organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 4-bromo­benzoate

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
*Correspondence e-mail: rodimo26@yahoo.es

(Received 19 October 2011; accepted 23 October 2011; online 29 October 2011)

In the crystal structure of the title compound, C13H8BrNO4, mol­ecules are linked into chains along [101] by weak C—H⋯O hydrogen bonds and Br⋯O contacts [3.140 (4) Å]. The planes of the nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the mol­ecule.

Related literature

For background to the applications of aromatic esters containing nitro groups, see: Jefford & Zaslona (1985[Jefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035-6038.]). For mol­ecular and supra­molecular structures of nitroaryl compounds, see: Wardell et al. (2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3334-o3336.]); Jefford et al., (1986[Jefford, C. W., Kubota, T. & Zaslona, A. (1986). Helv. Chim. Acta, 69, 2048-2061.]). For halogen bonding, see: Politzer et al. (2010[Politzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748-7757.]); Ritter (2009[Ritter, S. K. (2009). Sci. Technol. 87, 39-42.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8BrNO4

  • Mr = 322.11

  • Monoclinic, P 21 /c

  • a = 8.8177 (4) Å

  • b = 9.5279 (5) Å

  • c = 14.9394 (5) Å

  • β = 99.024 (3)°

  • V = 1239.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 293 K

  • 0.55 × 0.31 × 0.23 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.250, Tmax = 0.361

  • 9341 measured reflections

  • 2648 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.02

  • 2648 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O4i 0.93 2.69 3.543 (6) 153
C3—H3⋯O3ii 0.93 2.60 3.335 (5) 136
C13—H13⋯O3iii 0.93 2.67 3.460 (5) 143
C12—H12⋯O1iv 0.93 2.50 3.237 (5) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aromatic esters containing nitro groups in their aromatic rings can be used as precursors for the preparation of compounds with potential analgesic and anti-inflammatory properties (Jefford & Zaslona, 1985). Molecular and supramolecular structures of a wide range of nitroaryl compounds have been reported (Wardell et al., 2005 and Jefford et al., 1986).

In order to complement the structural information on nitroaryl compounds the title ester, 4-nitrophenyl bromobenzoate (I) was synthesized. A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The central ester fragment between atoms C4 and C8 is effectively planar. The nitrated and brominated aryl rings form a dihedral angle of 64.98 (10)°, indicating a twist in the molecule. The nitro group forms a dihedral angle of 2.7 (5)° with the adjacent aryl ring. Halogen bonding, an electrostatically driven higly directional noncovalent interaction, that can be important for its potential in the development of new materials and pharmaceutical compounds (Politzer et al., 2010 and Ritter, 2009) can be observed in the present structure. Indeed, the Br···O contacts along [101] with a Br1···O3iii, (iii: x - 1,+y,+z + 1) distance of 3.140 (4) Å, showing the formation of an infinite chain is detected (see Fig. 2). Other C—H···O weak hydrogen bonds (see Table 1, Nardelli, 1995) that complement the crystal packing can also be seen in this figure. The propagation of these interactions forms R33(30), R44(24) and R22(14) rings (Etter, 1990) along this direction.

Related literature top

For background to the applications of aromatic esters containing nitro groups, see: Jefford & Zaslona (1985). For molecular and supramolecular structures of nitroaryl compounds, see: Wardell et al. (2005); Jefford et al., (1986). For halogen bonding, see: Politzer et al. (2010); Ritter (2009). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

Solution containing equimolar quantities (3.2 mmol) of 4-bromobenzoyl chloride and 4-nitrophenol in acetonitrile (60 ml) was gradually heated under reflux for 2 h. At room temperature, triethylamine was added, to get a solid which was poured in cold water. The solid was recrystallized in dichlorometane to yield excellent yellow crystals suitable for single-crystal X-ray diffraction. M.p. 431 (1) K.

Refinement top

The H-atoms were placed geometrically [C—H= 0.93 Å, Uiso(H) (1.2 times Ueq of the parent atom].

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a one dimensional sheet along [101]. Symmetry code: (i) -x,-y,-z + 1; (ii) -x,+y + 1/2,-z + 1/2; (iii) x - 1,+y,+z + 1.
4-Nitrophenyl 4-bromobenzoate top
Crystal data top
C13H8BrNO4F(000) = 640
Mr = 322.11Dx = 1.726 Mg m3
Monoclinic, P21/cMelting point: 431(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8177 (4) ÅCell parameters from 5487 reflections
b = 9.5279 (5) Åθ = 2.9–27.1°
c = 14.9394 (5) ŵ = 3.33 mm1
β = 99.024 (3)°T = 293 K
V = 1239.59 (10) Å3Block, pale-yellow
Z = 40.55 × 0.31 × 0.23 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2648 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 27.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.250, Tmax = 0.361k = 1111
9341 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.6227P]
where P = (Fo2 + 2Fc2)/3
2648 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C13H8BrNO4V = 1239.59 (10) Å3
Mr = 322.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8177 (4) ŵ = 3.33 mm1
b = 9.5279 (5) ÅT = 293 K
c = 14.9394 (5) Å0.55 × 0.31 × 0.23 mm
β = 99.024 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2648 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1918 reflections with I > 2σ(I)
Tmin = 0.250, Tmax = 0.361Rint = 0.070
9341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.80 e Å3
2648 reflectionsΔρmin = 0.68 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.07826 (4)0.25892 (4)1.01950 (2)0.0659 (2)
O20.6701 (3)0.1952 (3)0.59586 (16)0.0569 (6)
C10.9755 (4)0.2726 (4)0.8984 (2)0.0507 (8)
O10.7563 (3)0.4159 (3)0.58276 (16)0.0606 (6)
C40.8266 (4)0.2946 (3)0.7227 (2)0.0457 (7)
C80.5953 (4)0.1968 (4)0.5064 (2)0.0480 (7)
C110.4518 (4)0.1846 (4)0.3321 (2)0.0504 (8)
C100.5615 (4)0.0861 (4)0.3623 (2)0.0552 (8)
H100.58590.01610.32350.066*
N10.3778 (5)0.1834 (4)0.2373 (2)0.0694 (9)
C70.7503 (4)0.3138 (4)0.6281 (2)0.0485 (7)
C50.9242 (4)0.4006 (4)0.7604 (3)0.0594 (9)
H50.93880.47960.72610.071*
C20.8757 (4)0.1668 (4)0.8629 (2)0.0527 (8)
H20.85870.08930.89780.063*
C30.8023 (4)0.1793 (3)0.7748 (2)0.0499 (8)
H30.73540.10900.74990.060*
C60.9997 (5)0.3897 (4)0.8482 (2)0.0631 (10)
H61.06590.46030.87320.076*
C90.6350 (4)0.0922 (3)0.4507 (2)0.0535 (8)
H90.71010.02680.47240.064*
C130.4817 (4)0.2937 (4)0.4769 (2)0.0554 (8)
H130.45460.36160.51620.066*
O30.4181 (5)0.0922 (4)0.18766 (19)0.0955 (11)
C120.4100 (5)0.2880 (4)0.3889 (3)0.0580 (9)
H120.33400.35270.36740.070*
O40.2819 (6)0.2721 (4)0.2116 (3)0.1064 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0611 (3)0.0868 (3)0.0476 (3)0.00760 (19)0.00100 (18)0.00065 (17)
O20.0682 (16)0.0504 (12)0.0479 (13)0.0114 (12)0.0034 (11)0.0040 (11)
C10.0421 (17)0.062 (2)0.0475 (18)0.0014 (14)0.0051 (14)0.0012 (14)
O10.0684 (17)0.0519 (14)0.0599 (14)0.0047 (11)0.0054 (12)0.0080 (11)
C40.0445 (17)0.0475 (16)0.0456 (17)0.0002 (14)0.0079 (14)0.0012 (14)
C80.0480 (19)0.0511 (17)0.0434 (16)0.0075 (14)0.0029 (14)0.0044 (14)
C110.059 (2)0.0515 (18)0.0408 (16)0.0151 (16)0.0091 (15)0.0008 (14)
C100.067 (2)0.0478 (18)0.0534 (19)0.0115 (16)0.0189 (17)0.0075 (14)
N10.094 (3)0.067 (2)0.0456 (17)0.030 (2)0.0054 (17)0.0047 (16)
C70.0460 (18)0.0476 (18)0.0531 (19)0.0014 (14)0.0112 (15)0.0003 (15)
C50.060 (2)0.058 (2)0.059 (2)0.0160 (17)0.0039 (16)0.0070 (16)
C20.058 (2)0.0476 (18)0.0524 (18)0.0002 (15)0.0073 (16)0.0007 (14)
C30.054 (2)0.0441 (17)0.0509 (18)0.0044 (14)0.0059 (15)0.0034 (14)
C60.061 (2)0.067 (2)0.059 (2)0.0197 (18)0.0020 (18)0.0030 (17)
C90.057 (2)0.0445 (17)0.059 (2)0.0004 (15)0.0105 (16)0.0020 (14)
C130.056 (2)0.0594 (19)0.050 (2)0.0043 (17)0.0057 (16)0.0083 (16)
O30.148 (3)0.092 (2)0.0467 (15)0.027 (2)0.0140 (18)0.0131 (15)
C120.057 (2)0.062 (2)0.053 (2)0.0049 (17)0.0034 (17)0.0015 (16)
O40.137 (4)0.105 (3)0.063 (2)0.011 (2)0.028 (2)0.0082 (17)
Geometric parameters (Å, º) top
Br—C11.896 (4)C10—C91.379 (5)
O2—C71.379 (4)C10—H100.9300
O2—C81.394 (4)N1—O41.214 (5)
C1—C61.380 (5)N1—O31.230 (5)
C1—C21.387 (5)C5—C61.379 (5)
O1—C71.192 (4)C5—H50.9300
C4—C31.383 (5)C2—C31.378 (5)
C4—C51.388 (5)C2—H20.9300
C4—C71.477 (5)C3—H30.9300
C8—C91.378 (5)C6—H60.9300
C8—C131.383 (5)C9—H90.9300
C11—C101.372 (5)C13—C121.367 (5)
C11—C121.387 (5)C13—H130.9300
C11—N11.465 (4)C12—H120.9300
C7—O2—C8117.8 (3)C6—C5—C4120.5 (3)
C6—C1—C2121.5 (3)C6—C5—H5119.8
C6—C1—Br118.9 (3)C4—C5—H5119.8
C2—C1—Br119.6 (3)C3—C2—C1118.5 (3)
C3—C4—C5119.4 (3)C3—C2—H2120.7
C3—C4—C7123.3 (3)C1—C2—H2120.7
C5—C4—C7117.3 (3)C2—C3—C4121.0 (3)
C9—C8—C13122.0 (3)C2—C3—H3119.5
C9—C8—O2116.4 (3)C4—C3—H3119.5
C13—C8—O2121.5 (3)C5—C6—C1119.0 (3)
C10—C11—C12121.8 (3)C5—C6—H6120.5
C10—C11—N1119.8 (3)C1—C6—H6120.5
C12—C11—N1118.4 (4)C8—C9—C10118.9 (3)
C11—C10—C9119.1 (3)C8—C9—H9120.5
C11—C10—H10120.4C10—C9—H9120.5
C9—C10—H10120.4C12—C13—C8118.9 (3)
O4—N1—O3123.6 (4)C12—C13—H13120.5
O4—N1—C11118.9 (4)C8—C13—H13120.5
O3—N1—C11117.5 (4)C13—C12—C11119.2 (4)
O1—C7—O2122.4 (3)C13—C12—H12120.4
O1—C7—C4126.2 (3)C11—C12—H12120.4
O2—C7—C4111.4 (3)
C7—O2—C8—C9123.0 (3)C6—C1—C2—C31.3 (5)
C7—O2—C8—C1360.4 (4)Br—C1—C2—C3179.9 (3)
C12—C11—C10—C91.7 (5)C1—C2—C3—C40.3 (5)
N1—C11—C10—C9177.2 (3)C5—C4—C3—C21.2 (5)
C10—C11—N1—O4179.4 (4)C7—C4—C3—C2179.6 (3)
C12—C11—N1—O40.4 (6)C4—C5—C6—C10.7 (6)
C10—C11—N1—O30.0 (5)C2—C1—C6—C50.9 (6)
C12—C11—N1—O3178.9 (4)Br—C1—C6—C5179.5 (3)
C8—O2—C7—O10.6 (5)C13—C8—C9—C101.5 (5)
C8—O2—C7—C4178.4 (3)O2—C8—C9—C10178.1 (3)
C3—C4—C7—O1173.0 (4)C11—C10—C9—C80.4 (5)
C5—C4—C7—O15.4 (5)C9—C8—C13—C122.0 (6)
C3—C4—C7—O28.0 (5)O2—C8—C13—C12178.5 (3)
C5—C4—C7—O2173.5 (3)C8—C13—C12—C110.7 (6)
C3—C4—C5—C61.7 (6)C10—C11—C12—C131.2 (6)
C7—C4—C5—C6179.8 (4)N1—C11—C12—C13177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.932.693.543 (6)153
C3—H3···O3ii0.932.603.335 (5)136
C13—H13···O3iii0.932.673.460 (5)143
C12—H12···O1iv0.932.503.237 (5)137
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H8BrNO4
Mr322.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8177 (4), 9.5279 (5), 14.9394 (5)
β (°) 99.024 (3)
V3)1239.59 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.55 × 0.31 × 0.23
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.250, 0.361
No. of measured, independent and
observed [I > 2σ(I)] reflections
9341, 2648, 1918
Rint0.070
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.02
No. of reflections2648
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.68

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.932.693.543 (6)153.0
C3—H3···O3ii0.932.603.335 (5)136.1
C13—H13···O3iii0.932.673.460 (5)143.4
C12—H12···O1iv0.932.503.237 (5)136.8
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The author also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJefford, C. W., Kubota, T. & Zaslona, A. (1986). Helv. Chim. Acta, 69, 2048–2061.  CrossRef CAS Web of Science Google Scholar
First citationJefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035–6038.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPolitzer, P., Murray, J. S. & Clark, T. (2010). Phys. Chem. Chem. Phys. 12, 7748–7757.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRitter, S. K. (2009). Sci. Technol. 87, 39–42.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3334–o3336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds