organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N,N′-(1,2-Di­cyano­ethene-1,2-di­yl)dipicolin­amide

aInstitute of Chemistry, University of Neuchâtel, Av de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by P. C. Healy, Griffith University, Australia (Received 14 September 2016; accepted 15 September 2016; online 23 September 2016)

The whole mol­ecule of the title di­cyano­ethene derivative, C16H10N6O2, is generated by inversion symmetry. The conformation about the central C=C bond, which is situated about the inversion center, is E. There are short intra­molecular N—H⋯N contacts present and the mol­ecule is slightly twisted, with the plane of the amide C(=O)N group being inclined to the pyridine ring by 10.6 (4)°, and by 20.2 (4)° to the plane of the di­cyano­ethene unit (N≡C—C=C—C≡N). In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming sheets parallel to (1-21), enclosing R22(10), R22(22) and R44(22) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

When synthesizing 2,3-bis­(2-pyrid­yl)-5,6-di­cyano­pyrazine, whose structure and an alternative synthesis have been described (Du et al., 2001[Du, M., Bu, X.-H., Liu, H. & Leng, X.-B. (2001). Acta Cryst. C57, 201-202.]), an orange–brown precipitate was formed. This precipitate was recrystallized from a mixture of solvents (see below) and found to be the title compound. From the filtrate, colourless crystals of 2,3-bis­(2-pyrid­yl)-5,6-di­cyano­pyrazine were obtained.

The whole mol­ecule of the title di­cyano­ethene derivative, Fig. 1[link], is generated by inversion symmetry. The conformation about the central C7=C7i bond [symmetry code: (i) −x + 1, −y + 1, −z + 1], situated about the inversion center, is E. There are short intra­molecular N—H⋯N contacts present and the mol­ecule is slightly twisted, with the plane of the amide C(=O)N group being inclined to the pyridine ring by 10.6 (4)°, and by 20.2 (4)° to the plane of the di­cyano­ethene unit (N≡C—C=C—C≡ N).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the inversion-symmetry operation −x + 1, −y + 1, −z + 1.

In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming sheets parallel to (1[\overline{2}]1), enclosing [R_{2}^{2}](10), [R_{2}^{2}](22) and [R_{4}^{4}](22) ring motifs (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1 0.86 (3) 2.23 (3) 2.671 (3) 111 (3)
C2—H2⋯N3i 0.93 2.61 3.354 (4) 138
C4—H4⋯O1ii 0.93 2.51 3.274 (4) 140
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+2, -y+1, -z.
[Figure 2]
Figure 2
A view along the normal to (1[\overline{2}]1) of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

In a round-bottomed flask outfitted with a reflux condenser, 9.3663 g (0.0 3 mol) of 2,2′-pyridyl were dissolved in 15 ml of dry n-butanol. A solution of 2.7026 g (0.025 mol) of di­amino­maleo­nitrile in 15 ml of dry n-butanol was then added at 333 K with stirring. The mixture was refluxed for 3 h. After stopping the reaction, the mixture was filtered to remove the orange–brown precipitate that had formed. This orange–brown precipitate was recrystallized from a mixture of methanol/aceto­nitrile/acetyl­acetone (3/3/1), which resulted in the formation of yellow needle-like crystals of the title compound on slow evaporation of the solvents (yield 2.5 g, 32%; m.p. > 360 K). From the filtrate, colourless crystals of 2,3-bis­(2-pyrid­yl)-5,6-di­cyano­pyrazine were obtained on slow evaporation of the solvent n-butanol.

The mechanism for the synthesis of the title compound is unknown. However, Du et al. (2001[Du, M., Bu, X.-H., Liu, H. & Leng, X.-B. (2001). Acta Cryst. C57, 201-202.]) did note that 2,3-bis­(2-pyrid­yl)-5,6-di­cyano­pyrazine is not stable when exposed to air for several months. Hence, we may postulate that the title compound may be formed by oxidation of 2,3-bis­(2-pyrid­yl)-5,6-di­cyano­pyrazine.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located in a difference Fourier map and freely refined. Only one equivalent of data was measured, hence Rint = 0.

Table 2
Experimental details

Crystal data
Chemical formula C16H10N6O2
Mr 318.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.1939 (11), 8.0697 (17), 9.1482 (15)
α, β, γ (°) 106.819 (19), 96.077 (18), 92.804 (18)
V3) 363.69 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.72 × 0.30 × 0.30
 
Data collection
Diffractometer STOE–Siemens AED2, 4-circle
No. of measured, independent and observed [I > 2σ(I)] reflections 1281, 1281, 1196
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.155, 1.40
No. of reflections 1281
No. of parameters 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-N,N'-(1,2-Dicyanoethene-1,2-diyl)dipicolinamide top
Crystal data top
C16H10N6O2Z = 1
Mr = 318.30F(000) = 164
Triclinic, P1Dx = 1.444 Mg m3
a = 5.1939 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0697 (17) ÅCell parameters from 18 reflections
c = 9.1482 (15) Åθ = 12.5–19.5°
α = 106.819 (19)°µ = 0.10 mm1
β = 96.077 (18)°T = 293 K
γ = 92.804 (18)°Needle, yellow
V = 363.69 (13) Å30.72 × 0.30 × 0.30 mm
Data collection top
STOE–Siemens AED2, 4-circle
diffractometer
Rint = 0.0
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Plane graphite monochromatorh = 66
ω/2θ scansk = 99
1281 measured reflectionsl = 010
1281 independent reflections3 standard reflections every 60 min
1196 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1443P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max < 0.001
S = 1.40Δρmax = 0.17 e Å3
1281 reflectionsΔρmin = 0.17 e Å3
114 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.063 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8969 (4)0.4716 (3)0.2158 (2)0.0663 (7)
N10.3495 (4)0.1893 (3)0.0137 (3)0.0459 (6)
N20.5113 (4)0.4118 (3)0.2910 (3)0.0440 (6)
H2N0.359 (7)0.360 (4)0.255 (4)0.069 (10)*
N30.9259 (6)0.7628 (4)0.5384 (3)0.0728 (9)
C10.2632 (5)0.0829 (4)0.1254 (3)0.0524 (8)
H10.10940.01370.13710.063*
C20.3889 (6)0.0691 (4)0.2533 (3)0.0573 (8)
H20.32100.00750.34830.069*
C30.6154 (6)0.1702 (4)0.2379 (3)0.0573 (8)
H30.70300.16440.32260.069*
C40.7115 (6)0.2807 (4)0.0949 (3)0.0492 (7)
H40.86520.35060.08070.059*
C50.5737 (5)0.2848 (3)0.0266 (3)0.0405 (6)
C60.6791 (5)0.3986 (4)0.1837 (3)0.0441 (7)
C70.5678 (5)0.5119 (3)0.4442 (3)0.0396 (6)
C80.7738 (5)0.6490 (4)0.4874 (3)0.0473 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0450 (12)0.0910 (17)0.0489 (13)0.0214 (11)0.0134 (9)0.0003 (11)
N10.0381 (12)0.0477 (13)0.0495 (14)0.0021 (10)0.0072 (10)0.0110 (11)
N20.0359 (12)0.0535 (14)0.0370 (13)0.0098 (10)0.0077 (10)0.0059 (10)
N30.0664 (18)0.0739 (19)0.0645 (18)0.0321 (16)0.0050 (14)0.0064 (15)
C10.0429 (16)0.0514 (17)0.0549 (19)0.0035 (13)0.0033 (13)0.0077 (14)
C20.0615 (19)0.0557 (18)0.0441 (17)0.0014 (15)0.0043 (14)0.0027 (14)
C30.0638 (19)0.067 (2)0.0387 (16)0.0033 (16)0.0120 (14)0.0109 (14)
C40.0456 (16)0.0547 (17)0.0454 (17)0.0026 (13)0.0110 (12)0.0110 (13)
C50.0391 (14)0.0423 (14)0.0387 (15)0.0025 (11)0.0071 (11)0.0093 (11)
C60.0383 (14)0.0499 (16)0.0437 (16)0.0027 (12)0.0097 (12)0.0127 (12)
C70.0335 (13)0.0436 (15)0.0394 (15)0.0050 (11)0.0071 (10)0.0094 (11)
C80.0426 (15)0.0563 (17)0.0391 (15)0.0094 (13)0.0082 (12)0.0093 (13)
Geometric parameters (Å, º) top
O1—C61.215 (3)C2—C31.369 (4)
N1—C11.329 (3)C2—H20.9300
N1—C51.339 (3)C3—C41.378 (4)
N2—C61.365 (3)C3—H30.9300
N2—C71.392 (3)C4—C51.378 (4)
N2—H2N0.86 (3)C4—H40.9300
N3—C81.135 (4)C5—C61.493 (4)
C1—C21.379 (4)C7—C7i1.352 (5)
C1—H10.9300C7—C81.438 (4)
C1—N1—C5116.4 (2)C5—C4—C3118.2 (3)
C6—N2—C7124.1 (2)C5—C4—H4120.9
C6—N2—H2N115 (2)C3—C4—H4120.9
C7—N2—H2N121 (2)N1—C5—C4123.9 (3)
N1—C1—C2123.7 (3)N1—C5—C6116.9 (2)
N1—C1—H1118.1C4—C5—C6119.2 (2)
C2—C1—H1118.1O1—C6—N2122.1 (3)
C3—C2—C1118.8 (3)O1—C6—C5123.5 (2)
C3—C2—H2120.6N2—C6—C5114.3 (2)
C1—C2—H2120.6C7i—C7—N2122.5 (3)
C2—C3—C4118.9 (3)C7i—C7—C8117.8 (3)
C2—C3—H3120.5N2—C7—C8119.7 (2)
C4—C3—H3120.5N3—C8—C7171.7 (3)
C5—N1—C1—C21.0 (4)C7—N2—C6—O11.8 (5)
N1—C1—C2—C30.1 (5)C7—N2—C6—C5179.4 (2)
C1—C2—C3—C40.7 (5)N1—C5—C6—O1168.8 (3)
C2—C3—C4—C50.2 (4)C4—C5—C6—O110.0 (4)
C1—N1—C5—C41.6 (4)N1—C5—C6—N210.0 (4)
C1—N1—C5—C6177.1 (2)C4—C5—C6—N2171.2 (3)
C3—C4—C5—N11.0 (4)C6—N2—C7—C7i161.8 (3)
C3—C4—C5—C6177.7 (3)C6—N2—C7—C819.5 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.86 (3)2.23 (3)2.671 (3)111 (3)
C2—H2···N3ii0.932.613.354 (4)138
C4—H4···O1iii0.932.513.274 (4)140
Symmetry codes: (ii) x1, y1, z1; (iii) x+2, y+1, z.
 

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationDu, M., Bu, X.-H., Liu, H. & Leng, X.-B. (2001). Acta Cryst. C57, 201–202.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds