organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Propane-1,3-diyldi­oxy­di­nitrilo)di­ethyl­­idyne]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bKey Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 21 March 2008; accepted 30 April 2008; online 17 May 2008)

The title compound, C19H22N2O4, was synthesized by the reaction of 2′-hydroxy­acetophenone with 1,3-bis­(amino­oxy)propane in ethanol. Intra­molecular O—H⋯N and weak C—H⋯O hydrogen bonds stabilize the three-dimensional structure. A twofold rotation axis passes through the molecule.

Related literature

For related literature, see: Atkins et al. (1985[Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem. 24, 127-134.]); Atwood (1997[Atwood, D. A. (1997). Coord. Chem. Rev. 165, 267-296.]); Costes et al. (2000[Costes, J.-P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165-168.]); Dong & Feng (2006[Dong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577-o3578.]); Dong et al. (2006a[Dong, W. K., Duan, J. G., Wu, H. L., Shi, J. Y. & Yu, T. Z. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 555-556.],b[Dong, W. K., Feng, J. H. & Yang, X. Q. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 447-448.], 2007a[Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007a). Z. Kristallogr. New Cryst. Struct. 222, 327-328.],b[Dong, W. K., Shi, J. Y., Sun, Y. X., Wang, L., Duan, J. G., Zhong, J. K. & Xu, L. (2007b). Anal. Sci. 23, x167-x168.],c[Dong, W. K., Feng, J. H. & Yang, X. Q. (2007c). Z. Kristallogr. New Cryst. Struct. 222, 50-52.],d[Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007d). Z. Kristallogr. New Cryst. Struct. 222, 289-290.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339-348.]); Venkataramanan et al. (2005[Venkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249-1268.]); Yu et al. (2008[Yu, T. Z., Zhang, K., Zhao, Y., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. & Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233-240.]); Zhang et al. (2007[Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O4

  • Mr = 342.39

  • Orthorhombic, P b a 2

  • a = 7.4595 (15) Å

  • b = 25.459 (2) Å

  • c = 4.5938 (8) Å

  • V = 872.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.40 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.985

  • 3761 measured reflections

  • 880 independent reflections

  • 601 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.162

  • S = 1.12

  • 880 reflections

  • 114 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.85 2.570 (5) 146
C3—H3A⋯O1 0.96 2.17 2.603 (6) 106

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type compounds have been intensively used as versatile chelating ligands in the formation of transition metal complexes (Yu et al., 2008). Some of them or their metal complexes are used in various organic reaction processes as catalysts (Venkataramanan et al., 2005), models of reaction centers of metalloenzymes (Katsuki et al., 1995), have fascinating magnetic properties (Costes et al., 2000) and are nonlinear optical materials (Lacroix et al., 2001). They can also be used as biological models in understanding the structure of biomolecules and biological processes (Atkins et al., 1985, Atwood et al., 1997). Most of their important features of these compounds are their preparative accessibility, diversity and structural variability, which make them more attractive.

In recent years, we have been very much interested in the synthesis and study of salen-type bisoxime derivatives, such as 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]dinaphthol (Dong et al., 2006a), 4,4'-dibromo-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Dong & Feng, 2006), 4,4'-dibromo-2,2'-[(1,3-propylene) dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2006b), 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007a), 4,4'-dichloro-2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007b), 4,4'6,6'-tetra(tert-butyl)-2,2'-[(1,4-butylene)dioxybis (nitrilomethylidyne)]diphenol (Dong et al., 2007c), 2,2'-[(1,4-butylene)dioxybis(nitriloethylidyne)]diphenol (Dong et al., 2007d), 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007), and 5,5'-bis(diethylamino)-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Zhang et al., 2007). In this paper, a novel bisoxime ligand, 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol (I) was designed and synthesized, and shown in Fig. 1.

The single-crystal structure of (I) is built up by discrete C19H22N2O4 molecules (Fig. 1), in which all bond lengths are in normal ranges. There is a crystallographic twofold rotation axis passing through the middle point (symmetry code: -x, -y, z) of the C—C—C unit. The molecule adopts a trans conguration in which two phenoldoxime moieties adopts an extended form, where the oxime, methyl groups and phenolic alcohols lie in trans positions relative to the C2 atom in the N—-O—CH2—CH2—CH2—O—N linkage, which is similar to what is observed in our previously reported salen-type bisoxime of 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007). There is an intramolecular O—H···N hydrogen bond between the N1 atom and the hydroxy proton (Table 1) generating a six membered ring, which with weak C—H···O intermolecular hydrogen bonds, stabilizes the three-dimensional structure of (I).

Related literature top

For related literature, see: Atkins et al. (1985); Atwood (1997); Costes et al. (2000); Dong & Feng (2006); Dong et al. (2006a,b, 2007a,b,c,d); Duan et al. (2007); Katsuki (1995); Lacroix (2001); Venkataramanan et al. (2005); Yu et al. (2008); Zhang et al. (2007).

Experimental top

2,2'-[(Propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2007d). To an ethanol solution (5 ml) of 2'-hydroxyacetophenone (280.9 mg, 2.01 mmol) was added an ethanol (3 ml) solution of 1,3-bis(aminooxy)propane (105.5 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 3 h. After cool to room temperature, the precipitate was formed, which was filtered, and washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under vacuum and to yield 64.90 mg of the title compound. Yield, 19.1%. mp. 363–363.5 K. Anal. Calc. for C19H22N2O4: C, 66.65; H, 6.48; N, 8.18. Found: C, 66.76; H, 6.39; N, 7.97. Colorless needle-shaped single crystals suitable for X-ray diffraction studies were obtained after three months by slow evaporation from an ethanol solution (10 ml) of 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH),O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). The hydroxyl protons were located directly from a Fourier map.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule structure of (I) possessing a crystallographic twofold rotation axis passing through the middle point of the C—C—C unit (symmetry code: -x+1, -y, z), Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
2,2'-[1,1'-(Propane-1,3-diyldioxydinitrilo)diethylidyne]diphenol top
Crystal data top
C19H22N2O4F(000) = 364
Mr = 342.39Dx = 1.303 Mg m3
Orthorhombic, Pba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2abCell parameters from 1047 reflections
a = 7.4595 (15) Åθ = 2.4–22.9°
b = 25.459 (2) ŵ = 0.09 mm1
c = 4.5938 (8) ÅT = 298 K
V = 872.4 (2) Å3Needle-shaped, colorless
Z = 20.40 × 0.19 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
880 independent reflections
Radiation source: fine-focus sealed tube601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 84
Tmin = 0.964, Tmax = 0.985k = 3028
3761 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
880 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C19H22N2O4V = 872.4 (2) Å3
Mr = 342.39Z = 2
Orthorhombic, Pba2Mo Kα radiation
a = 7.4595 (15) ŵ = 0.09 mm1
b = 25.459 (2) ÅT = 298 K
c = 4.5938 (8) Å0.40 × 0.19 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
601 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.985Rint = 0.080
3761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.162H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
880 reflectionsΔρmin = 0.20 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7665 (5)0.07883 (13)0.2794 (9)0.0424 (10)
O10.6235 (4)0.06405 (11)0.0997 (8)0.0497 (10)
O21.0675 (4)0.06514 (11)0.5410 (10)0.0613 (12)
H20.98570.05790.42840.092*
C10.6621 (6)0.01443 (16)0.0329 (12)0.0447 (13)
H1A0.68450.01200.11480.054*
H1B0.76710.01710.15640.054*
C20.50000.00000.2107 (16)0.0479 (18)
H2A0.53050.02940.33530.058*0.50
H2B0.46950.02940.33530.058*0.50
C30.5696 (7)0.15361 (18)0.3585 (17)0.0660 (17)
H3A0.50880.14060.18910.099*
H3B0.59890.19000.33080.099*
H3C0.49310.15000.52540.099*
C40.7390 (6)0.12265 (17)0.4060 (10)0.0406 (12)
C50.8802 (6)0.14197 (16)0.5999 (11)0.0380 (11)
C61.0350 (6)0.11254 (15)0.6663 (11)0.0396 (12)
C71.1585 (6)0.1310 (2)0.8622 (13)0.0540 (15)
H71.25860.11070.90650.065*
C81.1363 (6)0.1787 (2)0.9934 (16)0.0582 (15)
H81.22070.19081.12630.070*
C90.9884 (8)0.2086 (2)0.9277 (16)0.0649 (18)
H90.97330.24141.01350.078*
C100.8645 (7)0.19013 (18)0.7369 (13)0.0521 (15)
H100.76460.21080.69660.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.038 (2)0.047 (2)0.043 (2)0.0020 (17)0.005 (2)0.002 (2)
O10.0458 (18)0.0516 (19)0.052 (2)0.0039 (14)0.0123 (19)0.0063 (18)
O20.053 (2)0.054 (2)0.077 (3)0.0138 (15)0.018 (2)0.0045 (19)
C10.048 (3)0.041 (2)0.045 (3)0.004 (2)0.005 (3)0.001 (2)
C20.068 (5)0.046 (3)0.030 (4)0.007 (3)0.0000.000
C30.051 (3)0.060 (3)0.087 (5)0.009 (2)0.021 (4)0.015 (3)
C40.038 (2)0.042 (2)0.042 (3)0.000 (2)0.005 (2)0.004 (2)
C50.035 (2)0.045 (2)0.034 (3)0.001 (2)0.001 (2)0.004 (2)
C60.035 (2)0.042 (2)0.042 (3)0.002 (2)0.002 (2)0.010 (2)
C70.036 (3)0.066 (3)0.060 (4)0.002 (2)0.015 (3)0.009 (3)
C80.046 (3)0.072 (3)0.057 (4)0.015 (3)0.011 (3)0.001 (3)
C90.057 (3)0.056 (3)0.082 (5)0.003 (3)0.017 (4)0.016 (3)
C100.043 (3)0.056 (3)0.057 (4)0.006 (2)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C41.275 (5)C3—H3B0.9600
N1—O11.400 (5)C3—H3C0.9600
O1—C11.432 (5)C4—C51.464 (6)
O2—C61.359 (5)C5—C101.383 (6)
O2—H20.8200C5—C61.410 (6)
C1—C21.505 (6)C6—C71.370 (7)
C1—H1A0.9700C7—C81.366 (7)
C1—H1B0.9700C7—H70.9300
C2—C1i1.505 (6)C8—C91.374 (7)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.358 (8)
C3—C41.505 (6)C9—H90.9300
C3—H3A0.9600C10—H100.9300
C4—N1—O1112.4 (3)N1—C4—C5117.1 (4)
N1—O1—C1109.5 (3)N1—C4—C3121.8 (4)
C6—O2—H2109.5C5—C4—C3121.1 (4)
O1—C1—C2106.5 (3)C10—C5—C6116.2 (4)
O1—C1—H1A110.4C10—C5—C4120.9 (4)
C2—C1—H1A110.4C6—C5—C4122.8 (4)
O1—C1—H1B110.4O2—C6—C7117.6 (4)
C2—C1—H1B110.4O2—C6—C5121.7 (4)
H1A—C1—H1B108.6C7—C6—C5120.7 (4)
C1—C2—C1i114.3 (6)C8—C7—C6120.8 (5)
C1—C2—H2A108.7C8—C7—H7119.6
C1i—C2—H2A108.7C6—C7—H7119.6
C1—C2—H2B108.7C7—C8—C9119.6 (5)
C1i—C2—H2B108.7C7—C8—H8120.2
H2A—C2—H2B107.6C9—C8—H8120.2
C4—C3—H3A109.5C10—C9—C8119.7 (5)
C4—C3—H3B109.5C10—C9—H9120.1
H3A—C3—H3B109.5C8—C9—H9120.1
C4—C3—H3C109.5C9—C10—C5122.9 (5)
H3A—C3—H3C109.5C9—C10—H10118.5
H3B—C3—H3C109.5C5—C10—H10118.5
C4—N1—O1—C1179.4 (4)C4—C5—C6—O23.6 (7)
N1—O1—C1—C2177.5 (4)C10—C5—C6—C71.7 (7)
O1—C1—C2—C1i70.3 (3)C4—C5—C6—C7176.2 (4)
O1—N1—C4—C5180.0 (3)O2—C6—C7—C8178.9 (5)
O1—N1—C4—C30.3 (7)C5—C6—C7—C81.3 (8)
N1—C4—C5—C10177.4 (5)C6—C7—C8—C90.1 (9)
C3—C4—C5—C102.3 (7)C7—C8—C9—C101.1 (10)
N1—C4—C5—C64.9 (6)C8—C9—C10—C50.7 (9)
C3—C4—C5—C6175.4 (5)C6—C5—C10—C90.7 (8)
C10—C5—C6—O2178.6 (4)C4—C5—C10—C9177.2 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.570 (5)146
C3—H3A···O10.962.172.603 (6)106

Experimental details

Crystal data
Chemical formulaC19H22N2O4
Mr342.39
Crystal system, space groupOrthorhombic, Pba2
Temperature (K)298
a, b, c (Å)7.4595 (15), 25.459 (2), 4.5938 (8)
V3)872.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
3761, 880, 601
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.162, 1.12
No. of reflections880
No. of parameters114
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.82001.85002.570 (5)146.00
C3—H3A···O10.96002.17002.603 (6)106.00
 

Acknowledgements

Support of this work by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A) is gratefully acknowledged.

References

First citationAtkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem. 24, 127–134.  CSD CrossRef CAS Web of Science Google Scholar
First citationAtwood, D. A. (1997). Coord. Chem. Rev. 165, 267–296.  CrossRef CAS Google Scholar
First citationCostes, J.-P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165–168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007a). Z. Kristallogr. New Cryst. Struct. 222, 327–328.  CAS Google Scholar
First citationDong, W. K., Duan, J. G., Wu, H. L., Shi, J. Y. & Yu, T. Z. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 555–556.  CAS Google Scholar
First citationDong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577–o3578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Feng, J. H. & Yang, X. Q. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 447–448.  CAS Google Scholar
First citationDong, W. K., Feng, J. H. & Yang, X. Q. (2007c). Z. Kristallogr. New Cryst. Struct. 222, 50–52.  CAS Google Scholar
First citationDong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007d). Z. Kristallogr. New Cryst. Struct. 222, 289–290.  CAS Google Scholar
First citationDong, W. K., Shi, J. Y., Sun, Y. X., Wang, L., Duan, J. G., Zhong, J. K. & Xu, L. (2007b). Anal. Sci. 23, x167–x168.  CAS Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVenkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249–1268.  Web of Science CrossRef CAS Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. & Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds