organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[(Hexane-1,6-diyldi­­oxy)bis­­(nitrilo­methyl­­idyne)]di­naphthalene

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 16 June 2008; accepted 24 June 2008; online 5 July 2008)

The title compound, C28H28N2O2, was synthesized by condensation of 1-naphthaldehyde with 1,6-bis­(amino­oxy)hexane in ethanol. The mol­ecule is disposed about a crystallographic centre of symmetry. In the crystal structure, mol­ecules are linked through strong inter­molecular ππ stacking inter­actions [interplana distance = 2.986 (2) Å], forming a three-dimensional network.

Related literature

For related literature, see: Akine et al. (2006[Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677-4684.]); Dong et al. (2007[Dong, W. K., Duan, J. G. & Liu, G. L. (2007). Transition Met. Chem. 32, 702-705.]); Herzfeld & Nagy (1999[Herzfeld, R. & Nagy, P. (1999). Spectrosc. Lett. 32, 57-71.]); Shi et al. (2007[Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.]); You et al. (2004[You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m603-m605.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28N2O2

  • Mr = 424.52

  • Monoclinic, P 21 /c

  • a = 9.2925 (16) Å

  • b = 6.3938 (12) Å

  • c = 19.723 (2) Å

  • β = 96.489 (2)°

  • V = 1164.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.47 × 0.42 × 0.23 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.983

  • 5470 measured reflections

  • 2050 independent reflections

  • 1047 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.154

  • S = 1.07

  • 2050 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base compounds containing imine groups have been used as modulators of structural and electronic properties of transition matal centres in modern coordination chemistry (You, et al., 2004). The diversity in the coordination environment and structures of transition metal complexes mainly depend on the type of Schiff-base ligands (Herzfeld, et al., 1999). In this research, we report on the synthesis and crystal structure of (I) with the aim of confirming its structural properties, and gaining further insight into its coordinating abilities toward various transition metal ions.

The crystal structure of (I) consists of discrete molecules disposed about a crystallographic centre of symmetry. The six carbon atoms in the (—CH=N—O—(CH2)6—O—N=CH—) bridge deviate slightly from the mean plane, with C1, C2 and C3 above by 0.04, 0.04 and 0.08 Å, and C1A, C2A and C3A below by 0.04, 0.04 and 0.08 Å (symmetry code A: -x + 1, -y, -z), respectively. The planes of the two naphthane rings in (I) are parallel with a separation distance of 2.163 (2) Å. In the crystal structure, molecules are linked through strong intermolecular ππ stacking interactions (Inter-molecular plane-to-plane distance, 2.986 (2) Å) to form a three-dimensional network.

Related literature top

For related literature, see: Akine et al. (2006); Dong et al. (2007); Herzfeld & Nagy (1999); Shi et al. (2007); You et al. (2004).

Experimental top

1,1'-[Hexane-1,6-diyldioxybis(nitrilomethylidyne)]dinaphthalene was synthesized according to an analogous method reported earlier (Shi, et al., 2007; Akine, et al., 2006; Dong, et al., 2007). To an ethanol solution (5 ml) of 1-naphthaldehyde (644.1 mg, 4.00 mmol) was added an ethanol solution (5 ml) of 1, 6-bis(aminooxy)hexane (296.5 mg, 2.00 mmol). The mixed solution was stirred at 328 K for 5 h. When cooled to room temperature, the precipitate was filtered, and washed successively with ethanol and hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 637.4 mg of (I). Yield, 75.1%. mp. 348–349 K. Anal. Calc. for C28H28N2O2: C, 79.22; H, 6.65; N, 6.60. Found: C, 79.35; H, 6.75; N, 6.53.

Colorless block-shaped single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from an methanol solution of (I).

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of (I) with atom numbering (symmetry code A: -x + 1, -y, -z). Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of (I) showing the formation of ππ interactions (Inter-molecular plane-to-plane distance, 2.986 (2) Å).
1,1'-[(Hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]dinaphthalene top
Crystal data top
C28H28N2O2F(000) = 452
Mr = 424.52Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1078 reflections
a = 9.2925 (16) Åθ = 2.2–22.9°
b = 6.3938 (12) ŵ = 0.08 mm1
c = 19.723 (2) ÅT = 298 K
β = 96.489 (2)°Block-shaped, colorless
V = 1164.3 (3) Å30.47 × 0.42 × 0.23 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2050 independent reflections
Radiation source: fine-focus sealed tube1047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.965, Tmax = 0.983k = 73
5470 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + 0.4185P]
where P = (Fo2 + 2Fc2)/3
2050 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C28H28N2O2V = 1164.3 (3) Å3
Mr = 424.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2925 (16) ŵ = 0.08 mm1
b = 6.3938 (12) ÅT = 298 K
c = 19.723 (2) Å0.47 × 0.42 × 0.23 mm
β = 96.489 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2050 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1047 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.983Rint = 0.040
5470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
2050 reflectionsΔρmin = 0.12 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2373 (3)0.6843 (4)0.09525 (11)0.0619 (7)
O10.2359 (2)0.5082 (3)0.05242 (10)0.0696 (6)
C10.3666 (3)0.3957 (4)0.06716 (14)0.0599 (8)
H1A0.37490.34390.11370.072*
H1B0.44860.48610.06240.072*
C20.3651 (3)0.2176 (5)0.01842 (14)0.0608 (8)
H2A0.34920.27220.02770.073*
H2B0.28400.12720.02500.073*
C30.5006 (3)0.0891 (4)0.02526 (13)0.0633 (9)
H3A0.51560.03210.07110.076*
H3B0.58200.17980.01950.076*
C40.1146 (4)0.7770 (5)0.08649 (13)0.0580 (8)
H40.04230.71560.05650.070*
C50.0789 (3)0.9699 (5)0.11943 (13)0.0526 (7)
C60.0446 (3)1.0682 (5)0.09222 (15)0.0658 (9)
H60.10101.00400.05620.079*
C70.0904 (4)1.2583 (6)0.11549 (17)0.0755 (10)
H70.17451.32050.09470.091*
C80.0126 (4)1.3520 (5)0.16820 (17)0.0721 (10)
H80.04361.47920.18420.086*
C90.1160 (3)1.2596 (5)0.19969 (14)0.0562 (8)
C100.1637 (3)1.0647 (5)0.17612 (13)0.0498 (7)
C110.2900 (3)0.9759 (5)0.21026 (14)0.0661 (9)
H110.32310.84790.19590.079*
C120.3639 (4)1.0755 (7)0.26392 (17)0.0859 (11)
H120.44701.01420.28610.103*
C130.3182 (5)1.2668 (7)0.28634 (18)0.0911 (12)
H130.37131.33380.32280.109*
C140.1975 (4)1.3554 (6)0.25544 (18)0.0798 (11)
H140.16721.48320.27130.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0736 (19)0.0517 (16)0.0629 (16)0.0071 (14)0.0189 (13)0.0125 (13)
O10.0779 (15)0.0602 (14)0.0711 (13)0.0002 (12)0.0109 (11)0.0154 (12)
C10.067 (2)0.0532 (19)0.0614 (18)0.0088 (17)0.0143 (15)0.0052 (16)
C20.071 (2)0.0524 (18)0.0598 (18)0.0114 (17)0.0115 (15)0.0068 (16)
C30.073 (2)0.056 (2)0.0618 (18)0.0078 (18)0.0109 (16)0.0047 (15)
C40.065 (2)0.057 (2)0.0525 (17)0.0090 (18)0.0092 (15)0.0024 (16)
C50.0578 (18)0.0535 (19)0.0489 (15)0.0051 (16)0.0166 (14)0.0034 (15)
C60.062 (2)0.074 (2)0.0617 (19)0.0002 (19)0.0080 (16)0.0071 (18)
C70.067 (2)0.080 (3)0.080 (2)0.011 (2)0.0131 (19)0.010 (2)
C80.079 (2)0.061 (2)0.083 (2)0.007 (2)0.039 (2)0.007 (2)
C90.062 (2)0.059 (2)0.0526 (17)0.0102 (18)0.0249 (15)0.0031 (16)
C100.0535 (18)0.0528 (19)0.0455 (15)0.0091 (16)0.0160 (13)0.0003 (14)
C110.068 (2)0.069 (2)0.0614 (18)0.0025 (18)0.0087 (16)0.0055 (18)
C120.071 (2)0.116 (3)0.068 (2)0.001 (2)0.0050 (18)0.016 (2)
C130.087 (3)0.118 (4)0.069 (2)0.025 (3)0.010 (2)0.037 (2)
C140.086 (3)0.079 (3)0.080 (2)0.014 (2)0.034 (2)0.020 (2)
Geometric parameters (Å, º) top
N1—C41.279 (3)C6—C71.383 (4)
N1—O11.407 (3)C6—H60.9300
O1—C11.413 (3)C7—C81.339 (4)
C1—C21.490 (4)C7—H70.9300
C1—H1A0.9700C8—C91.412 (4)
C1—H1B0.9700C8—H80.9300
C2—C31.497 (4)C9—C141.404 (4)
C2—H2A0.9700C9—C101.419 (4)
C2—H2B0.9700C10—C111.406 (4)
C3—C3i1.513 (5)C11—C121.354 (4)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—C131.383 (5)
C4—C51.450 (4)C12—H120.9300
C4—H40.9300C13—C141.340 (5)
C5—C61.364 (4)C13—H130.9300
C5—C101.428 (4)C14—H140.9300
C4—N1—O1110.0 (2)C5—C6—H6118.3
N1—O1—C1109.6 (2)C7—C6—H6118.3
O1—C1—C2108.2 (2)C8—C7—C6119.4 (3)
O1—C1—H1A110.1C8—C7—H7120.3
C2—C1—H1A110.1C6—C7—H7120.3
O1—C1—H1B110.1C7—C8—C9120.7 (3)
C2—C1—H1B110.1C7—C8—H8119.7
H1A—C1—H1B108.4C9—C8—H8119.7
C1—C2—C3114.5 (2)C14—C9—C8121.1 (3)
C1—C2—H2A108.6C14—C9—C10118.6 (3)
C3—C2—H2A108.6C8—C9—C10120.2 (3)
C1—C2—H2B108.6C11—C10—C9118.2 (3)
C3—C2—H2B108.6C11—C10—C5124.1 (3)
H2A—C2—H2B107.6C9—C10—C5117.7 (3)
C2—C3—C3i114.2 (3)C12—C11—C10120.5 (3)
C2—C3—H3A108.7C12—C11—H11119.8
C3i—C3—H3A108.7C10—C11—H11119.8
C2—C3—H3B108.7C11—C12—C13121.2 (3)
C3i—C3—H3B108.7C11—C12—H12119.4
H3A—C3—H3B107.6C13—C12—H12119.4
N1—C4—C5125.4 (3)C14—C13—C12120.0 (3)
N1—C4—H4117.3C14—C13—H13120.0
C5—C4—H4117.3C12—C13—H13120.0
C6—C5—C10118.5 (3)C13—C14—C9121.4 (3)
C6—C5—C4116.1 (3)C13—C14—H14119.3
C10—C5—C4125.3 (3)C9—C14—H14119.3
C5—C6—C7123.4 (3)
C4—N1—O1—C1174.4 (2)C8—C9—C10—C11178.2 (3)
N1—O1—C1—C2176.9 (2)C14—C9—C10—C5179.9 (2)
O1—C1—C2—C3177.0 (2)C8—C9—C10—C51.1 (4)
C1—C2—C3—C3i178.9 (3)C6—C5—C10—C11177.6 (3)
O1—N1—C4—C5176.7 (2)C4—C5—C10—C113.9 (4)
N1—C4—C5—C6165.6 (3)C6—C5—C10—C91.7 (4)
N1—C4—C5—C1013.0 (4)C4—C5—C10—C9176.8 (2)
C10—C5—C6—C71.8 (4)C9—C10—C11—C120.3 (4)
C4—C5—C6—C7176.8 (3)C5—C10—C11—C12179.6 (3)
C5—C6—C7—C81.3 (5)C10—C11—C12—C130.4 (5)
C6—C7—C8—C90.6 (5)C11—C12—C13—C141.0 (5)
C7—C8—C9—C14179.3 (3)C12—C13—C14—C90.8 (5)
C7—C8—C9—C100.6 (4)C8—C9—C14—C13178.8 (3)
C14—C9—C10—C110.5 (4)C10—C9—C14—C130.0 (5)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H28N2O2
Mr424.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.2925 (16), 6.3938 (12), 19.723 (2)
β (°) 96.489 (2)
V3)1164.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.42 × 0.23
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5470, 2050, 1047
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.08
No. of reflections2050
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.12

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

References

First citationAkine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677–4684.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Duan, J. G. & Liu, G. L. (2007). Transition Met. Chem. 32, 702–705.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerzfeld, R. & Nagy, P. (1999). Spectrosc. Lett. 32, 57–71.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYou, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m603–m605.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds