metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(dicyanamido)­{μ-6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­i­dyne)]diphenolato}copper(II)sodium(I)

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China, and bYancheng Institute of Technology, School of Chemical and Biological Engineering, Yancheng 224003, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 19 March 2009; accepted 25 March 2009; online 31 March 2009)

The mol­ecule of the title compound, [CuNa(C18H18N2O4)(C2N3)(H2O)], is almost planar, the maximum deviation from the mol­ecular plane being 0.48 (4) Å. The coordination environment of the Cu2+ ion is distorted square-planar and it is N2O2-chelated by the Schiff base ligand. The Na+ cation has a distorted octahedral environment defined by the four O atoms of the 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand, a water ligand and a dicyanamide anion.

Related literature

For chemical background, see: Ohba & Okawa (2000[Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313-328.]). For related structures, see: Correia et al. (2005[Correia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]); Costes et al.(2004[Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792-7799.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C18H18N2O4)(C2N3)(H2O)]

  • Mr = 496.94

  • Monoclinic, P 21 /c

  • a = 7.5974 (14) Å

  • b = 22.999 (4) Å

  • c = 12.876 (3) Å

  • β = 101.986 (4)°

  • V = 2200.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.794, Tmax = 0.825

  • 11729 measured reflections

  • 4314 independent reflections

  • 2996 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.142

  • S = 1.03

  • 4314 reflections

  • 291 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯N5i 0.81 2.02 2.826 (5) 178
O5—H5A⋯N3ii 0.81 2.15 2.961 (5) 173
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dicyanamide ligand N(CN)2, has attracted attention in the past four years for the buildup of interesting extended architectures. Its versatile coordination behavior and its ability to organize solids into polymeric structures with a rich diversity of magnetic properties have attracted interest toward this research area (Ohba et al., 2000). N,N-disalicylideneethylenediamine type Schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005). We report here the synthesis and crystal structure of the title compound.

The molecular structure is shown in Fig.1. The values of the geometric parameters in (I) are normal (Costes et al. 2004) (Table 1). The copper and sodium cations are connected via two bridging oxygen atoms of the ligand. The Na atom is coordinated by the four O atoms of the 6,6'-Dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligand, a water ligand and a dicyanamide anion while the four-coordinate Cu gives a planar coordination.

Related literature top

For chemical background, see: Ohba et al. (2000). For related structures, see: Correia et al. (2005); Costes et al.(2004).

Experimental top

A mixture of 6,6'-Dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and copper chloride (1 mmol) in methanol (15 ml) was stirred for 30 min and sodium dicyanamide (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear blue solution was vapor at room temperature for 7 days, after which large blue block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C–H distances in the range of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Aqua(dicyanamido){µ-6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}copper(II)sodium(I) top
Crystal data top
[CuNa(C18H18N2O4)(C2N3)(H2O)]F(000) = 1020
Mr = 496.94Dx = 1.500 Mg m3
Dm = 1.500 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3562 reflections
a = 7.5974 (14) Åθ = 2.8–25.0°
b = 22.999 (4) ŵ = 1.05 mm1
c = 12.876 (3) ÅT = 293 K
β = 101.986 (4)°Block, blue
V = 2200.7 (7) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 98
Tmin = 0.794, Tmax = 0.825k = 2728
11729 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.4736P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.41 e Å3
54 restraintsΔρmin = 0.49 e Å3
Crystal data top
[CuNa(C18H18N2O4)(C2N3)(H2O)]V = 2200.7 (7) Å3
Mr = 496.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5974 (14) ŵ = 1.05 mm1
b = 22.999 (4) ÅT = 293 K
c = 12.876 (3) Å0.23 × 0.21 × 0.19 mm
β = 101.986 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2996 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.825Rint = 0.034
11729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04954 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
4314 reflectionsΔρmin = 0.49 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24890 (6)0.506744 (19)0.06032 (4)0.04808 (19)
Na10.36641 (19)0.38275 (6)0.20334 (11)0.0492 (4)
O10.2721 (4)0.48218 (10)0.1952 (2)0.0513 (6)
O20.3153 (4)0.42658 (12)0.3689 (2)0.0705 (8)
O30.3315 (3)0.43211 (10)0.03987 (18)0.0472 (6)
O40.4284 (4)0.32308 (11)0.0497 (2)0.0619 (7)
O50.1622 (4)0.30926 (12)0.2164 (2)0.0690 (8)
H5B0.12860.28760.16680.083*
H5A0.10300.30440.26140.083*
N10.1661 (4)0.58079 (13)0.0845 (3)0.0549 (8)
N20.2233 (4)0.52876 (15)0.0761 (3)0.0556 (8)
N30.9191 (5)0.2881 (2)0.3649 (3)0.0874 (10)
N40.6425 (6)0.3426 (2)0.2955 (3)0.0896 (11)
N51.0355 (6)0.26675 (19)0.5447 (3)0.0868 (12)
C10.1804 (5)0.57156 (17)0.2676 (4)0.0603 (11)
C20.2396 (5)0.51238 (16)0.2741 (3)0.0492 (9)
C30.2601 (6)0.48344 (18)0.3710 (3)0.0592 (10)
C40.2247 (7)0.5129 (2)0.4559 (4)0.0818 (15)
H40.23710.49380.52070.098*
C50.1700 (8)0.5713 (3)0.4488 (5)0.0953 (17)
H50.14930.59030.50890.114*
C60.1479 (7)0.5995 (2)0.3589 (4)0.0807 (14)
H60.11050.63810.35530.097*
C70.1477 (6)0.60141 (17)0.1718 (4)0.0656 (12)
H70.10900.63980.17240.079*
C80.3386 (8)0.3935 (2)0.4617 (3)0.0885 (16)
H8A0.42100.41290.51750.133*
H8B0.38610.35600.44940.133*
H8C0.22480.38870.48200.133*
C90.3045 (5)0.4367 (2)0.1448 (3)0.0630 (11)
C100.3413 (5)0.40704 (17)0.0485 (3)0.0482 (9)
C110.3903 (5)0.34713 (18)0.0474 (3)0.0575 (10)
C120.4003 (7)0.3185 (2)0.1381 (4)0.0846 (15)
H120.43100.27940.13640.101*
C130.3647 (9)0.3482 (4)0.2317 (5)0.112 (2)
H130.37150.32890.29430.134*
C140.3192 (8)0.4058 (3)0.2353 (4)0.0973 (18)
H140.29740.42490.30040.117*
C150.2507 (5)0.4971 (2)0.1515 (3)0.0637 (12)
H150.23470.51450.21810.076*
C160.4985 (7)0.26442 (18)0.0605 (4)0.0851 (15)
H16A0.40740.23790.02600.128*
H16B0.53310.25470.13450.128*
H16C0.60140.26180.02830.128*
C170.1101 (7)0.6168 (2)0.0103 (4)0.0847 (15)
H17A0.02010.61960.02810.102*
H17B0.15900.65570.00290.102*
C180.1742 (8)0.5909 (2)0.0959 (4)0.0906 (16)
H18A0.27890.61220.10720.109*
H18B0.08190.59390.16020.109*
C190.7693 (7)0.3174 (2)0.3323 (3)0.0738 (10)
C200.9740 (6)0.2781 (2)0.4624 (4)0.0659 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0467 (3)0.0467 (3)0.0492 (3)0.0028 (2)0.0064 (2)0.0091 (2)
Na10.0568 (9)0.0453 (8)0.0444 (8)0.0046 (7)0.0079 (6)0.0042 (6)
O10.0734 (18)0.0380 (13)0.0434 (14)0.0046 (12)0.0140 (12)0.0000 (11)
O20.115 (3)0.0577 (17)0.0409 (15)0.0092 (17)0.0201 (15)0.0046 (13)
O30.0575 (15)0.0475 (14)0.0362 (13)0.0008 (12)0.0090 (11)0.0018 (11)
O40.0793 (19)0.0461 (15)0.0653 (19)0.0003 (13)0.0264 (15)0.0075 (13)
O50.088 (2)0.0678 (18)0.0566 (17)0.0200 (16)0.0264 (15)0.0101 (14)
N10.0471 (18)0.0396 (17)0.074 (2)0.0016 (14)0.0039 (16)0.0128 (16)
N20.0464 (18)0.063 (2)0.053 (2)0.0063 (15)0.0016 (15)0.0218 (17)
N30.076 (2)0.125 (2)0.0618 (19)0.0281 (19)0.0156 (17)0.0111 (19)
N40.077 (2)0.121 (3)0.065 (2)0.025 (2)0.0029 (17)0.0089 (19)
N50.097 (3)0.087 (3)0.071 (2)0.019 (2)0.003 (2)0.015 (2)
C10.056 (2)0.050 (2)0.072 (3)0.0021 (19)0.008 (2)0.019 (2)
C20.051 (2)0.047 (2)0.050 (2)0.0018 (17)0.0113 (17)0.0081 (17)
C30.065 (3)0.065 (3)0.049 (2)0.002 (2)0.0145 (19)0.011 (2)
C40.095 (4)0.104 (4)0.047 (3)0.000 (3)0.015 (2)0.017 (2)
C50.113 (4)0.098 (4)0.076 (4)0.009 (4)0.024 (3)0.043 (3)
C60.083 (3)0.068 (3)0.089 (4)0.016 (3)0.015 (3)0.031 (3)
C70.061 (3)0.037 (2)0.093 (4)0.0035 (19)0.003 (2)0.006 (2)
C80.126 (4)0.097 (4)0.046 (3)0.000 (3)0.026 (3)0.019 (2)
C90.044 (2)0.102 (4)0.043 (2)0.003 (2)0.0081 (17)0.002 (2)
C100.040 (2)0.068 (2)0.037 (2)0.0084 (18)0.0090 (15)0.0053 (18)
C110.055 (2)0.066 (3)0.056 (3)0.010 (2)0.0186 (19)0.019 (2)
C120.089 (4)0.091 (4)0.075 (3)0.002 (3)0.022 (3)0.031 (3)
C130.119 (5)0.160 (6)0.059 (4)0.019 (5)0.024 (3)0.037 (4)
C140.099 (4)0.158 (6)0.036 (3)0.007 (4)0.017 (2)0.008 (3)
C150.048 (2)0.101 (4)0.040 (2)0.006 (2)0.0053 (18)0.019 (2)
C160.110 (4)0.044 (2)0.109 (4)0.001 (2)0.041 (3)0.011 (2)
C170.079 (3)0.074 (3)0.099 (4)0.016 (3)0.014 (3)0.046 (3)
C180.109 (4)0.079 (3)0.079 (4)0.001 (3)0.009 (3)0.036 (3)
C190.069 (2)0.103 (3)0.0486 (19)0.016 (2)0.0115 (18)0.0103 (19)
C200.062 (2)0.082 (2)0.0536 (19)0.0124 (18)0.0107 (17)0.0120 (19)
Geometric parameters (Å, º) top
Cu1—O11.799 (2)C3—C41.360 (6)
Cu1—N21.800 (3)C4—C51.404 (7)
Cu1—N11.864 (3)C4—H40.9300
Cu1—O31.865 (2)C5—C61.306 (7)
Na1—O52.324 (3)C5—H50.9300
Na1—O32.357 (3)C6—H60.9300
Na1—N42.373 (4)C7—H70.9300
Na1—O12.392 (3)C8—H8A0.9600
Na1—O22.461 (3)C8—H8B0.9600
Na1—O42.531 (3)C8—H8C0.9600
O1—C21.297 (4)C9—C141.389 (7)
O2—C31.375 (5)C9—C101.392 (5)
O2—C81.397 (5)C9—C151.446 (6)
O3—C101.292 (4)C10—C111.427 (6)
O4—C111.343 (5)C11—C121.356 (6)
O4—C161.446 (5)C12—C131.363 (8)
O5—H5B0.8078C12—H120.9300
O5—H5A0.8118C13—C141.368 (9)
N1—C71.254 (6)C13—H130.9300
N1—C171.463 (5)C14—H140.9300
N2—C151.264 (5)C15—H150.9300
N2—C181.485 (6)C16—H16A0.9600
N3—C201.260 (5)C16—H16B0.9600
N3—C191.314 (6)C16—H16C0.9600
N4—C191.139 (5)C17—C181.426 (7)
N5—C201.097 (5)C17—H17A0.9700
C1—C71.389 (6)C17—H17B0.9700
C1—C61.406 (6)C18—H18A0.9700
C1—C21.430 (5)C18—H18B0.9700
C2—C31.393 (6)
O1—Cu1—N2177.98 (13)C6—C5—C4121.0 (5)
O1—Cu1—N195.42 (13)C6—C5—H5119.5
N2—Cu1—N186.24 (16)C4—C5—H5119.5
O1—Cu1—O383.04 (10)C5—C6—C1120.1 (5)
N2—Cu1—O395.30 (14)C5—C6—H6120.0
N1—Cu1—O3178.45 (13)C1—C6—H6120.0
O5—Na1—O3117.51 (11)N1—C7—C1125.2 (4)
O5—Na1—N4102.41 (15)N1—C7—H7117.4
O3—Na1—N4123.91 (13)C1—C7—H7117.4
O5—Na1—O1120.00 (11)O2—C8—H8A109.5
O3—Na1—O161.53 (9)O2—C8—H8B109.5
N4—Na1—O1128.31 (15)H8A—C8—H8B109.5
O5—Na1—O290.42 (11)O2—C8—H8C109.5
O3—Na1—O2124.57 (10)H8A—C8—H8C109.5
N4—Na1—O290.49 (13)H8B—C8—H8C109.5
O1—Na1—O263.05 (9)C14—C9—C10117.4 (5)
O5—Na1—O484.12 (10)C14—C9—C15120.8 (5)
O3—Na1—O464.40 (9)C10—C9—C15121.8 (4)
N4—Na1—O483.75 (13)O3—C10—C9121.9 (4)
O1—Na1—O4125.91 (10)O3—C10—C11119.0 (3)
O2—Na1—O4171.02 (11)C9—C10—C11119.1 (4)
C2—O1—Cu1126.3 (2)O4—C11—C12124.2 (4)
C2—O1—Na1125.6 (2)O4—C11—C10114.4 (3)
Cu1—O1—Na1108.12 (11)C12—C11—C10121.4 (4)
C3—O2—C8119.1 (3)C11—C12—C13118.9 (5)
C3—O2—Na1120.7 (2)C11—C12—H12120.6
C8—O2—Na1120.2 (3)C13—C12—H12120.6
C10—O3—Cu1128.2 (2)C12—C13—C14121.2 (5)
C10—O3—Na1123.7 (2)C12—C13—H13119.4
Cu1—O3—Na1107.21 (11)C14—C13—H13119.4
C11—O4—C16118.6 (3)C13—C14—C9122.1 (5)
C11—O4—Na1117.7 (2)C13—C14—H14119.0
C16—O4—Na1123.7 (3)C9—C14—H14119.0
Na1—O5—H5B119.8N2—C15—C9126.6 (4)
Na1—O5—H5A128.9N2—C15—H15116.7
H5B—O5—H5A110.5C9—C15—H15116.7
C7—N1—C17117.8 (4)O4—C16—H16A109.5
C7—N1—Cu1126.8 (3)O4—C16—H16B109.5
C17—N1—Cu1115.3 (3)H16A—C16—H16B109.5
C15—N2—C18119.8 (4)O4—C16—H16C109.5
C15—N2—Cu1125.9 (3)H16A—C16—H16C109.5
C18—N2—Cu1114.2 (3)H16B—C16—H16C109.5
C20—N3—C19119.8 (4)C18—C17—N1108.8 (4)
C19—N4—Na1171.6 (5)C18—C17—H17A109.9
C7—C1—C6119.1 (4)N1—C17—H17A109.9
C7—C1—C2121.2 (4)C18—C17—H17B109.9
C6—C1—C2119.6 (4)N1—C17—H17B109.9
O1—C2—C3116.2 (3)H17A—C17—H17B108.3
O1—C2—C1124.9 (4)C17—C18—N2112.5 (4)
C3—C2—C1118.8 (4)C17—C18—H18A109.1
C4—C3—O2126.9 (4)N2—C18—H18A109.1
C4—C3—C2118.5 (4)C17—C18—H18B109.1
O2—C3—C2114.5 (3)N2—C18—H18B109.1
C3—C4—C5121.9 (5)H18A—C18—H18B107.8
C3—C4—H4119.0N4—C19—N3174.1 (5)
C5—C4—H4119.0N5—C20—N3173.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N5i0.812.022.826 (5)178
O5—H5A···N3ii0.812.152.961 (5)173
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuNa(C18H18N2O4)(C2N3)(H2O)]
Mr496.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5974 (14), 22.999 (4), 12.876 (3)
β (°) 101.986 (4)
V3)2200.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.794, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
11729, 4314, 2996
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.03
No. of reflections4314
No. of parameters291
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.49

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N5i0.812.022.826 (5)177.8
O5—H5A···N3ii0.812.152.961 (5)172.8
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation (Y4080395).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorreia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationCostes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792–7799.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds