organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,8-Di­methyl­tri­cyclo­[5.3.1.13,9]do­decane-syn-2,syn-8-diol–propanoic acid (1/1)

aSchool of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
*Correspondence e-mail: m.scudder@unsw.edu.au

(Received 24 April 2009; accepted 4 May 2009; online 14 May 2009)

The racemic title compound, C14H24O2·C3H6O2, crystallizes in the monoclinic space group P21/c as a 1:1 diol/carboxylic acid cocrystal, AB. The lattice incorporates infinite chains of the alcohol–carboxylic acid–alcohol supra­molecular synthon, (⋯O—H⋯O=C(R)—O—H⋯O—H⋯), in which the hydrogen-bonded mol­ecules (ABA)n surround a pseudo-threefold screw axis. The carboxylic acid group functions like an extended alcohol hydr­oxy group. Each diol, A, takes part in two such threefold screw arrangements, leading to a hydrogen-bonded layer structure, with adjacent layers containing diol mol­ecules of opposite handedness. The central C atom of the propano bridge is disordered over two sites of occupancies 0.75 (1) and 0.25 (1). The methyl group of the propanoic acid molecule is disordered over two sites of occupancies 0.68 (1) and 0.32 (1).

Related literature

For related literature on the diol component of the title compound, see: Bishop (2009[Bishop, R. (2009). Acc. Chem. Res. 42, 67-78.]); Dance et al. (1986[Dance, I. G., Bishop, R., Hawkins, S. C., Lipari, T., Scudder, M. L. & Craig, D. C. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1299-1307.]). Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids, see: Alshahateet et al. (2004[Alshahateet, S. F., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2004). CrystEngComm, 6, 5-10.]); Yue et al. (2006[Yue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250-256.]).

[Scheme 1]

Experimental

Crystal data
  • C14H24O2·C3H6O2

  • Mr = 298.4

  • Monoclinic, P 21 /c

  • a = 7.390 (4) Å

  • b = 13.218 (5) Å

  • c = 18.469 (8) Å

  • β = 110.23 (2)°

  • V = 1693 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.10 mm (radius)

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3188 measured reflections

  • 2942 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.014

  • 1 standard reflections frequency: 30 min intensity decay: 29%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.070

  • S = 1.32

  • 2942 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O2Pi 1.00 1.82 2.822 (3) 180
O2—H102⋯O1ii 1.00 1.75 2.746 (3) 180
O1P—H101P⋯O2 1.00 1.64 2.635 (3) 180
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: RAELS (Rae, 2000[Rae, A. D. (2000). RAELS. Australian National University, Canberra.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CrystalMaker (Palmer, 2005[Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. htttp://www.CrystalMaker.co.uk.]); software used to prepare material for publication: local programs.

Supporting information


Comment top

The diol component, A, of the title compound, A—B, is a member of the helical tubuland host family, a major characteristic of which is formation of lattice inclusion compounds in the chiral space group P3121 (or its enantiomorph P3221) (Bishop, 2009). A forms this structure when crystallized from non-protic solvents (Dance et al., 1986). Some, but by no means all, of this family of diols can also form hydrogen-bonded co-crystals when crystallized from protic solvents. Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids (Alshahateet et al., 2004; Yue et al., 2006). These co-crystals utilize infinite chains of an alcohol–carboxylic acid–alcohol supramolecular sython, (···O—H···O C(R)—O—H···O—H···), in which the carboxylic acid group behaves as if it were an extended alcohol hydroxy group. The diol, A, in the title compound is now found to be the third helical tubuland diol to behave in this manner (Fig. 1). Its 1:1 co-crystals with propanoic acid, A—B, contain chains of hydrogen-bonded molecules (A—B—A-)n surrounding pseudo-threefold screw axes resulting in formation of chiral layers as each diol, A, hydrogen bonds within two such threefold screw arrangements (Figs. 2 and 3). Adjacent layers contain diol molecules with the opposite handedness. The resultant lattice is essentially isostructural with the previous examples in P21/c found to use this novel supramolecular synthon.

Related literature top

For related literature on the diol component of the title compound, see: Bishop (2009); Dance et al. (1986). Two members of this diol family have been found previously to form such 1:1 compounds with carboxylic acids, see: Alshahateet et al. (2004); Yue et al. (2006).

Experimental top

Racemic 2,8-dimethyltricyclo[5.3.1.13,9]dodecane-syn-2,syn-8-diol was prepared as described (Dance et al., 1986) and the X-ray quality co-crystals obtained by slow concentration of a propanoic acid solution.

Refinement top

The central C atom of the propano bridge (C13) was disordered over two sites of occupancies 0.75 (1) and 0.25. For the propanoic acid molecules, the methyl group, C3P, was disordered over two sites of occupancies 0.68 (1) and 0.32. H atoms attached to C were included at calculated positions (C—H = 1.0 Å). The disorder of C13 was taken into account when calculating the H atom positions and occupancies for C13 and the adjacent C12 and C14. The hydroxy H atoms were located on a difference map, and were then fixed at a position along the O···O vector with O—H = 1.0 Å. All H atoms were refined with isotropic thermal parameters equivalent to those of the atom to which they were bonded.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Softwar (Enraf–Nonius, 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and CrystalMaker (Palmer, 2005); software used to prepare material for publication: local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the A and B components of the title compound, with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. One layer of the structure showing the intermolecular hydrogen bonding linking A and B molecules in chains. C atoms of the propanoic acid are coloured pink.
[Figure 3] Fig. 3. The orthogonal view showing the pseudo 31 symmetric nature of the arrangement in two adjacent layers. C atoms of the propanoic acid are coloured pink.
2,8-Dimethyltricyclo[5.3.1.13,9]dodecane-syn-2,syn-8-diol– propanoic acid (1/1) top
Crystal data top
C14H24O2·C3H6O2F(000) = 656.0
Mr = 298.4Dx = 1.17 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) ÅCell parameters from 11 reflections
b = 13.218 (5) Åθ = 11–12°
c = 18.469 (8) ŵ = 0.08 mm1
β = 110.23 (2)°T = 294 K
V = 1693 (1) Å3Irregular, colourless
Z = 40.10 mm (radius)
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 25°
ω/2θ scansh = 08
3188 measured reflectionsk = 015
2942 independent reflectionsl = 2222
1786 reflections with I > 2σ(I)1 standard reflections every 30 min
Rint = 0.014 intensity decay: 29%
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(F) + 0.0004F2]
S = 1.32(Δ/σ)max = 0.003
2942 reflectionsΔρmax = 0.39 e Å3
199 parametersΔρmin = 0.41 e Å3
Crystal data top
C14H24O2·C3H6O2V = 1693 (1) Å3
Mr = 298.4Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.390 (4) ŵ = 0.08 mm1
b = 13.218 (5) ÅT = 294 K
c = 18.469 (8) Å0.10 mm (radius)
β = 110.23 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
3188 measured reflections1 standard reflections every 30 min
2942 independent reflections intensity decay: 29%
1786 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.32Δρmax = 0.39 e Å3
2942 reflectionsΔρmin = 0.41 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7617 (2)0.2866 (1)0.2685 (1)0.0659 (5)
O20.4331 (2)0.66382 (11)0.16336 (9)0.0559 (5)
C10.4896 (3)0.3428 (2)0.1636 (1)0.0495 (6)
C20.7107 (3)0.3385 (2)0.1951 (1)0.0496 (6)
C30.8088 (3)0.4441 (2)0.2035 (1)0.0513 (6)
C40.6996 (3)0.5155 (2)0.1356 (1)0.0503 (6)
C50.4789 (3)0.5105 (2)0.1032 (1)0.0475 (6)
C60.3662 (3)0.5599 (2)0.1493 (1)0.0472 (6)
C70.3899 (3)0.5039 (2)0.2262 (1)0.0528 (6)
C80.3898 (4)0.3878 (2)0.2161 (1)0.0579 (7)
C90.4195 (3)0.4001 (2)0.0871 (1)0.0536 (6)
C100.7824 (4)0.2728 (2)0.1425 (2)0.0718 (8)
C110.1519 (4)0.5658 (2)0.1009 (2)0.0656 (8)
C120.8701 (4)0.4943 (2)0.2831 (2)0.0695 (8)
C130.7455 (5)0.5768 (3)0.2979 (2)0.067 (1)0.75
C13'0.7388 (9)0.4872 (7)0.3304 (4)0.067 (1)0.25
C140.5481 (5)0.5443 (2)0.2994 (1)0.0707 (8)
O1P0.5377 (3)0.7775 (1)0.0674 (1)0.0740 (6)
O2P0.8391 (3)0.7734 (2)0.1482 (1)0.0801 (6)
C1P0.7228 (4)0.7995 (2)0.0878 (2)0.0667 (7)
C2P0.7710 (5)0.8619 (3)0.0287 (2)0.096 (1)
C3P0.9587 (9)0.8359 (5)0.0180 (3)0.119 (2)0.68
C3'P0.6746 (18)0.9630 (8)0.0220 (6)0.119 (2)0.32
H1010.90310.28190.29800.066
H1020.36220.70850.18820.056
HC10.44270.27160.15230.049
HC30.93350.43010.19550.051
H1C40.74660.50010.09210.050
H2C40.73570.58650.15360.050
HC50.43770.54540.05200.047
HC70.26660.51810.23540.053
H1C80.25200.36570.19530.058
H2C80.45350.35800.26860.058
H1C90.27590.39510.06360.054
H2C90.47950.37060.05090.054
H1C100.74990.30610.09090.072
H2C100.92540.26430.16600.072
H3C100.71880.20500.13600.072
H1C110.09790.49580.08940.066
H2C110.08200.60350.13010.066
H3C110.13540.60180.05140.066
H1C121.00070.52420.29290.0690.75
H2C120.87940.43940.32150.0690.75
H1'C120.88860.56790.27520.0690.25
H2'C120.99630.46350.31470.0690.25
H1C130.72370.62890.25650.0670.75
H2C130.81850.60790.34910.0670.75
H1C13'0.81140.51420.38310.0670.25
H2C13'0.70850.41410.33420.0670.25
H1C140.57270.48970.33910.0710.75
H2C140.49210.60470.31660.0710.75
H1'C140.49200.54560.34150.0710.25
H2'C140.57850.61500.28800.0710.25
H101P0.49800.73440.10380.074
H1C2P0.77700.93450.04470.0960.68
H2C2P0.66490.85270.02210.0960.68
H1'C2P0.72360.82670.02240.0960.32
H2'C2P0.91380.87130.04520.0960.32
H1C3P0.97770.88110.02220.1190.68
H2C3P1.06750.84560.06790.1190.68
H3C3P0.95540.76380.00110.1190.68
H1C3P'0.70561.00500.01720.1190.32
H2C3P'0.53180.95330.00560.1190.32
H3C3P'0.72190.99790.07320.1190.32
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.052 (1)0.071 (1)0.071 (1)0.0012 (9)0.0151 (9)0.0241 (9)
O20.060 (1)0.046 (1)0.068 (1)0.0018 (8)0.0298 (8)0.0045 (8)
C10.049 (1)0.041 (1)0.059 (1)0.008 (1)0.021 (1)0.002 (1)
C20.050 (1)0.045 (1)0.057 (1)0.001 (1)0.022 (1)0.003 (1)
C30.046 (1)0.048 (1)0.061 (2)0.002 (1)0.020 (1)0.000 (1)
C40.051 (1)0.047 (1)0.060 (2)0.002 (1)0.028 (1)0.000 (1)
C50.051 (1)0.049 (1)0.044 (1)0.003 (1)0.019 (1)0.001 (1)
C60.047 (1)0.043 (1)0.054 (1)0.003 (1)0.020 (1)0.002 (1)
C70.053 (2)0.058 (1)0.056 (1)0.003 (1)0.030 (1)0.005 (1)
C80.054 (2)0.057 (2)0.070 (2)0.002 (1)0.031 (1)0.007 (1)
C90.054 (2)0.052 (1)0.053 (2)0.003 (1)0.016 (1)0.005 (1)
C100.067 (2)0.058 (2)0.099 (2)0.005 (1)0.039 (2)0.010 (2)
C110.047 (2)0.070 (2)0.074 (2)0.002 (1)0.014 (1)0.004 (1)
C120.059 (2)0.067 (2)0.068 (2)0.000 (1)0.003 (1)0.008 (1)
C130.069 (2)0.068 (2)0.055 (2)0.005 (2)0.008 (2)0.015 (2)
C13'0.069 (2)0.068 (2)0.055 (2)0.005 (2)0.008 (2)0.015 (2)
C140.087 (2)0.077 (2)0.049 (2)0.002 (2)0.025 (1)0.008 (1)
O1P0.068 (1)0.083 (1)0.066 (1)0.010 (1)0.0154 (9)0.008 (1)
O2P0.067 (1)0.087 (1)0.074 (1)0.013 (1)0.008 (1)0.011 (1)
C1P0.073 (2)0.058 (2)0.067 (2)0.012 (2)0.022 (2)0.002 (1)
C2P0.105 (3)0.099 (3)0.084 (2)0.020 (2)0.031 (2)0.017 (2)
C3P0.136 (5)0.143 (5)0.083 (3)0.002 (4)0.046 (3)0.024 (3)
C3'P0.136 (5)0.143 (5)0.083 (3)0.002 (4)0.046 (3)0.024 (3)
Geometric parameters (Å, º) top
O1—C21.448 (3)C11—H2C111.000
O1—H1011.000C11—H3C111.000
O2—C61.453 (3)C12—C131.512 (4)
O2—H1021.000C12—C13'1.516 (5)
C1—C21.535 (3)C12—H1C121.000
C1—C81.527 (3)C12—H2C121.000
C1—C91.527 (3)C12—H1'C121.000
C1—HC11.000C12—H2'C121.000
C2—C31.555 (3)C13—C141.531 (4)
C2—C101.528 (3)C13—H1C131.000
C3—C41.555 (3)C13—H2C131.000
C3—C121.532 (3)C13'—C141.525 (5)
C3—HC31.000C13'—H1C13'1.000
C4—C51.532 (3)C13'—H2C13'1.000
C4—H1C41.000C14—H1C141.000
C4—H2C41.000C14—H2C141.000
C5—C61.529 (3)O1P—C1P1.319 (3)
C5—C91.524 (3)O1P—H101P1.000
C5—HC51.000O2P—C1P1.199 (3)
C6—C71.556 (3)C1P—C2P1.506 (4)
C6—C111.528 (3)C2P—C3P1.507 (6)
C7—C81.547 (3)C2P—C3'P1.499 (8)
C7—C141.545 (4)C2P—H1C2P1.000
C7—HC71.000C2P—H2C2P1.000
C8—H1C81.000C2P—H1'C2P1.000
C8—H2C81.000C2P—H2'C2P1.000
C9—H1C91.000C3P—H1C3P1.000
C9—H2C91.000C3P—H2C3P1.000
C10—H1C101.000C3P—H3C3P1.000
C10—H2C101.000C3'P—H1C3P'1.000
C10—H3C101.000C3'P—H2C3P'1.000
C11—H1C111.000C3'P—H3C3P'1.000
C2—O1—H101115.1C6—C11—H1C11109.5
C6—O2—H102116.1C6—C11—H2C11109.5
C2—C1—C8117.3 (2)C6—C11—H3C11109.5
C2—C1—C9110.2 (2)H1C11—C11—H2C11109.5
C2—C1—HC1106.9H1C11—C11—H3C11109.5
C8—C1—C9108.1 (2)H2C11—C11—H3C11109.5
C8—C1—HC1106.9C3—C12—C13119.4 (2)
C9—C1—HC1106.9C3—C12—C13'119.4 (4)
O1—C2—C1105.7 (2)C3—C12—H1C12106.9
O1—C2—C3111.7 (2)C3—C12—H2C12106.9
O1—C2—C10106.9 (2)C3—C12—H1'C12106.9
C1—C2—C3113.8 (2)C3—C12—H2'C12106.9
C1—C2—C10109.8 (2)C13—C12—H1C12106.9
C3—C2—C10108.8 (2)C13—C12—H2C12106.9
C2—C3—C4111.7 (2)C13'—C12—H1'C12106.9
C2—C3—C12117.2 (2)C13'—C12—H2'C12106.9
C2—C3—HC3103.9H1C12—C12—H2C12109.5
C4—C3—C12114.2 (2)H1'C12—C12—H2'C12109.5
C4—C3—HC3103.9C12—C13—C14116.4 (3)
C12—C3—HC3103.9C12—C13—H1C13107.7
C3—C4—C5118.3 (2)C12—C13—H2C13107.7
C3—C4—H1C4107.2C14—C13—H1C13107.7
C3—C4—H2C4107.2C14—C13—H2C13107.7
C5—C4—H1C4107.2H1C13—C13—H2C13109.5
C5—C4—H2C4107.2C12—C13'—C14116.5 (4)
H1C4—C4—H2C4109.5C12—C13'—H1C13'107.7
C4—C5—C6118.4 (2)C12—C13'—H2C13'107.7
C4—C5—C9108.3 (2)C14—C13'—H1C13'107.7
C4—C5—HC5106.5C14—C13'—H2C13'107.7
C6—C5—C9110.0 (2)H1C13'—C13'—H2C13'109.5
C6—C5—HC5106.5C7—C14—C13121.3 (2)
C9—C5—HC5106.5C7—C14—C13'118.6 (4)
O2—C6—C5106.6 (2)C7—C14—H1C14106.4
O2—C6—C7111.3 (2)C7—C14—H2C14106.4
O2—C6—C11106.0 (2)C13—C14—H1C14106.4
C5—C6—C7113.3 (2)C13—C14—H2C14106.4
C5—C6—C11110.5 (2)H1C14—C14—H2C14109.5
C7—C6—C11109.0 (2)C1P—O1P—H101P116.7
C6—C7—C8111.5 (2)O1P—C1P—O2P122.8 (3)
C6—C7—C14116.5 (2)O1P—C1P—C2P113.2 (3)
C6—C7—HC7104.2O2P—C1P—C2P124.0 (3)
C8—C7—C14114.6 (2)C1P—C2P—C3P115.4 (3)
C8—C7—HC7104.2C1P—C2P—C3'P108.8 (5)
C14—C7—HC7104.2C1P—C2P—H1C2P108.0
C1—C8—C7118.9 (2)C1P—C2P—H2C2P108.0
C1—C8—H1C8107.1C1P—C2P—H1'C2P109.6
C1—C8—H2C8107.1C1P—C2P—H2'C2P109.6
C7—C8—H1C8107.1H1C2P—C2P—H2C2P109.5
C7—C8—H2C8107.1H1'C2P—C2P—H2'C2P109.5
H1C8—C8—H2C8109.5C2P—C3P—H1C3P109.5
C1—C9—C5108.2 (2)C2P—C3P—H2C3P109.5
C1—C9—H1C9109.8C2P—C3P—H3C3P109.5
C1—C9—H2C9109.8H1C3P—C3P—H2C3P109.5
C5—C9—H1C9109.8H1C3P—C3P—H3C3P109.5
C5—C9—H2C9109.8H2C3P—C3P—H3C3P109.5
H1C9—C9—H2C9109.5C2P—C3'P—H1C3P'109.5
C2—C10—H1C10109.5C2P—C3'P—H2C3P'109.5
C2—C10—H2C10109.5C2P—C3'P—H3C3P'109.5
C2—C10—H3C10109.5H1C3P'—C3'P—H2C3P'109.5
H1C10—C10—H2C10109.5H1C3P'—C3'P—H3C3P'109.5
H1C10—C10—H3C10109.5H2C3P'—C3'P—H3C3P'109.5
H2C10—C10—H3C10109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2Pi1.001.822.822 (3)180
O2—H102···O1ii1.001.752.746 (3)180
O1P—H101P···O21.001.642.635 (3)180
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H24O2·C3H6O2
Mr298.4
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.390 (4), 13.218 (5), 18.469 (8)
β (°) 110.23 (2)
V3)1693 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.10 (radius)
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3188, 2942, 1786
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.070, 1.32
No. of reflections2942
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.41

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Softwar (Enraf–Nonius, 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEP-3 (Farrugia, 1997) and CrystalMaker (Palmer, 2005), local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2Pi1.001.822.822 (3)180
O2—H102···O1ii1.001.752.746 (3)180
O1P—H101P···O21.001.642.635 (3)180
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

On leave from the Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Acknowledgements

This research was supported by the Australian Research Council.

References

First citationAlshahateet, S. F., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2004). CrystEngComm, 6, 5–10.  Web of Science CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBishop, R. (2009). Acc. Chem. Res. 42, 67–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDance, I. G., Bishop, R., Hawkins, S. C., Lipari, T., Scudder, M. L. & Craig, D. C. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1299–1307.  CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPalmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. htttp://www.CrystalMaker.co.uk.  Google Scholar
First citationRae, A. D. (2000). RAELS. Australian National University, Canberra.  Google Scholar
First citationYue, W., Nakano, K., Bishop, R., Craig, D. C., Harris, K. D. M. & Scudder, M. L. (2006). CrystEngComm, 8, 250–256.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds