organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Nitro-2-[(phenyl­imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aCentre for Advanced Material Research, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, bPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cPG Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam 611 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 3 October 2016; accepted 9 October 2016; online 14 October 2016)

In the title compound, C13H10N2O3, the dihedral angle between the planes of the two aryl rings is 7.42 (10)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. The crystal structure features C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report here the synthesis and characterization of the title Schiff base derivative (Fig. 1[link])) prepared from the condensation reaction of an equimolar proportion of 5-nitro­salicyl­aldehyde and aniline in CCl4. The diversified nature of salicyl­aldehyde derivatives containing Schiff bases as an integral part of the structure exhibit a variety of important biological properties, including anti-bacterial, anti-cancer and anti-tumor activities (Ida Malarselvi et al., 2016[Ida Malarselvi, R., Ramachandra Raja, C., Priscilla, J. & Viswanathan, K. (2016). Materials Today: Proceedings, 3, 1444-1450.]).

[Figure 1]
Figure 1
A view of the title mol­ecule with displacement ellipsoids drawn at the 50% probability level. A dashed line indicates the hydrogen-bonding inter­action.

The benzene and phenyl rings are inclined at 7.42 (10)° to one another. The mol­ecule has an E conformation about the C=N bond, and the C5—C7=N2—C8 torsion angle is −177.03 (16)°. The 4-nitro group is slightly tilted away from the benzene ring to which it is attached [O1—N1—C1—C2 = −5.8 (3)° and O2—N1—C1—C6 = −2.7 (3)°]. The strong intra­molecular O3—H3A⋯N2 hydrogen bond (N⋯H distance of 1.83 Å) generates an S(6) ring. The strong band in the IR at 1632 cm−1 is assigned to the C7=N2 stretching frequency of the imine group of Schiff base with the C7=N2 bond distance of 1.276 (2) Å indicative of double-bond character. The crystal structure features C2—H2⋯O1 and C7—H7⋯O2 hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.60 3.278 (2) 130
C7—H7⋯O2ii 0.93 2.41 3.252 (2) 150
O3—H3A⋯N2 0.82 1.83 2.5637 (19) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x+1, -y, -z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]). H atoms not involved in hydrogen bonding have been omitted for clarity.

Yan et al., (2014[Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.]) have reported the crystal structure of 4-bromo-2-[(phenyl­imino)­meth­yl]phenol, in which the mol­ecule is essentially planar (r.m.s. deviation = 0.026 Å).

Synthesis and crystallization

0.2 g (0.001 mol) of 5-nitro­salicyl­aldehyde was dissolved in 5 ml of CCl4. To this solution, 0.1 g (0.111 mol) of aniline was added dropwise with constant stirring for 1 h. During this time, the solution turned deep yellow. On standing for two weeks with slow evaporation of the solvent, yellow crystals of the title compound were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10N2O3
Mr 242.23
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.0774 (10), 6.5801 (6), 21.668 (3)
β (°) 98.240 (5)
V3) 1139.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.95, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 15249, 2857, 1645
Rint 0.029
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.04
No. of reflections 2857
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.22
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-4-Nitro-2-[(phenylimino)methyl]phenol top
Crystal data top
C13H10N2O3F(000) = 504
Mr = 242.23Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0774 (10) ÅCell parameters from 3323 reflections
b = 6.5801 (6) Åθ = 4.0–24.5°
c = 21.668 (3) ŵ = 0.10 mm1
β = 98.240 (5)°T = 296 K
V = 1139.8 (2) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1645 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.029
ω and φ scanθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 109
Tmin = 0.95, Tmax = 0.96k = 88
15249 measured reflectionsl = 2828
2857 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3112P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2857 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2784 (2)0.1044 (3)0.11963 (7)0.0468 (4)
C20.1930 (3)0.2130 (3)0.16876 (8)0.0563 (5)
H20.1793420.1596140.2089070.068*
C30.1293 (3)0.3986 (3)0.15790 (8)0.0608 (5)
H30.0725270.4722970.1909920.073*
C40.1474 (2)0.4797 (3)0.09835 (8)0.0508 (5)
C50.2374 (2)0.3697 (3)0.04848 (7)0.0450 (4)
C60.3016 (2)0.1809 (3)0.06025 (7)0.0464 (4)
H60.3605240.1061260.0278770.056*
C70.2662 (2)0.4542 (3)0.01343 (8)0.0506 (5)
H70.3232710.3771700.0456580.061*
C80.2495 (2)0.7204 (3)0.08524 (8)0.0464 (4)
C90.3526 (2)0.6347 (3)0.13497 (8)0.0565 (5)
H90.4035390.5099430.1303140.068*
C100.3796 (3)0.7343 (3)0.19118 (9)0.0643 (6)
H100.4494070.6770350.2245030.077*
C110.3043 (3)0.9175 (4)0.19849 (10)0.0705 (6)
H110.3221100.9835610.2368200.085*
C120.2030 (3)1.0033 (3)0.14949 (10)0.0696 (6)
H120.1519111.1277940.1544030.083*
C130.1768 (2)0.9057 (3)0.09319 (9)0.0567 (5)
H130.1089380.9655740.0598270.068*
N10.3522 (2)0.0902 (2)0.13139 (7)0.0586 (4)
N20.21561 (19)0.6317 (2)0.02536 (6)0.0486 (4)
O10.3253 (2)0.1609 (2)0.18406 (7)0.0843 (5)
O20.4381 (2)0.1762 (2)0.08827 (7)0.0723 (5)
O30.08189 (19)0.6599 (2)0.08898 (6)0.0665 (4)
H3A0.1067270.6923030.0522740.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (11)0.0475 (10)0.0416 (9)0.0074 (8)0.0083 (8)0.0025 (7)
C20.0634 (13)0.0679 (13)0.0357 (9)0.0131 (10)0.0005 (8)0.0027 (8)
C30.0643 (13)0.0672 (13)0.0456 (10)0.0038 (10)0.0102 (9)0.0162 (9)
C40.0474 (11)0.0519 (11)0.0518 (10)0.0024 (9)0.0028 (8)0.0111 (8)
C50.0453 (10)0.0492 (10)0.0396 (9)0.0041 (8)0.0027 (7)0.0052 (7)
C60.0494 (11)0.0506 (10)0.0378 (9)0.0009 (8)0.0009 (7)0.0072 (7)
C70.0540 (12)0.0545 (11)0.0422 (9)0.0021 (9)0.0032 (8)0.0063 (8)
C80.0416 (10)0.0518 (10)0.0465 (9)0.0046 (8)0.0091 (8)0.0000 (8)
C90.0554 (12)0.0619 (12)0.0525 (11)0.0060 (9)0.0087 (9)0.0016 (9)
C100.0556 (13)0.0841 (15)0.0515 (11)0.0048 (11)0.0018 (9)0.0030 (10)
C110.0585 (14)0.0892 (16)0.0627 (13)0.0009 (12)0.0048 (10)0.0242 (11)
C120.0649 (15)0.0666 (13)0.0758 (14)0.0072 (11)0.0056 (11)0.0184 (11)
C130.0511 (12)0.0586 (12)0.0590 (11)0.0041 (9)0.0029 (9)0.0009 (9)
N10.0688 (12)0.0590 (10)0.0495 (9)0.0078 (9)0.0134 (8)0.0047 (8)
N20.0477 (9)0.0506 (9)0.0483 (8)0.0002 (7)0.0091 (7)0.0006 (7)
O10.1271 (16)0.0753 (10)0.0519 (8)0.0080 (9)0.0177 (9)0.0165 (7)
O20.0777 (11)0.0665 (9)0.0702 (10)0.0142 (8)0.0022 (8)0.0039 (7)
O30.0689 (10)0.0614 (9)0.0662 (9)0.0136 (7)0.0008 (7)0.0115 (7)
Geometric parameters (Å, º) top
C1—C61.369 (2)C8—C91.384 (2)
C1—C21.382 (2)C8—N21.413 (2)
C1—N11.450 (2)C9—C101.373 (3)
C2—C31.359 (3)C9—H90.9300
C2—H20.9300C10—C111.370 (3)
C3—C41.385 (3)C10—H100.9300
C3—H30.9300C11—C121.366 (3)
C4—O31.326 (2)C11—H110.9300
C4—C51.412 (2)C12—C131.368 (3)
C5—C61.384 (2)C12—H120.9300
C5—C71.440 (2)C13—H130.9300
C6—H60.9300N1—O21.220 (2)
C7—N21.276 (2)N1—O11.2228 (19)
C7—H70.9300O3—H3A0.8200
C8—C131.375 (3)
C6—C1—C2121.32 (17)C13—C8—N2116.85 (16)
C6—C1—N1119.04 (15)C9—C8—N2124.19 (16)
C2—C1—N1119.58 (16)C10—C9—C8119.81 (19)
C3—C2—C1119.42 (17)C10—C9—H9120.1
C3—C2—H2120.3C8—C9—H9120.1
C1—C2—H2120.3C11—C10—C9120.4 (2)
C2—C3—C4121.04 (17)C11—C10—H10119.8
C2—C3—H3119.5C9—C10—H10119.8
C4—C3—H3119.5C12—C11—C10120.01 (19)
O3—C4—C3119.74 (16)C12—C11—H11120.0
O3—C4—C5120.94 (16)C10—C11—H11120.0
C3—C4—C5119.31 (17)C11—C12—C13119.9 (2)
C6—C5—C4118.98 (15)C11—C12—H12120.1
C6—C5—C7120.24 (15)C13—C12—H12120.1
C4—C5—C7120.76 (16)C12—C13—C8120.93 (19)
C1—C6—C5119.92 (16)C12—C13—H13119.5
C1—C6—H6120.0C8—C13—H13119.5
C5—C6—H6120.0O2—N1—O1122.93 (18)
N2—C7—C5121.91 (16)O2—N1—C1118.55 (15)
N2—C7—H7119.0O1—N1—C1118.52 (17)
C5—C7—H7119.0C7—N2—C8122.60 (15)
C13—C8—C9118.95 (17)C4—O3—H3A109.5
C6—C1—C2—C30.7 (3)C13—C8—C9—C100.5 (3)
N1—C1—C2—C3177.65 (18)N2—C8—C9—C10179.08 (18)
C1—C2—C3—C40.5 (3)C8—C9—C10—C110.4 (3)
C2—C3—C4—O3179.07 (19)C9—C10—C11—C120.7 (3)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.1 (3)
O3—C4—C5—C6179.13 (17)C11—C12—C13—C80.8 (3)
C3—C4—C5—C61.6 (3)C9—C8—C13—C121.1 (3)
O3—C4—C5—C72.6 (3)N2—C8—C13—C12179.80 (18)
C3—C4—C5—C7176.72 (17)C6—C1—N1—O22.7 (3)
C2—C1—C6—C50.7 (3)C2—C1—N1—O2174.36 (17)
N1—C1—C6—C5177.68 (16)C6—C1—N1—O1177.16 (17)
C4—C5—C6—C10.4 (3)C2—C1—N1—O15.8 (3)
C7—C5—C6—C1177.87 (16)C5—C7—N2—C8177.03 (16)
C6—C5—C7—N2176.63 (17)C13—C8—N2—C7174.99 (17)
C4—C5—C7—N21.7 (3)C9—C8—N2—C76.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.603.278 (2)130
C7—H7···O2ii0.932.413.252 (2)150
O3—H3A···N20.821.832.5637 (19)149
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors would like to acknowledge the University Grants Commission (UGC), New Delhi, for providing funds under Minor Research Project Scheme No. FERP5150/14 (SERO/UGC). The authors are grateful to the Sophisticated Anal­ytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIda Malarselvi, R., Ramachandra Raja, C., Priscilla, J. & Viswanathan, K. (2016). Materials Today: Proceedings, 3, 1444–1450.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds