organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro-N-cyclo­hexyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, bResearch & Development Drugs Wing, Ministry of Health, Islamabad 44000, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 September 2010; accepted 22 September 2010; online 25 September 2010)

The structure of the title sulfonamide, C12H15Cl2NO2S, features a distorted tetra­hedral geometry for the S atom [maximum deviation: O—S—O = 120.23 (14)°]. One of the sulfonamide O atoms is coplanar with the benzene ring [C—C—S—O torsion angle = −174.5 (2)°], whereas the other lies well above the plane [C—C—S—O = 57.0 (3)°]. A chair conformation is found for the cyclo­hexyl ring. In the crystal, supra­molecular chains aligned along the c axis are formed via N—H⋯O hydrogen bonds; these are consolidated in the three-dimensional packing by C—H⋯O contacts involving the second sulfonamide O atom.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15Cl2NO2S

  • Mr = 308.21

  • Monoclinic, C c

  • a = 17.4471 (12) Å

  • b = 10.7574 (8) Å

  • c = 8.2845 (6) Å

  • β = 111.956 (4)°

  • V = 1442.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.28 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.895

  • 6491 measured reflections

  • 2983 independent reflections

  • 2492 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.01

  • 2983 reflections

  • 166 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1327 Friedel pairs

  • Flack parameter: 0.06 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.88 (2) 2.08 (2) 2.914 (3) 157 (2)
C4—H4⋯O1ii 0.93 2.60 3.246 (4) 127
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In continuation of on-going structural studies of sulfonamide derivatives (Khan et al., 2010, Sharif et al., 2010), the crystal structure of title sulfonamide, (I), is described herein.

In (I), the S atom is tetrahedrally coordinated within a CNO2 donor set with the greatest deviation manifested in the O1—S1—O2 angle of 120.23 (14) °. Whereas the sulfonamide-O1 atom is co-planar with the benzene ring [the O1—S1—C1—C2 torsion angle = -174.5 (2) °], the O2 atom lies well above the plane [O2—S1—C1—C2 = 57.0 (3) °]. The amide-H lies to the same side of the molecule as does the ortho-substituted Cl atom and approaches this atom at 2.85 (3) Å. The cyclohexyl ring adopts a chair conformation.

The presence of N1—H···O2 hydrogen bonding, Table 1, leads to the formation of supramolecular chains along the c axis, Fig. 2. Chains are consolidated in the 3-D packing by C4—H···O1 interactions, Fig. 3 and Table 1.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

To 2,5-dichlorobenzenesulfonyl chloride (491 mg, 2 mmol) in 10 ml distilled water, was added cyclohexylamine (229 µl, 2 mmol) with stirring at room temperature while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. The progress of reaction was monitored by TLC. After consumption of reactants, the precipitates were filtered, dried and crystallized from methanol

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. (110) and (110).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along c in (I) mediated by N—H···O hydrogen bonding (orange dashed lines).
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the c axis in (I). N—H···O hydrogen bonds (orange dashed lines) down the c axis are largely obscured. The C–H···O contacts are shown as blue dashed lines.
2,5-Dichloro-N-cyclohexylbenzenesulfonamide top
Crystal data top
C12H15Cl2NO2SF(000) = 640
Mr = 308.21Dx = 1.420 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2154 reflections
a = 17.4471 (12) Åθ = 2.3–25.8°
b = 10.7574 (8) ŵ = 0.59 mm1
c = 8.2845 (6) ÅT = 293 K
β = 111.956 (4)°Block, colourless
V = 1442.11 (18) Å30.28 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.692, Tmax = 0.895k = 1310
6491 measured reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2983 reflectionsΔρmax = 0.24 e Å3
166 parametersΔρmin = 0.19 e Å3
3 restraintsAbsolute structure: Flack (1983), 1327 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (7)
Crystal data top
C12H15Cl2NO2SV = 1442.11 (18) Å3
Mr = 308.21Z = 4
Monoclinic, CcMo Kα radiation
a = 17.4471 (12) ŵ = 0.59 mm1
b = 10.7574 (8) ÅT = 293 K
c = 8.2845 (6) Å0.28 × 0.14 × 0.08 mm
β = 111.956 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2492 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.895Rint = 0.029
6491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.19 e Å3
2983 reflectionsAbsolute structure: Flack (1983), 1327 Friedel pairs
166 parametersAbsolute structure parameter: 0.06 (7)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74062 (5)0.95016 (10)0.40157 (10)0.0731 (3)
Cl20.71411 (6)0.53058 (11)0.89049 (15)0.0905 (4)
S10.90528 (4)0.86294 (6)0.72894 (8)0.04118 (17)
O10.96062 (11)0.7885 (2)0.8655 (3)0.0571 (6)
O20.89603 (14)0.99251 (19)0.7564 (3)0.0608 (6)
N10.93057 (15)0.8530 (2)0.5645 (3)0.0457 (6)
H1n0.9127 (18)0.912 (2)0.486 (3)0.055*
C10.80608 (14)0.7947 (2)0.6796 (3)0.0373 (6)
C20.73570 (17)0.8342 (3)0.5422 (4)0.0448 (7)
C30.66045 (17)0.7810 (3)0.5144 (4)0.0540 (8)
H30.61370.80890.42320.065*
C40.65355 (18)0.6871 (3)0.6199 (4)0.0533 (7)
H40.60270.64990.59950.064*
C50.72223 (19)0.6489 (3)0.7549 (4)0.0510 (7)
C60.79885 (17)0.7007 (3)0.7871 (3)0.0436 (6)
H60.84500.67290.87980.052*
C70.96379 (16)0.7403 (2)0.5145 (4)0.0392 (6)
H70.97510.67930.60850.047*
C80.90286 (18)0.6836 (3)0.3500 (4)0.0550 (8)
H8A0.88740.74500.25750.066*
H8B0.85330.65930.36890.066*
C90.9399 (2)0.5697 (3)0.2951 (5)0.0608 (9)
H9A0.94990.50500.38210.073*
H9B0.90080.53790.18580.073*
C101.0206 (2)0.6020 (3)0.2741 (4)0.0624 (9)
H10A1.04420.52740.24570.075*
H10B1.00990.66050.17910.075*
C111.0810 (2)0.6580 (3)0.4394 (4)0.0564 (8)
H11A1.13080.68230.42160.068*
H11B1.09610.59610.53130.068*
C121.04439 (17)0.7717 (3)0.4958 (4)0.0471 (7)
H12A1.08340.80220.60610.056*
H12B1.03520.83720.41010.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (5)0.0915 (7)0.0708 (6)0.0203 (4)0.0206 (4)0.0393 (5)
Cl20.0742 (6)0.0882 (7)0.1198 (9)0.0010 (5)0.0486 (6)0.0425 (6)
S10.0346 (3)0.0513 (4)0.0368 (3)0.0019 (3)0.0124 (2)0.0063 (3)
O10.0349 (10)0.0900 (16)0.0400 (11)0.0033 (10)0.0066 (9)0.0081 (10)
O20.0674 (14)0.0549 (12)0.0639 (14)0.0091 (11)0.0290 (11)0.0221 (11)
N10.0516 (14)0.0457 (14)0.0473 (14)0.0123 (10)0.0273 (12)0.0108 (10)
C10.0318 (12)0.0465 (15)0.0337 (13)0.0026 (11)0.0122 (10)0.0074 (11)
C20.0385 (14)0.0551 (17)0.0391 (15)0.0093 (12)0.0127 (12)0.0014 (13)
C30.0327 (13)0.076 (2)0.0446 (18)0.0084 (15)0.0045 (13)0.0017 (15)
C40.0370 (15)0.0645 (19)0.0588 (18)0.0071 (14)0.0183 (14)0.0115 (16)
C50.0482 (17)0.0492 (18)0.0612 (18)0.0026 (13)0.0267 (15)0.0045 (15)
C60.0366 (14)0.0536 (17)0.0415 (15)0.0052 (12)0.0155 (12)0.0037 (13)
C70.0409 (13)0.0369 (14)0.0438 (15)0.0050 (11)0.0204 (12)0.0045 (11)
C80.0445 (16)0.0543 (18)0.0625 (19)0.0063 (13)0.0159 (14)0.0042 (15)
C90.070 (2)0.0468 (18)0.0565 (19)0.0033 (15)0.0132 (17)0.0089 (14)
C100.084 (2)0.0563 (18)0.0522 (19)0.0169 (17)0.0323 (18)0.0001 (15)
C110.0528 (17)0.066 (2)0.061 (2)0.0148 (15)0.0330 (16)0.0026 (16)
C120.0381 (14)0.0541 (17)0.0512 (16)0.0005 (12)0.0192 (13)0.0029 (13)
Geometric parameters (Å, º) top
Cl1—C21.731 (3)C7—C81.508 (4)
Cl2—C51.738 (3)C7—C121.510 (4)
S1—O11.427 (2)C7—H70.9800
S1—O21.431 (2)C8—C91.532 (5)
S1—N11.585 (2)C8—H8A0.9700
S1—C11.781 (3)C8—H8B0.9700
N1—C71.469 (3)C9—C101.521 (5)
N1—H1n0.88 (2)C9—H9A0.9700
C1—C61.384 (4)C9—H9B0.9700
C1—C21.392 (3)C10—C111.507 (5)
C2—C31.370 (4)C10—H10A0.9700
C3—C41.371 (5)C10—H10B0.9700
C3—H30.9300C11—C121.531 (4)
C4—C51.362 (4)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.379 (4)C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
O1—S1—O2120.23 (14)C12—C7—H7108.2
O1—S1—N1108.69 (13)C7—C8—C9111.0 (2)
O2—S1—N1106.64 (13)C7—C8—H8A109.4
O1—S1—C1105.20 (13)C9—C8—H8A109.4
O2—S1—C1106.27 (13)C7—C8—H8B109.4
N1—S1—C1109.51 (13)C9—C8—H8B109.4
C7—N1—S1124.32 (19)H8A—C8—H8B108.0
C7—N1—H1N117 (2)C10—C9—C8111.3 (3)
S1—N1—H1N117 (2)C10—C9—H9A109.4
C6—C1—C2119.0 (2)C8—C9—H9A109.4
C6—C1—S1117.89 (19)C10—C9—H9B109.4
C2—C1—S1123.1 (2)C8—C9—H9B109.4
C3—C2—C1120.4 (3)H9A—C9—H9B108.0
C3—C2—Cl1118.2 (2)C11—C10—C9110.5 (3)
C1—C2—Cl1121.3 (2)C11—C10—H10A109.6
C2—C3—C4120.5 (3)C9—C10—H10A109.6
C2—C3—H3119.7C11—C10—H10B109.6
C4—C3—H3119.7C9—C10—H10B109.6
C5—C4—C3119.1 (3)H10A—C10—H10B108.1
C5—C4—H4120.4C10—C11—C12111.5 (3)
C3—C4—H4120.4C10—C11—H11A109.3
C4—C5—C6121.9 (3)C12—C11—H11A109.3
C4—C5—Cl2119.5 (2)C10—C11—H11B109.3
C6—C5—Cl2118.6 (2)C12—C11—H11B109.3
C5—C6—C1119.1 (3)H11A—C11—H11B108.0
C5—C6—H6120.5C7—C12—C11111.3 (3)
C1—C6—H6120.5C7—C12—H12A109.4
N1—C7—C8111.7 (2)C11—C12—H12A109.4
N1—C7—C12109.0 (2)C7—C12—H12B109.4
C8—C7—C12111.5 (2)C11—C12—H12B109.4
N1—C7—H7108.2H12A—C12—H12B108.0
C8—C7—H7108.2
O1—S1—N1—C734.9 (3)C3—C4—C5—C61.0 (5)
O2—S1—N1—C7165.9 (2)C3—C4—C5—Cl2179.6 (2)
C1—S1—N1—C779.5 (2)C4—C5—C6—C10.4 (4)
O1—S1—C1—C67.6 (2)Cl2—C5—C6—C1179.8 (2)
O2—S1—C1—C6120.9 (2)C2—C1—C6—C50.1 (4)
N1—S1—C1—C6124.3 (2)S1—C1—C6—C5178.1 (2)
O1—S1—C1—C2174.5 (2)S1—N1—C7—C8110.4 (3)
O2—S1—C1—C257.0 (3)S1—N1—C7—C12126.0 (2)
N1—S1—C1—C257.8 (2)N1—C7—C8—C9177.4 (3)
C6—C1—C2—C30.2 (4)C12—C7—C8—C955.2 (4)
S1—C1—C2—C3177.7 (2)C7—C8—C9—C1055.8 (4)
C6—C1—C2—Cl1179.3 (2)C8—C9—C10—C1156.1 (4)
S1—C1—C2—Cl12.8 (3)C9—C10—C11—C1255.8 (4)
C1—C2—C3—C40.9 (4)N1—C7—C12—C11178.7 (2)
Cl1—C2—C3—C4178.6 (2)C8—C7—C12—C1155.0 (3)
C2—C3—C4—C51.3 (5)C10—C11—C12—C755.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.88 (2)2.08 (2)2.914 (3)157 (2)
C4—H4···O1ii0.932.603.246 (4)127
Symmetry codes: (i) x, y+2, z1/2; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15Cl2NO2S
Mr308.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)17.4471 (12), 10.7574 (8), 8.2845 (6)
β (°) 111.956 (4)
V3)1442.11 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.28 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.692, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
6491, 2983, 2492
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.01
No. of reflections2983
No. of parameters166
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.19
Absolute structureFlack (1983), 1327 Friedel pairs
Absolute structure parameter0.06 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.88 (2)2.08 (2)2.914 (3)157 (2)
C4—H4···O1ii0.932.603.246 (4)127
Symmetry codes: (i) x, y+2, z1/2; (ii) x1/2, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds