metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(dicyanamido){μ-6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)sodium

aYancheng Institute of Technology, School of Chemical and Biological Engineering, Yancheng 224003, People's Republic of China, and bDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 12 April 2009; accepted 17 April 2009; online 22 April 2009)

The mol­ecule of the title compound, [NaNi(C18H18N2O4)(C2N3)(H2O)], is approximately planar, with a maximum deviation from the mol­ecular plane of 0.770 (5) Å. The coordination environment of the Ni2+ ion is distorted square-planar and it is N2O2 coordinated by the 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate Schiff base ligand. The Na+ atom is chelated by the four O atoms of the Schiff base ligand, a water ligand and a dicyanamide anion. The structure displays inter­molecular O—H⋯N hydrogen bonding.

Related literature

For chemical background, see: Ohba & Okawa (2000[Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313-328.]). For related structures, see: Correia et al. (2005[Correia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]); Costes et al.(2004[Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792-7799.]).

[Scheme 1]

Experimental

Crystal data
  • [NaNi(C18H18N2O4)(C2N3)(H2O)]

  • Mr = 492.11

  • Monoclinic, P 21 /c

  • a = 7.4654 (14) Å

  • b = 22.745 (4) Å

  • c = 13.177 (3) Å

  • β = 101.282 (4)°

  • V = 2194.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.14 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.879, Tmax = 0.903

  • 10817 measured reflections

  • 3864 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.02

  • 3864 reflections

  • 291 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N3i 0.82 2.14 2.960 (4) 175
O5—H5B⋯N4ii 0.82 2.03 2.852 (4) 177
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dicyanamide ligand N(CN)2, has attracted continuous attention in the past four years for the buildup of interesting extended architectures. Its versatile coordination behavior and its ability to organize solids into polymeric structures with a rich diversity of magnetic properties have attracted interest toward this research area (Ohba et al., 2000). N,N-disalicylideneethylenediamine type Schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005). We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig. 1. The values of the geometric parameters in this compound are normal (Costes et al., 2004). NiII and NaI are connected via two bridging O atoms of the ligand. The six-coordinate Na atom adopts a distorted octahedral coordination geometry while the four-coordinate Ni gives a planar coordination geometry.

Related literature top

For chemical background, see: Ohba et al., (2000). For related structures, see: Correia et al. (2005); Costes et al.(2004).

Experimental top

A mixture of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and nickel chloride (1 mmol) in methanol (15 ml) was stirred for 30 min and sodium dicyanamide (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear orange solution was vapor at room temperature for 7 d, after which large orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Aqua(dicyanamido){µ-6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}nickel(II)sodium top
Crystal data top
[NaNi(C18H18N2O4)(C2N3)(H2O)]F(000) = 1016
Mr = 492.11Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3120 reflections
a = 7.4654 (14) Åθ = 2.5–24.6°
b = 22.745 (4) ŵ = 0.95 mm1
c = 13.177 (3) ÅT = 293 K
β = 101.282 (4)°Block, orange
V = 2194.2 (8) Å30.14 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3864 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.879, Tmax = 0.903k = 2627
10817 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4335P]
where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.33 e Å3
54 restraintsΔρmin = 0.35 e Å3
Crystal data top
[NaNi(C18H18N2O4)(C2N3)(H2O)]V = 2194.2 (8) Å3
Mr = 492.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4654 (14) ŵ = 0.95 mm1
b = 22.745 (4) ÅT = 293 K
c = 13.177 (3) Å0.14 × 0.13 × 0.11 mm
β = 101.282 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2815 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.903Rint = 0.032
10817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03954 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3864 reflectionsΔρmin = 0.35 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24893 (5)0.506776 (16)0.06029 (3)0.04684 (15)
Na10.36614 (16)0.38280 (5)0.20328 (9)0.0527 (3)
O10.2723 (3)0.48215 (8)0.19509 (16)0.0545 (5)
O20.3315 (3)0.43203 (8)0.03988 (15)0.0497 (5)
O30.3154 (4)0.42650 (10)0.36882 (17)0.0732 (7)
O40.4284 (3)0.32315 (9)0.04958 (19)0.0655 (6)
O50.1624 (3)0.30933 (10)0.21624 (17)0.0731 (7)
H5A0.10050.30320.26010.088*
H5B0.13050.28710.16650.088*
N10.1665 (3)0.58076 (11)0.0844 (2)0.0584 (7)
N20.2232 (3)0.52892 (13)0.0760 (2)0.0589 (7)
N30.9189 (4)0.28821 (17)0.3648 (3)0.0917 (9)
N41.0360 (5)0.26666 (15)0.5450 (3)0.0888 (10)
N50.6431 (5)0.34246 (17)0.2954 (3)0.0934 (9)
C10.3049 (4)0.43665 (18)0.1445 (3)0.0652 (10)
C20.3415 (4)0.40716 (15)0.0485 (2)0.0511 (8)
C30.3908 (4)0.34689 (15)0.0474 (3)0.0601 (9)
C40.4007 (6)0.3183 (2)0.1377 (4)0.0885 (13)
H40.43210.27870.13610.106*
C50.3642 (7)0.3480 (3)0.2315 (4)0.1134 (17)
H50.37080.32810.29230.136*
C60.3189 (6)0.4060 (3)0.2353 (3)0.0998 (15)
H60.29690.42560.29850.120*
C70.2509 (5)0.49684 (19)0.1515 (3)0.0694 (11)
H70.23420.51440.21640.083*
C80.4977 (6)0.26446 (15)0.0610 (3)0.0903 (13)
H8A0.40440.23750.02920.135*
H8B0.53370.25530.13320.135*
H8C0.60140.26110.02830.135*
C90.1804 (5)0.57147 (14)0.2674 (3)0.0631 (9)
C100.2389 (4)0.51231 (13)0.2744 (3)0.0524 (8)
C110.2599 (5)0.48361 (15)0.3708 (3)0.0615 (9)
C120.2255 (6)0.5127 (2)0.4565 (3)0.0842 (12)
H120.23980.49330.51960.101*
C130.1694 (7)0.5711 (2)0.4492 (4)0.0982 (14)
H130.14690.59050.50760.118*
C140.1473 (6)0.59969 (18)0.3580 (4)0.0854 (12)
H140.10950.63870.35430.102*
C150.3392 (6)0.39343 (19)0.4619 (3)0.0919 (13)
H15A0.42530.41300.51470.138*
H15B0.38410.35500.45020.138*
H15C0.22410.39000.48360.138*
C170.1111 (6)0.61685 (18)0.0096 (4)0.0889 (13)
H16A0.02090.62030.02570.107*
H16B0.16190.65600.00280.107*
C180.1737 (7)0.59090 (18)0.0957 (4)0.0952 (14)
H17A0.27910.61240.10860.114*
H17B0.07820.59380.15710.114*
C190.9741 (5)0.27798 (17)0.4624 (3)0.0681 (9)
C200.7695 (6)0.31745 (18)0.3323 (3)0.0762 (9)
C160.1480 (5)0.60153 (15)0.1717 (3)0.0691 (10)
H200.10910.64040.17240.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0435 (2)0.0440 (2)0.0519 (3)0.00269 (17)0.00649 (17)0.00924 (18)
Na10.0576 (7)0.0475 (7)0.0521 (7)0.0048 (6)0.0090 (6)0.0046 (5)
O10.0737 (15)0.0407 (11)0.0502 (13)0.0055 (10)0.0146 (11)0.0009 (10)
O20.0576 (13)0.0493 (12)0.0426 (12)0.0010 (10)0.0109 (10)0.0014 (9)
O30.115 (2)0.0601 (15)0.0482 (14)0.0084 (14)0.0235 (13)0.0051 (11)
O40.0800 (16)0.0474 (13)0.0746 (17)0.0003 (11)0.0284 (13)0.0082 (12)
O50.0885 (17)0.0713 (15)0.0650 (16)0.0195 (13)0.0290 (13)0.0105 (12)
N10.0475 (16)0.0432 (15)0.081 (2)0.0028 (12)0.0046 (14)0.0120 (15)
N20.0461 (16)0.0653 (18)0.0625 (19)0.0061 (13)0.0036 (14)0.0215 (15)
N30.0765 (19)0.131 (2)0.0687 (18)0.0310 (17)0.0164 (15)0.0124 (18)
N40.099 (2)0.085 (2)0.076 (2)0.0171 (19)0.0042 (18)0.0172 (18)
N50.0782 (19)0.125 (2)0.0725 (19)0.0268 (18)0.0037 (16)0.0108 (17)
C10.046 (2)0.100 (3)0.049 (2)0.0013 (19)0.0089 (15)0.001 (2)
C20.0405 (17)0.070 (2)0.0432 (19)0.0088 (16)0.0099 (14)0.0071 (16)
C30.056 (2)0.067 (2)0.060 (2)0.0097 (17)0.0196 (17)0.0206 (19)
C40.088 (3)0.097 (3)0.083 (3)0.003 (2)0.023 (2)0.034 (3)
C50.119 (4)0.159 (5)0.066 (3)0.015 (4)0.027 (3)0.038 (3)
C60.097 (3)0.160 (5)0.044 (2)0.008 (3)0.018 (2)0.009 (3)
C70.051 (2)0.108 (3)0.048 (2)0.007 (2)0.0077 (16)0.021 (2)
C80.111 (3)0.045 (2)0.124 (4)0.000 (2)0.045 (3)0.009 (2)
C90.057 (2)0.052 (2)0.079 (3)0.0015 (16)0.0093 (18)0.0180 (19)
C100.0513 (19)0.0493 (18)0.057 (2)0.0025 (15)0.0122 (15)0.0081 (16)
C110.066 (2)0.065 (2)0.056 (2)0.0009 (18)0.0165 (17)0.0114 (18)
C120.097 (3)0.100 (3)0.057 (3)0.000 (3)0.019 (2)0.018 (2)
C130.111 (4)0.099 (4)0.088 (4)0.006 (3)0.027 (3)0.043 (3)
C140.083 (3)0.071 (3)0.102 (3)0.015 (2)0.016 (2)0.033 (3)
C150.124 (4)0.096 (3)0.058 (2)0.001 (3)0.025 (2)0.022 (2)
C170.079 (3)0.075 (3)0.113 (4)0.017 (2)0.018 (3)0.047 (3)
C180.108 (3)0.080 (3)0.094 (3)0.005 (3)0.011 (3)0.041 (3)
C190.0625 (19)0.080 (2)0.0614 (18)0.0125 (16)0.0121 (16)0.0107 (18)
C200.068 (2)0.105 (2)0.0550 (18)0.0168 (19)0.0113 (16)0.0098 (18)
C160.061 (2)0.0391 (18)0.102 (3)0.0030 (16)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Ni1—O11.838 (2)C3—C41.371 (5)
Ni1—N21.839 (3)C4—C51.387 (6)
Ni1—N11.840 (3)C4—H40.9300
Ni1—O21.8457 (19)C5—C61.361 (7)
Na1—O52.288 (2)C5—H50.9300
Na1—O12.362 (2)C6—H60.9300
Na1—N52.368 (4)C7—H70.9300
Na1—O22.395 (2)C8—H8A0.9600
Na1—O32.492 (3)C8—H8B0.9600
Na1—O42.555 (2)C8—H8C0.9600
O1—C101.314 (4)C9—C101.412 (4)
O2—C21.310 (3)C9—C161.413 (5)
O3—C111.365 (4)C9—C141.419 (5)
O3—C151.420 (4)C10—C111.410 (5)
O4—C31.365 (4)C11—C121.375 (5)
O4—C81.429 (4)C12—C131.389 (6)
O5—H5A0.8200C12—H120.9300
O5—H5B0.8246C13—C141.349 (6)
N1—C161.276 (4)C13—H130.9300
N1—C171.476 (4)C14—H140.9300
N2—C71.282 (4)C15—H15A0.9600
N2—C181.468 (5)C15—H15B0.9600
N3—C191.292 (5)C15—H15C0.9600
N3—C201.297 (5)C17—C181.436 (6)
N4—C191.127 (4)C17—H16A0.9700
N5—C201.127 (4)C17—H16B0.9700
C1—C61.405 (5)C18—H17A0.9700
C1—C21.411 (5)C18—H17B0.9700
C1—C71.425 (5)C16—H200.9300
C2—C31.419 (5)
O1—Ni1—N2178.09 (11)C6—C5—C4120.6 (4)
O1—Ni1—N194.79 (11)C6—C5—H5119.7
N2—Ni1—N186.76 (14)C4—C5—H5119.7
O1—Ni1—O283.62 (9)C5—C6—C1120.5 (4)
N2—Ni1—O294.82 (11)C5—C6—H6119.7
N1—Ni1—O2178.41 (11)C1—C6—H6119.7
O5—Na1—O1120.42 (9)N2—C7—C1125.7 (3)
O5—Na1—N5101.85 (12)N2—C7—H7117.1
O1—Na1—N5127.99 (12)C1—C7—H7117.1
O5—Na1—O2116.86 (9)O4—C8—H8A109.5
O1—Na1—O262.15 (7)O4—C8—H8B109.5
N5—Na1—O2124.88 (11)H8A—C8—H8B109.5
O5—Na1—O390.51 (9)O4—C8—H8C109.5
O1—Na1—O364.15 (8)H8A—C8—H8C109.5
N5—Na1—O388.43 (11)H8B—C8—H8C109.5
O2—Na1—O3126.30 (8)C10—C9—C16121.1 (3)
O5—Na1—O484.15 (8)C10—C9—C14118.6 (4)
O1—Na1—O4124.77 (9)C16—C9—C14120.2 (4)
N5—Na1—O485.68 (11)O1—C10—C11118.0 (3)
O2—Na1—O462.63 (7)O1—C10—C9123.4 (3)
O3—Na1—O4171.07 (9)C11—C10—C9118.6 (3)
C10—O1—Ni1127.8 (2)O3—C11—C12125.5 (4)
C10—O1—Na1124.3 (2)O3—C11—C10113.8 (3)
Ni1—O1—Na1107.87 (9)C12—C11—C10120.7 (4)
C2—O2—Ni1127.3 (2)C11—C12—C13120.4 (4)
C2—O2—Na1125.61 (19)C11—C12—H12119.8
Ni1—O2—Na1106.26 (9)C13—C12—H12119.8
C11—O3—C15118.3 (3)C14—C13—C12120.3 (4)
C11—O3—Na1119.68 (19)C14—C13—H13119.8
C15—O3—Na1122.0 (2)C12—C13—H13119.8
C3—O4—C8118.2 (3)C13—C14—C9121.3 (4)
C3—O4—Na1119.73 (19)C13—C14—H14119.3
C8—O4—Na1122.1 (2)C9—C14—H14119.3
Na1—O5—H5A130.6O3—C15—H15A109.5
Na1—O5—H5B118.8O3—C15—H15B109.5
H5A—O5—H5B110.0H15A—C15—H15B109.5
C16—N1—C17119.2 (3)O3—C15—H15C109.5
C16—N1—Ni1126.4 (2)H15A—C15—H15C109.5
C17—N1—Ni1114.3 (3)H15B—C15—H15C109.5
C7—N2—C18118.9 (3)C18—C17—N1110.7 (3)
C7—N2—Ni1126.8 (3)C18—C17—H16A109.5
C18—N2—Ni1114.2 (3)N1—C17—H16A109.5
C19—N3—C20120.5 (3)C18—C17—H16B109.5
C20—N5—Na1171.8 (4)N1—C17—H16B109.5
C6—C1—C2119.6 (4)H16A—C17—H16B108.1
C6—C1—C7119.2 (4)C17—C18—N2111.4 (3)
C2—C1—C7121.1 (3)C17—C18—H17A109.4
O2—C2—C1123.9 (3)N2—C18—H17A109.4
O2—C2—C3117.9 (3)C17—C18—H17B109.4
C1—C2—C3118.2 (3)N2—C18—H17B109.4
O4—C3—C4126.1 (4)H17A—C18—H17B108.0
O4—C3—C2113.4 (3)N4—C19—N3173.6 (4)
C4—C3—C2120.4 (4)N5—C20—N3173.8 (4)
C3—C4—C5120.5 (4)N1—C16—C9126.5 (3)
C3—C4—H4119.7N1—C16—H20116.7
C5—C4—H4119.7C9—C16—H20116.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N3i0.822.142.960 (4)175
O5—H5B···N4ii0.822.032.852 (4)177
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[NaNi(C18H18N2O4)(C2N3)(H2O)]
Mr492.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4654 (14), 22.745 (4), 13.177 (3)
β (°) 101.282 (4)
V3)2194.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.14 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.879, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
10817, 3864, 2815
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.02
No. of reflections3864
No. of parameters291
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N3i0.822.142.960 (4)175.2
O5—H5B···N4ii0.822.032.852 (4)176.5
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation (grant No. Y4080395).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorreia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationCostes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792–7799.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds