organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-9-(2-hy­dr­oxy-4,4-di­methyl-6-oxo­cyclo­hex-1-en-1-yl)-3,3-di­methyl-2,3,4,9-tetra­hydro-1H-xanthen-1-one

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA, and dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 April 2012; accepted 9 May 2012; online 12 May 2012)

In the xanthene ring system of the title compound, C23H25BrO4, the 4H-pyran ring is almost planar [maximum deviation = 0.040 (3) Å] and the cyclo­hexene ring adopts a sofa conformation. The cyclo­hexene ring attached to the xanthene system is puckered [QT = 0.427 (3) Å, θ = 55.0 (4) ° and φ = 164.4 (6) °]. In the crystal, mol­ecules are linked to each other by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the biological and pharmaceutical properties of xanthenes, see: Mohamed et al. (2012[Mohamed, S. K., Abdelhamid, A. A., Moharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012). J. Chem. Pharm. Res. 4, 955-965.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]); Shchekotikhin & Nikolaeva (2006[Shchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28-33.]); Fan et al. (2005[Fan, X., Hu, X., Zhang, X. & Wang, J. (2005). Can. J. Chem. 83, 16-20.]). For related structures, see: Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.]); Mohamed et al. (2011[Mohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850-o851.]); Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]); Çelik et al. (2009[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522-o2523.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25BrO4

  • Mr = 445.33

  • Orthorhombic, P b c a

  • a = 15.6869 (4) Å

  • b = 11.0215 (2) Å

  • c = 23.0217 (16) Å

  • V = 3980.3 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.04 mm−1

  • T = 150 K

  • 0.12 × 0.08 × 0.02 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001)[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.712, Tmax = 0.942

  • 17325 measured reflections

  • 3507 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.07

  • 3507 reflections

  • 260 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.80 (3) 1.86 (3) 2.650 (3) 170 (3)
C8—H8A⋯O3ii 0.99 2.54 3.514 (4) 167
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y, -z.

Data collection: CrystalClear (Rigaku, 2001)[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Xanthenes are an important class of organic compounds that received considerable attention from many pharmaceuticals and organic chemists. They considered as valuable synthons because of the inherent reactivity of the inbuilt pyran ring. Recently, it has been reported such compounds possess a broad spectrum of biological and pharmaceutical properties such as agricultural bactericide effects, photodynamic therapy, antiviral and anti-inflammatory activities (Hilderbrand & Weissleder 2007; Shchekotikhin, & Nikolaeva 2006; Fan et al. 2005).

Following to our recent study (Mohamed et al. 2012) on synthesis and structure characterization of tetrahydro xanthenones for biological investigation, herein we report the synthesis and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the 4H-pyran ring (O1/C1/C6/C7/C12/C13) of the xanthene ring system (O1/C1–C13) is almost planar with a maximum deviation from the mean plane of 0.040 (3) Å for C13 and the cyclohexene ring (C7–C12) adopts a sofa conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.457 (3) Å, θ = 121.7 (4) °, ϕ = 297.3 (5) °]. The cyclohexene ring (C14–C19) attached to the xanthene system is not planar: the puckering parameters of this ring are QT = 0.427 (3) Å, θ = 55.0 (4) ° and ϕ = 164.4 (6) °. The values of the bond lengths and bond angles are comparable with those of the related structures previously reported (Abdelhamid et al., 2011; Mohamed et al., 2011; Reddy et al., 2009; Çelik et al., 2009).

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological and pharmaceutical properties of xanthenes, see: Mohamed et al. (2012); Hilderbrand & Weissleder (2007); Shchekotikhin & Nikolaeva (2006); Fan et al. (2005). For related structures, see: Abdelhamid et al. (2011); Mohamed et al. (2011); Reddy et al. (2009); Çelik et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound (I) has been prepared from reaction of 1 mmol (201 mg) 5-bromo-2-hydroxybenzaldehyde with 1 mmol (140 mg) dimedone in presence of either (4-aminophenyl)methanol or TRIZMA (tris(hydroxymethyl)aminomethane) as a catalyst in 50 ml e thanol at 351 K. The reaction was monitored by TLC till completion after 4 h then left to cool at ambient temperature. The reaction mixture was concentrated under vacuum and the solid formed product was collected and dried using Buckner funnel then recrystallized from ethanol (82% yield; m.p. 521 K). Pure crystals suitable for X-ray structure analysis were obtained by slow evaporation method using ethanol as a solvent.

Refinement top

The hydroxyl H atom was located from a difference Fourier map and refined with a distance restraint of O–H 0.82±0.02. Å. Temperature factor was fixed at 1.5 times the isotropic value of the parent O atom. The hydrogen atoms at C were located geometrically and refined using a riding model with C—H = 0.95 Å (aromatic), 0.98 Å. (methyl), 0.99 Å (methylene) and 1.00 Å (methine), with Uiso(H) = 1.2Ueq (aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewing along the b axis. Dashed lines show the intermolecular hydrogen bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.
7-Bromo-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl- 2,3,4,9-tetrahydro-1H-xanthen-1-one top
Crystal data top
C23H25BrO4F(000) = 1840
Mr = 445.33Dx = 1.486 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 18929 reflections
a = 15.6869 (4) Åθ = 1–66°
b = 11.0215 (2) ŵ = 3.04 mm1
c = 23.0217 (16) ÅT = 150 K
V = 3980.3 (3) Å3Needle, yellow
Z = 80.12 × 0.08 × 0.02 mm
Data collection top
Rigaku RAPID II
diffractometer
2728 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.044
ω scansθmax = 66.6°, θmin = 3.8°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
h = 918
Tmin = 0.712, Tmax = 0.942k = 1310
17325 measured reflectionsl = 2724
3507 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0414P)2 + 5.2275P]
where P = (Fo2 + 2Fc2)/3
3507 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
C23H25BrO4V = 3980.3 (3) Å3
Mr = 445.33Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 15.6869 (4) ŵ = 3.04 mm1
b = 11.0215 (2) ÅT = 150 K
c = 23.0217 (16) Å0.12 × 0.08 × 0.02 mm
Data collection top
Rigaku RAPID II
diffractometer
3507 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
2728 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.942Rint = 0.044
17325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.46 e Å3
3507 reflectionsΔρmin = 0.49 e Å3
260 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07678 (2)0.50005 (3)0.19670 (1)0.0308 (1)
O10.01721 (13)0.28166 (19)0.03953 (8)0.0236 (6)
O20.16483 (15)0.0333 (2)0.02080 (10)0.0333 (8)
O30.08661 (14)0.0562 (2)0.16973 (10)0.0344 (8)
O40.20527 (13)0.3144 (2)0.03091 (9)0.0277 (7)
C10.00638 (18)0.2718 (3)0.06462 (13)0.0199 (9)
C20.01035 (19)0.3253 (3)0.11834 (13)0.0242 (10)
C30.06030 (19)0.4281 (3)0.12230 (13)0.0257 (10)
C40.0976 (2)0.4792 (3)0.07358 (14)0.0269 (10)
C50.08353 (19)0.4256 (3)0.02032 (14)0.0251 (10)
C60.03110 (18)0.3246 (3)0.01653 (12)0.0206 (9)
C70.04024 (18)0.1897 (3)0.04743 (13)0.0206 (9)
C80.05102 (19)0.1632 (3)0.11080 (12)0.0229 (9)
C90.13785 (19)0.1051 (3)0.12419 (13)0.0261 (10)
C100.1512 (2)0.0005 (3)0.08121 (13)0.0250 (10)
C110.13510 (19)0.0305 (3)0.01845 (13)0.0242 (9)
C120.07972 (18)0.1326 (3)0.00369 (13)0.0196 (9)
C130.06495 (18)0.1619 (3)0.05977 (12)0.0198 (9)
C140.14483 (18)0.1801 (3)0.09634 (12)0.0215 (9)
C150.14520 (19)0.1221 (3)0.15319 (13)0.0249 (9)
C160.2167 (2)0.1536 (3)0.19457 (13)0.0294 (10)
C170.30235 (19)0.1796 (3)0.16603 (13)0.0228 (9)
C180.28827 (19)0.2733 (3)0.11776 (13)0.0229 (9)
C190.20994 (19)0.2527 (3)0.08139 (13)0.0211 (9)
C910.1364 (2)0.0560 (3)0.18629 (13)0.0339 (11)
C920.2094 (2)0.1994 (3)0.11809 (15)0.0306 (11)
C1710.3643 (2)0.2305 (3)0.21100 (15)0.0341 (11)
C1720.3390 (2)0.0633 (3)0.14004 (15)0.0315 (11)
H20.012900.290600.152600.0290*
H40.132200.549600.076800.0320*
H4O0.2481 (16)0.353 (3)0.0282 (15)0.0370*
H50.109600.457700.013600.0300*
H8A0.005100.107700.123600.0280*
H8B0.045500.239600.133100.0280*
H10A0.210600.028600.085000.0300*
H10B0.113100.067200.092400.0300*
H130.033500.091500.076900.0240*
H16A0.199500.225800.217300.0350*
H16B0.224000.085600.222200.0350*
H17A0.375000.169200.241000.0510*
H17B0.418200.251800.191900.0510*
H17C0.339600.303000.228900.0510*
H17D0.343600.001400.170400.0470*
H17E0.301200.034000.109100.0470*
H17F0.395600.079900.123900.0470*
H18A0.338700.273100.091900.0280*
H18B0.284400.354800.135700.0280*
H91A0.126600.123000.213500.0510*
H91B0.191100.017200.195000.0510*
H91C0.090400.003700.190100.0510*
H92A0.198300.267700.144300.0460*
H92B0.211500.228700.077900.0460*
H92C0.264100.162000.128200.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0299 (2)0.0320 (2)0.0305 (2)0.0014 (2)0.0083 (1)0.0056 (1)
O10.0219 (11)0.0251 (12)0.0237 (10)0.0080 (10)0.0012 (9)0.0007 (9)
O20.0342 (13)0.0301 (13)0.0356 (13)0.0122 (11)0.0017 (11)0.0040 (10)
O30.0290 (12)0.0449 (16)0.0292 (12)0.0110 (12)0.0030 (10)0.0121 (11)
O40.0230 (11)0.0304 (14)0.0298 (11)0.0080 (10)0.0034 (10)0.0097 (10)
C10.0140 (14)0.0170 (16)0.0286 (15)0.0020 (12)0.0039 (12)0.0004 (12)
C20.0201 (15)0.0278 (19)0.0246 (16)0.0025 (14)0.0041 (13)0.0000 (13)
C30.0203 (15)0.0274 (19)0.0294 (16)0.0031 (14)0.0072 (13)0.0052 (14)
C40.0175 (15)0.027 (2)0.0361 (18)0.0034 (14)0.0038 (13)0.0018 (14)
C50.0194 (15)0.0262 (19)0.0298 (16)0.0042 (14)0.0012 (13)0.0005 (14)
C60.0146 (14)0.0227 (17)0.0244 (15)0.0016 (13)0.0005 (12)0.0015 (13)
C70.0156 (14)0.0189 (17)0.0274 (15)0.0018 (13)0.0022 (12)0.0021 (13)
C80.0197 (15)0.0247 (18)0.0244 (15)0.0020 (14)0.0010 (12)0.0014 (13)
C90.0212 (15)0.0275 (19)0.0295 (16)0.0036 (14)0.0035 (13)0.0022 (14)
C100.0208 (16)0.0229 (18)0.0312 (17)0.0041 (14)0.0024 (13)0.0030 (13)
C110.0196 (15)0.0231 (18)0.0299 (16)0.0008 (14)0.0018 (13)0.0015 (13)
C120.0153 (14)0.0169 (16)0.0266 (15)0.0001 (12)0.0009 (12)0.0002 (12)
C130.0157 (14)0.0202 (17)0.0235 (15)0.0012 (13)0.0020 (12)0.0029 (12)
C140.0170 (15)0.0218 (17)0.0256 (15)0.0004 (13)0.0034 (12)0.0032 (13)
C150.0212 (15)0.0271 (18)0.0264 (16)0.0006 (15)0.0017 (13)0.0043 (13)
C160.0242 (17)0.039 (2)0.0250 (16)0.0009 (16)0.0011 (13)0.0027 (14)
C170.0196 (15)0.0239 (18)0.0248 (15)0.0030 (13)0.0020 (13)0.0031 (13)
C180.0201 (15)0.0237 (18)0.0250 (16)0.0023 (14)0.0002 (13)0.0018 (13)
C190.0219 (15)0.0185 (16)0.0229 (15)0.0033 (13)0.0002 (13)0.0032 (12)
C910.038 (2)0.034 (2)0.0298 (17)0.0031 (18)0.0031 (15)0.0053 (15)
C920.0225 (16)0.031 (2)0.0384 (19)0.0004 (15)0.0053 (14)0.0039 (15)
C1710.0276 (18)0.040 (2)0.0347 (18)0.0081 (17)0.0074 (15)0.0039 (16)
C1720.0234 (17)0.031 (2)0.0400 (19)0.0016 (16)0.0006 (14)0.0069 (16)
Geometric parameters (Å, º) top
Br1—C31.905 (3)C17—C181.533 (4)
O1—C61.392 (3)C17—C1721.527 (5)
O1—C71.368 (4)C17—C1711.527 (4)
O2—C111.236 (4)C18—C191.504 (4)
O3—C151.232 (4)C2—H20.9500
O4—C191.349 (4)C4—H40.9500
O4—H4O0.80 (3)C5—H50.9500
C1—C61.382 (4)C8—H8A0.9900
C1—C131.524 (4)C8—H8B0.9900
C1—C21.395 (4)C10—H10A0.9900
C2—C31.381 (5)C10—H10B0.9900
C3—C41.385 (4)C13—H131.0000
C4—C51.379 (5)C16—H16A0.9900
C5—C61.387 (4)C16—H16B0.9900
C7—C121.339 (4)C18—H18A0.9900
C7—C81.497 (4)C18—H18B0.9900
C8—C91.536 (4)C91—H91A0.9800
C9—C911.529 (4)C91—H91B0.9800
C9—C921.536 (4)C91—H91C0.9800
C9—C101.534 (4)C92—H92A0.9800
C10—C111.504 (4)C92—H92B0.9800
C11—C121.462 (4)C92—H92C0.9800
C12—C131.514 (4)C171—H17A0.9800
C13—C141.523 (4)C171—H17B0.9800
C14—C151.457 (4)C171—H17C0.9800
C14—C191.342 (4)C172—H17D0.9800
C15—C161.512 (4)C172—H17E0.9800
C16—C171.523 (4)C172—H17F0.9800
C6—O1—C7118.6 (2)C3—C2—H2120.00
C19—O4—H4O107 (2)C3—C4—H4121.00
C2—C1—C13120.9 (3)C5—C4—H4121.00
C6—C1—C13122.2 (3)C4—C5—H5120.00
C2—C1—C6116.9 (3)C6—C5—H5120.00
C1—C2—C3120.8 (3)C7—C8—H8A109.00
Br1—C3—C4120.1 (2)C7—C8—H8B109.00
C2—C3—C4121.3 (3)C9—C8—H8A109.00
Br1—C3—C2118.6 (2)C9—C8—H8B109.00
C3—C4—C5118.6 (3)H8A—C8—H8B108.00
C4—C5—C6119.7 (3)C9—C10—H10A108.00
O1—C6—C1122.2 (3)C9—C10—H10B108.00
O1—C6—C5115.1 (3)C11—C10—H10A108.00
C1—C6—C5122.7 (3)C11—C10—H10B108.00
O1—C7—C12123.6 (3)H10A—C10—H10B108.00
C8—C7—C12126.1 (3)C1—C13—H13107.00
O1—C7—C8110.4 (2)C12—C13—H13107.00
C7—C8—C9112.1 (2)C14—C13—H13107.00
C8—C9—C10107.8 (2)C15—C16—H16A108.00
C8—C9—C91108.8 (2)C15—C16—H16B108.00
C10—C9—C91109.8 (3)C17—C16—H16A108.00
C10—C9—C92110.5 (3)C17—C16—H16B109.00
C91—C9—C92109.6 (3)H16A—C16—H16B107.00
C8—C9—C92110.3 (3)C17—C18—H18A109.00
C9—C10—C11115.6 (3)C17—C18—H18B109.00
O2—C11—C10120.9 (3)C19—C18—H18A109.00
C10—C11—C12119.5 (3)C19—C18—H18B109.00
O2—C11—C12119.5 (3)H18A—C18—H18B108.00
C7—C12—C11117.5 (3)C9—C91—H91A109.00
C11—C12—C13118.7 (3)C9—C91—H91B109.00
C7—C12—C13123.7 (3)C9—C91—H91C109.00
C1—C13—C12109.4 (2)H91A—C91—H91B110.00
C1—C13—C14110.5 (3)H91A—C91—H91C109.00
C12—C13—C14115.8 (2)H91B—C91—H91C109.00
C13—C14—C15116.3 (3)C9—C92—H92A109.00
C13—C14—C19124.3 (3)C9—C92—H92B109.00
C15—C14—C19119.3 (3)C9—C92—H92C109.00
O3—C15—C16119.6 (3)H92A—C92—H92B110.00
C14—C15—C16117.9 (3)H92A—C92—H92C109.00
O3—C15—C14122.3 (3)H92B—C92—H92C109.00
C15—C16—C17115.2 (2)C17—C171—H17A109.00
C16—C17—C171109.8 (2)C17—C171—H17B109.00
C16—C17—C172110.1 (3)C17—C171—H17C109.00
C16—C17—C18108.2 (2)H17A—C171—H17B109.00
C18—C17—C172109.6 (3)H17A—C171—H17C109.00
C171—C17—C172109.5 (3)H17B—C171—H17C110.00
C18—C17—C171109.6 (3)C17—C172—H17D109.00
C17—C18—C19114.8 (3)C17—C172—H17E109.00
O4—C19—C18116.6 (3)C17—C172—H17F109.00
C14—C19—C18124.7 (3)H17D—C172—H17E109.00
O4—C19—C14118.7 (3)H17D—C172—H17F110.00
C1—C2—H2120.00H17E—C172—H17F109.00
C7—O1—C6—C5173.8 (3)C9—C10—C11—O2160.4 (3)
C6—O1—C7—C8175.6 (2)C9—C10—C11—C1223.0 (4)
C7—O1—C6—C14.8 (4)O2—C11—C12—C7171.7 (3)
C6—O1—C7—C124.8 (4)O2—C11—C12—C133.8 (4)
C6—C1—C2—C31.7 (4)C10—C11—C12—C75.0 (4)
C13—C1—C2—C3177.0 (3)C10—C11—C12—C13179.5 (3)
C2—C1—C13—C12173.4 (3)C7—C12—C13—C15.4 (4)
C2—C1—C13—C1444.7 (4)C7—C12—C13—C14131.1 (3)
C6—C1—C13—C125.3 (4)C11—C12—C13—C1179.4 (3)
C6—C1—C13—C14134.0 (3)C11—C12—C13—C1453.7 (4)
C2—C1—C6—O1178.1 (3)C1—C13—C14—C1598.9 (3)
C2—C1—C6—C50.4 (5)C1—C13—C14—C1975.5 (4)
C13—C1—C6—O10.6 (5)C12—C13—C14—C15135.9 (3)
C13—C1—C6—C5179.1 (3)C12—C13—C14—C1949.6 (4)
C1—C2—C3—Br1177.5 (2)C13—C14—C15—O34.1 (5)
C1—C2—C3—C42.1 (5)C13—C14—C15—C16170.6 (3)
Br1—C3—C4—C5179.3 (2)C19—C14—C15—O3178.8 (3)
C2—C3—C4—C50.4 (5)C19—C14—C15—C164.1 (4)
C3—C4—C5—C61.7 (5)C13—C14—C19—O40.2 (5)
C4—C5—C6—O1176.5 (3)C13—C14—C19—C18178.7 (3)
C4—C5—C6—C12.1 (5)C15—C14—C19—O4174.1 (3)
O1—C7—C8—C9155.2 (3)C15—C14—C19—C184.4 (5)
C12—C7—C8—C925.3 (4)O3—C15—C16—C17151.6 (3)
O1—C7—C12—C11175.9 (3)C14—C15—C16—C1733.6 (4)
O1—C7—C12—C130.7 (5)C15—C16—C17—C1850.9 (4)
C8—C7—C12—C113.5 (5)C15—C16—C17—C171170.5 (3)
C8—C7—C12—C13178.8 (3)C15—C16—C17—C17268.9 (3)
C7—C8—C9—C1048.8 (3)C16—C17—C18—C1942.1 (3)
C7—C8—C9—C91167.8 (3)C171—C17—C18—C19161.8 (3)
C7—C8—C9—C9271.9 (3)C172—C17—C18—C1978.0 (3)
C8—C9—C10—C1148.9 (3)C17—C18—C19—O4165.1 (3)
C91—C9—C10—C11167.2 (3)C17—C18—C19—C1416.3 (4)
C92—C9—C10—C1171.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.80 (3)1.86 (3)2.650 (3)170 (3)
C8—H8A···O3ii0.992.543.514 (4)167
C13—H13···O31.002.332.807 (4)108
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC23H25BrO4
Mr445.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)15.6869 (4), 11.0215 (2), 23.0217 (16)
V3)3980.3 (3)
Z8
Radiation typeCu Kα
µ (mm1)3.04
Crystal size (mm)0.12 × 0.08 × 0.02
Data collection
DiffractometerRigaku RAPID II
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.712, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
17325, 3507, 2728
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.07
No. of reflections3507
No. of parameters260
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.49

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2i0.80 (3)1.86 (3)2.650 (3)170 (3)
C8—H8A···O3ii0.99002.54003.514 (4)167.00
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z.
 

Acknowledgements

The Ministry of Higher Education of Egypt is gratefully acknowledged for their financial support of this study. SKM is grateful to Purdue University, W. Lafayette, IN 47907, USA, for the data collection and to Manchester Metropolitan University for facilitating this project.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFan, X., Hu, X., Zhang, X. & Wang, J. (2005). Can. J. Chem. 83, 16–20.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850–o851.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Moharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28–33.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds