C22—H22119.5
C4—C8—C7108.59 (10)C17—C22—H22119.5
C10—C9—C1120.71 (11)C20—C23—H23A109.5
C10—C9—H9119.6C20—C23—H23B109.5
C1—C9—H9119.6H23A—C23—H23B109.5
C9—C10—C11120.54 (11)C20—C23—H23C109.5
C9—C10—H10119.7H23A—C23—H23C109.5
C11—C10—H10119.7H23B—C23—H23C109.5
C5—N1—C1—C28.76 (16)C9—C10—C11—C16178.39 (11)
C5—N1—C1—C9170.95 (10)C9—C10—C11—C120.31 (17)
N1—C1—C2—C12179.22 (10)C16—C11—C12—C130.79 (16)
C9—C1—C2—C120.47 (16)C10—C11—C12—C13177.32 (10)
N1—C1—C2—C33.34 (16)C16—C11—C12—C2179.77 (10)
C9—C1—C2—C3176.96 (10)C10—C11—C12—C21.65 (16)
C1—C2—C3—C413.56 (14)C1—C2—C12—C13177.68 (10)
C12—C2—C3—C4169.04 (10)C3—C2—C12—C130.19 (16)
C1—C2—C3—C17109.46 (12)C1—C2—C12—C111.24 (16)
C12—C2—C3—C1767.93 (13)C3—C2—C12—C11178.73 (9)
C17—C3—C4—C5109.07 (12)C11—C12—C13—C140.08 (17)
C2—C3—C4—C514.00 (15)C2—C12—C13—C14178.86 (11)
C17—C3—C4—C870.90 (14)C12—C13—C14—C150.67 (18)
C2—C3—C4—C8166.03 (11)C13—C14—C15—C160.35 (18)
C1—N1—C5—C48.74 (17)C14—C15—C16—C110.55 (18)
C1—N1—C5—C6170.53 (10)C10—C11—C16—C15176.95 (11)
C8—C4—C5—N1176.27 (10)C12—C11—C16—C151.12 (17)
C3—C4—C5—N13.75 (17)C4—C3—C17—C18103.97 (13)
C8—C4—C5—C63.06 (14)C2—C3—C17—C18134.18 (11)
C3—C4—C5—C6176.92 (10)C4—C3—C17—C2276.38 (13)
N1—C5—C6—C7175.76 (10)C2—C3—C17—C2245.46 (15)
C4—C5—C6—C73.57 (13)C22—C17—C18—C190.29 (18)
C5—C6—C7—C82.56 (12)C3—C17—C18—C19179.36 (11)
C5—C4—C8—O1178.03 (11)C17—C18—C19—C200.19 (19)
C3—C4—C8—O12.0 (2)C18—C19—C20—C210.13 (19)
C5—C4—C8—C71.15 (13)C18—C19—C20—C23179.35 (12)
C3—C4—C8—C7178.82 (11)C19—C20—C21—C220.94 (18)
C6—C7—C8—O1179.74 (11)C23—C20—C21—C22178.54 (11)
C6—C7—C8—C41.04 (12)C20—C21—C22—C171.46 (19)
C2—C1—C9—C101.84 (17)C18—C17—C22—C211.10 (18)
N1—C1—C9—C10177.87 (10)C3—C17—C22—C21178.56 (11)
C1—C9—C10—C111.41 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902 (17)1.983 (17)2.8519 (13)161.2 (14)
C15—H15···Cg1ii0.953.003.8110 (15)145
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H19NO
Mr325.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.727 (1), 11.6820 (14), 16.240 (2)
β (°) 98.938 (5)
V3)1635.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClearSM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15928, 3899, 2991
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.07
No. of reflections3899
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: CrystalClearSM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902 (17)1.983 (17)2.8519 (13)161.2 (14)
C15—H15···Cg1ii0.953.003.8110 (15)145.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+2, z.
 

Acknowledgements

The author is thankful to Professor Youquan Zhu of Nankai University, China, for his kindly help with the collection of the X-ray data set, structure solution and refinement.

References

First citationAudisio, D., Messaoudi, S., Cojean, S., Peyrat, J.-F., Brion, J.-D., Bories, C., Huteau, F., Loiseau, P. M. & Alami, M. (2012). Eur. J. Med. Chem. 52, 44–50.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKurasawa, Y., Yoshida, K., Yamazaki, N., Kaji, E., Sasaki, K., Zamami, Y., Sakai, Y., Fujii, T. & Ito, H. (2012). J. Heterocycl. Chem. 49, 288–292.  Web of Science CrossRef CAS Google Scholar
First citationPokhrel, L., Kim, Y., Nguyen, T. D. T., Prior, A. M., Lu, J., Chang, K.-O. & Hua, D. H. (2012). Bioorg. Med. Chem. Lett. 22, 3480–3484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2009). CrystalClearSM Expert. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds