organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Chloro­but­yl)-3H-indole-5-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Periyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India, bCentre for Research and Development, PRIST University, Thanjavur 613 403, Tamil Nadu, India, and cInorganic & Structural Chemistry, Howard University, Washington, DC 20059, USA
*Correspondence e-mail: lvsethu13@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 3 March 2017; accepted 8 March 2017; online 17 March 2017)

In the title compound, C13H12ClN2, the indole moiety and the chloro­alkyl substituent are nearly coplanar, making a dihedral angle of 1.27 (10)°. In the crystal, a supra­molecular sheet parallel to the ab plane is generated via weak C—H⋯Cl hydrogen bonds, aromatic ππ stacking [centroid–centroid distances of 3.5563 (13) and 3.6792 (13) Å] and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of indoles currently is of great inter­est because of their potential in acting as β-blockers, anti-arrhythmic, anti­viral, anti-asthmatic, opioid antagonist and also sexual dysfunction drugs (Biswal et al., 2012[Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asian J. Pharm. Clin. Res. 5, 1-6.]). The title compound, an indole derivative, is a key inter­mediate in the synthesis of the anti­depressant drug vilazodone hydro­chloride (Smith et al., 1981[Smith, C. B., Garcia-Sevilla, J. A. & Hollingsworth, P. J. (1981). Brain Res. 210, 413-418.]). The present study focuses on its crystal structure and the non-covalent inter­actions present in it.

An ORTEP view of the title compound is shown in Fig. 1[link]. The indole moiety (N1/C2–C9) and the chloro­alkyl substituent (C11–C14/Cl1) are nearly coplanar, making a dihedral angle of 1.27 (10)°. The C11—C12—C13—C14 and C12—C13—C14—Cl1 torsion angles are −179.08 (14)° and 178.06 (12)° respectively.

[Figure 1]
Figure 1
The asymmetric unit, shown in 50% probability displacement ellipsoids.

In the crystal, neighboring mol­ecules self-assemble through weak C—H⋯Cl inter­actions (Table 1[link]), forming zigzag supra­molecular C(9) chains extending along the b-axis direction, as shown in Fig. 2[link]a. ππ stacking inter­actions are observed between the five- (N1/C2/C3/C9/C8; centroid Cg1) and six-membered rings (C4–C9, centroid Cg2) of symmetry-related mol­ecules [Cg1⋯Cg2iv = 3.6792 (13) Å, perpendicular distance = 3.3537 (7) Å, slip angle = 23.4°; Cg2⋯Cg2iv = 3.5563 (13) Å, perpendicular distance = 3.3648 (7) Å, slip angle = 18.9°; symmetry code: (iv) −x, 1 − y, 1 − z] (Fig. 2[link]b). Adjacent chains are linked by weak C—H⋯π inter­actions (Fig. 2[link]c, Table 1[link]), generating a supra­molecular sheet-like architecture parallel to the ab plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C2/C3/C9/C8 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.80 3.750 (2) 178
C13—H13BCg2ii 0.99 2.83 3.729 (2) 151
C14—H14ACg1iii 0.99 2.70 3.619 (2) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of a supra­molecular sheet (a) generated via weak inter­molecular C—H⋯Cl hydrogen bonds, aromatic ππ (b) and weak C—H⋯π inter­actions (c). [Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iv) −x, 1 − y, 1 − z.]

Synthesis and crystallization

Crystals of the title compound were obtained by dissolving 3-(4-chloro­but­yl)-3H-indole-5-carbo­nitrile (purchased from the Tokyo Chemical Industry Co. Ltd; 58.17 mg, 0.25 mmol) in 20 ml of hot DMF, warming the resultant solution over a water bath for half an hour and then allowing it to evaporate slowly. After a couple of weeks, colourless block-shaped crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H12ClN2
Mr 231.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.870 (2), 9.271 (2), 14.498 (3)
β (°) 100.236 (4)
V3) 1173.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.18 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker APEX2
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.618, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 7342, 1952, 1632
Rint 0.039
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.04
No. of reflections 1952
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-(4-Chlorobutyl)-3H-indole-5-carbonitrile top
Crystal data top
C13H12ClN2F(000) = 484
Mr = 231.70Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1952 reflections
a = 8.870 (2) Åθ = 2.6–24.6°
b = 9.271 (2) ŵ = 0.30 mm1
c = 14.498 (3) ÅT = 100 K
β = 100.236 (4)°Block, colourless
V = 1173.3 (4) Å30.18 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker APEX2
diffractometer
1632 reflections with I > 2σ(I)
Detector resolution: 18.4 pixels mm-1Rint = 0.039
ω scansθmax = 24.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.618, Tmax = 0.745k = 1010
7342 measured reflectionsl = 1716
1952 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 W = 1/[Σ2(FO2) + (0.0787P)2 + 0.103P]
where P = (FO2 + 2FC2)/3
S = 1.04(Δ/σ)max = 0.001
1952 reflectionsΔρmax = 0.77 e Å3
145 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64037 (6)0.62791 (5)0.10556 (3)0.0374 (2)
N10.17148 (16)0.77777 (15)0.56156 (10)0.0201 (5)
N20.11010 (18)0.07016 (16)0.63996 (10)0.0253 (5)
C20.24695 (19)0.77015 (18)0.48563 (12)0.0196 (5)
C30.27340 (19)0.62955 (18)0.46458 (12)0.0180 (5)
C40.19954 (19)0.39639 (19)0.54477 (12)0.0167 (5)
C50.12932 (19)0.34712 (18)0.61728 (12)0.0171 (5)
C60.07011 (19)0.44444 (18)0.67723 (11)0.0185 (5)
C70.0791 (2)0.59138 (18)0.66467 (12)0.0191 (5)
C80.14883 (19)0.63995 (18)0.59107 (12)0.0176 (5)
C90.21102 (18)0.54455 (19)0.53132 (11)0.0153 (5)
C100.11668 (19)0.19390 (19)0.63026 (12)0.0191 (5)
C110.34870 (18)0.56955 (19)0.38841 (11)0.0182 (5)
C120.4092 (2)0.68144 (18)0.32641 (12)0.0203 (5)
C130.4845 (2)0.60776 (18)0.25126 (11)0.0190 (5)
C140.5469 (2)0.71641 (19)0.19066 (12)0.0215 (5)
H20.276170.851260.452840.0240*
H40.239020.330150.505080.0200*
H60.023630.408000.726650.0220*
H70.039520.657240.704530.0230*
H11A0.274050.507080.347930.0220*
H11B0.435260.507740.417440.0220*
H12A0.323520.742940.295720.0240*
H12B0.485070.744160.365750.0240*
H13A0.407960.546220.211440.0230*
H13B0.568770.544870.282080.0230*
H14A0.462190.777120.157940.0260*
H14B0.621040.780100.230560.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0600 (4)0.0245 (3)0.0365 (3)0.0068 (2)0.0330 (3)0.0054 (2)
N10.0249 (8)0.0132 (8)0.0242 (8)0.0009 (6)0.0095 (6)0.0002 (6)
N20.0355 (9)0.0163 (9)0.0265 (9)0.0014 (7)0.0123 (7)0.0007 (6)
C20.0229 (9)0.0149 (9)0.0223 (9)0.0021 (7)0.0074 (7)0.0028 (7)
C30.0170 (9)0.0180 (10)0.0196 (9)0.0001 (7)0.0053 (7)0.0007 (7)
C40.0177 (9)0.0154 (9)0.0178 (9)0.0020 (7)0.0053 (7)0.0023 (7)
C50.0203 (9)0.0125 (9)0.0186 (9)0.0001 (7)0.0038 (7)0.0006 (6)
C60.0202 (9)0.0190 (9)0.0182 (9)0.0007 (7)0.0087 (7)0.0012 (7)
C70.0219 (9)0.0157 (9)0.0213 (9)0.0011 (7)0.0079 (7)0.0024 (7)
C80.0182 (9)0.0144 (10)0.0203 (9)0.0005 (7)0.0036 (7)0.0007 (7)
C90.0153 (8)0.0152 (9)0.0160 (8)0.0005 (6)0.0043 (7)0.0001 (7)
C100.0206 (9)0.0197 (10)0.0187 (9)0.0018 (7)0.0078 (7)0.0003 (7)
C110.0209 (9)0.0158 (9)0.0194 (9)0.0002 (7)0.0074 (7)0.0018 (7)
C120.0235 (10)0.0179 (9)0.0207 (9)0.0004 (8)0.0074 (7)0.0027 (7)
C130.0236 (9)0.0162 (9)0.0186 (9)0.0006 (7)0.0072 (7)0.0009 (7)
C140.0279 (10)0.0173 (9)0.0218 (9)0.0009 (7)0.0113 (8)0.0002 (7)
Geometric parameters (Å, º) top
Cl1—C141.8018 (19)C12—C131.536 (2)
N1—C21.388 (2)C13—C141.505 (2)
N1—C81.374 (2)C2—H20.9500
N2—C101.159 (2)C4—H40.9500
C2—C31.369 (2)C6—H60.9500
C3—C91.433 (2)C7—H70.9500
C3—C111.496 (2)C11—H11A0.9900
C4—C51.391 (2)C11—H11B0.9900
C4—C91.394 (3)C12—H12A0.9900
C5—C61.417 (2)C12—H12B0.9900
C5—C101.440 (2)C13—H13A0.9900
C6—C71.379 (2)C13—H13B0.9900
C7—C81.400 (2)C14—H14A0.9900
C8—C91.417 (2)C14—H14B0.9900
C11—C121.531 (2)
C2—N1—C8108.51 (14)C9—C4—H4121.00
N1—C2—C3110.57 (15)C5—C6—H6120.00
C2—C3—C9105.73 (15)C7—C6—H6120.00
C2—C3—C11129.47 (16)C6—C7—H7121.00
C9—C3—C11124.80 (15)C8—C7—H7121.00
C5—C4—C9118.89 (16)C3—C11—H11A108.00
C4—C5—C6121.27 (15)C3—C11—H11B108.00
C4—C5—C10118.59 (15)C12—C11—H11A108.00
C6—C5—C10120.14 (15)C12—C11—H11B108.00
C5—C6—C7120.78 (15)H11A—C11—H11B107.00
C6—C7—C8117.55 (15)C11—C12—H12A109.00
N1—C8—C7130.22 (16)C11—C12—H12B109.00
N1—C8—C9107.21 (15)C13—C12—H12A109.00
C7—C8—C9122.57 (15)C13—C12—H12B109.00
C3—C9—C4133.08 (16)H12A—C12—H12B108.00
C3—C9—C8107.97 (15)C12—C13—H13A109.00
C4—C9—C8118.93 (15)C12—C13—H13B109.00
N2—C10—C5178.24 (19)C14—C13—H13A109.00
C3—C11—C12115.51 (14)C14—C13—H13B109.00
C11—C12—C13110.93 (14)H13A—C13—H13B108.00
C12—C13—C14111.58 (14)Cl1—C14—H14A109.00
Cl1—C14—C13110.89 (12)Cl1—C14—H14B109.00
N1—C2—H2125.00C13—C14—H14A109.00
C3—C2—H2125.00C13—C14—H14B109.00
C5—C4—H4121.00H14A—C14—H14B108.00
C8—N1—C2—C30.3 (2)C5—C4—C9—C80.9 (2)
C2—N1—C8—C7179.71 (18)C4—C5—C6—C70.7 (3)
C2—N1—C8—C90.42 (19)C10—C5—C6—C7178.91 (16)
N1—C2—C3—C90.1 (2)C5—C6—C7—C80.2 (3)
N1—C2—C3—C11179.14 (16)C6—C7—C8—N1178.92 (17)
C2—C3—C9—C4178.35 (18)C6—C7—C8—C90.9 (3)
C2—C3—C9—C80.18 (19)N1—C8—C9—C30.37 (19)
C11—C3—C9—C40.9 (3)N1—C8—C9—C4178.40 (15)
C11—C3—C9—C8179.45 (16)C7—C8—C9—C3179.75 (16)
C2—C3—C11—C121.9 (3)C7—C8—C9—C41.5 (3)
C9—C3—C11—C12179.01 (15)C3—C11—C12—C13179.74 (14)
C9—C4—C5—C60.1 (3)C11—C12—C13—C14179.08 (14)
C9—C4—C5—C10179.47 (16)C12—C13—C14—Cl1178.06 (12)
C5—C4—C9—C3179.31 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C2/C3/C9/C8 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.803.750 (2)178
C13—H13B···Cg2ii0.992.833.729 (2)151
C14—H14A···Cg1iii0.992.703.619 (2)154
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge the assistance of Dr Matthias Zeller with the data collection and NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase the X-ray diffractometer. RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.

References

First citationBiswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asian J. Pharm. Clin. Res. 5, 1–6.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, C. B., Garcia-Sevilla, J. A. & Hollingsworth, P. J. (1981). Brain Res. 210, 413–418.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds