organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4R,7S)-1,7-Di­methyl-7-(phenyl­sulfonyl­meth­yl)spiro­[bi­cyclo­[2.2.1]heptane-2,2′-1,3-dioxolane]

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemstry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: pengyu@lzu.edu.cn

(Received 3 November 2007; accepted 12 November 2007; online 6 December 2007)

In the title compound, C18H24O4S, the chiral bicyclo­[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angle between the three-atom bridge plane and the four-atom planes of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)°. The bridgehead angle is 92.75 (17)°.

Related literature

For related literature, see: Antczak et al. (1987[Antczak, K., Kingston, J. F. & Fallis, A. G. (1987). Can. J. Chem. 65, 114-123.]); García Martínez et al. (2004[García Martínez, A., Teso Vilar, E., García Fraile, A., de la Moya Cerero, S., Diaz Morillo, C. & Pérez Morillo, R. (2004). J. Org. Chem. 69, 7348-7351.]); Gorichko et al. (2002[Gorichko, M. V., Grygorenko, O. O. & Komarov, I. V. (2002). Tetrahedron Lett. 43, 9411-9412.]); Kuo & Money (1988[Kuo, D. L. & Money, T. (1988). Can. J. Chem. 66, 1794-1804.]); Money (1985[Money, T. (1985). Nat. Prod. Rep. 2, 253-289.]); Tanyeli et al. (2004[Tanyeli, C., Akhmedov, I. M. & Işık, M. (2004). Tetrahedron Lett. 45, 5799-5801.]); Trost et al. (1979[Trost, B. M., Bernstein, P. R. & Funfschilling, P. C. (1979). J. Am. Chem. Soc. 101, 4378-4980.]); Vaillancourt & Albizati (1993[Vaillancourt, V. & Albizati, K. F. (1993). J. Am. Chem. Soc. 115, 3499-1502.]). For related structures, see: Bear & Trotter (1975[Bear, C. A. & Trotter, J. (1975). Acta Cryst. B31, 903-904.]); Cullen et al. (1988[Cullen, W. R., Rettig, S. J., Trotter, J. & Wickenheisher, E. B. (1988). Can. J. Chem. 66, 2007-2013.]); Komarov et al. (1997[Komarov, I. V., Gorichko, M. V. & Komilov, M. Y. (1997). Tetrahedron Asymmetry, 8, 435-445.]); Takasu et al. (2000[Takasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. (2000). J. Org. Chem. 65, 4112-4119.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24O4S

  • Mr = 336.43

  • Orthorhombic, P 21 21 21

  • a = 10.5420 (2) Å

  • b = 11.7946 (2) Å

  • c = 13.2997 (3) Å

  • V = 1653.67 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.12 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 8969 measured reflections

  • 3080 independent reflections

  • 2595 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.01

  • 3080 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1307 Friedel pairs

  • Flack parameter: 0.09 (9)

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT (Version 6.12), SMART (Version 5.050), and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT (Version 6.12), SMART (Version 5.050), and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SAINT (Version 6.12), SMART (Version 5.050), and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The uniqueness of the bicyclic structure of camphor is illustrated by a wide variety of intriguing structure transformations that frequently involve fascinating rearrangement processes (Money, 1985; García Martínez et al., 2004). Studies towards these transformations have produced much chemical knowledge on theoretical and mechanistic aspects of organic chemistry in the past century and offered synthetically useful chiral building blocks (Kuo & Money, 1988; Vaillancourt & Albizati, 1993) and chiral ligands (Tanyeli et al., 2004; Gorichko et al., 2002; Komarov et al., 1997) from readily available natural camphor. Some related X-ray structures (Beta & Trotter, 1975; Cullen et al., 1988; Takasu et al., 2000; Antczak et al., 1987) have been obtained.

The chiral bicyclo[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angles between the three-atom bridge plane, C10, C13, C14 and the four-atom planes (C9, C10, C14, C18 and C10, C11, C12, C14) of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)° while the bridgehead angle is 92.75 (17)°.

Related literature top

For related literature, see: Antczak et al. (1987); García Martínez et al. (2004); Gorichko et al. (2002); Kuo & Money (1988); Money (1985); Tanyeli et al. (2004); Trost et al. (1979); Vaillancourt & Albizati (1993). For related structures, see: Bear & Trotter (1975); Cullen et al. (1988); Komarov et al. (1997); Takasu et al. (2000).

Experimental top

The title compound was prepared by the reaction of sodium benzenesulfinate with (+)-8-bromocamphor (Bear & Trotter, 1975) ketal through the literature method (Trost et al., 1979). Single crystals suitable for X-ray determination were obtained by slow evaporation of a EtOAc solution over a period of several days. IR (film): 3063, 2961, 2883, 1586, 1478, 1448, 1306, 1145, 1084, 1053, 1023, 972, 742, 691 cm-1; 1H NMR (400 MHz, CDCl3): 7.93 (d, J=7.2 Hz, 2H), 7.65 (t, J=8.5 Hz, 1H), 7.56 (t, J=8.0 Hz, 2H), 4.12 (d, J=14.7 Hz, 1H), 3.91–3.86 (m, 1H), 3.84–3.81(m, 1H), 3.76–3.70 (m, 2H), 2.90 (d, J=14.7 Hz, 1H), 2.11 (dt, J=3.4, 13.7 Hz, 1H), 1.94–1.89 (m, 1H), 1.77–1.75 (m, 1H), 1.52 (d, J=13.9 Hz, 1H), 1.37–1.26 (m, 3H), 1.23 (s, 3H), 0.89 (s, 3H) p.p.m.; EIMS m/z (%): 336 (M+, 0.6), 321 (3.3), 272 (1), 235 (1), 181 (38), 125 (3), 109 (14), 95 (100); HRMS (ESI): calcd. for C18H25SO4+ [M+H]+: 337.1468, found: 337.1460.

Refinement top

All H atoms were placed geometrically (C—H values were set to 0.98, 0.97, 0.96 and 0.93 A° for atoms CH, CH2, CH3, and CH (phenyl), respectively) and refined with a riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C), or1.5 Ueq(O).

Structure description top

The uniqueness of the bicyclic structure of camphor is illustrated by a wide variety of intriguing structure transformations that frequently involve fascinating rearrangement processes (Money, 1985; García Martínez et al., 2004). Studies towards these transformations have produced much chemical knowledge on theoretical and mechanistic aspects of organic chemistry in the past century and offered synthetically useful chiral building blocks (Kuo & Money, 1988; Vaillancourt & Albizati, 1993) and chiral ligands (Tanyeli et al., 2004; Gorichko et al., 2002; Komarov et al., 1997) from readily available natural camphor. Some related X-ray structures (Beta & Trotter, 1975; Cullen et al., 1988; Takasu et al., 2000; Antczak et al., 1987) have been obtained.

The chiral bicyclo[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angles between the three-atom bridge plane, C10, C13, C14 and the four-atom planes (C9, C10, C14, C18 and C10, C11, C12, C14) of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)° while the bridgehead angle is 92.75 (17)°.

For related literature, see: Antczak et al. (1987); García Martínez et al. (2004); Gorichko et al. (2002); Kuo & Money (1988); Money (1985); Tanyeli et al. (2004); Trost et al. (1979); Vaillancourt & Albizati (1993). For related structures, see: Bear & Trotter (1975); Cullen et al. (1988); Komarov et al. (1997); Takasu et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(1R,4R,7S)-1,7-Dimethyl-7- (phenylsulfonylmethyl)spiro[bicyclo[2.2.1]heptane-2,2'-1,3-dioxolane] top
Crystal data top
C18H24O4SF(000) = 720
Mr = 336.43Dx = 1.351 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2482 reflections
a = 10.5420 (2) Åθ = 2.3–22.9°
b = 11.7946 (2) ŵ = 0.21 mm1
c = 13.2997 (3) ÅT = 294 K
V = 1653.67 (6) Å3Block, colorless
Z = 40.22 × 0.20 × 0.12 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2595 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
phi and ω scansh = 1210
8969 measured reflectionsk = 1414
3080 independent reflectionsl = 1416
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.3259P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.18 e Å3
3080 reflectionsΔρmin = 0.20 e Å3
211 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0024 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1307 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (9)
Crystal data top
C18H24O4SV = 1653.67 (6) Å3
Mr = 336.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5420 (2) ŵ = 0.21 mm1
b = 11.7946 (2) ÅT = 294 K
c = 13.2997 (3) Å0.22 × 0.20 × 0.12 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2595 reflections with I > 2σ(I)
8969 measured reflectionsRint = 0.033
3080 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.18 e Å3
S = 1.01Δρmin = 0.20 e Å3
3080 reflectionsAbsolute structure: Flack (1983), 1307 Friedel pairs
211 parametersAbsolute structure parameter: 0.09 (9)
0 restraints
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8521 (3)0.4745 (2)0.8698 (2)0.0553 (7)
H10.91410.41850.86710.066*
C20.7480 (3)0.4684 (2)0.8078 (2)0.0573 (8)
H20.73960.40830.76300.069*
C30.6567 (3)0.5508 (2)0.81181 (19)0.0559 (7)
H30.58690.54640.76930.067*
C40.6670 (2)0.6412 (2)0.87884 (18)0.0460 (6)
H40.60500.69720.88140.055*
C50.7711 (2)0.64549 (17)0.94106 (17)0.0366 (5)
C60.8644 (3)0.5640 (2)0.93635 (18)0.0458 (6)
H60.93530.56900.97770.055*
C70.9448 (3)1.1891 (2)1.1304 (2)0.0520 (7)
H7A1.03161.20091.10880.062*
H7B0.94161.18901.20330.062*
C80.8581 (3)1.2769 (2)1.08728 (18)0.0543 (7)
H8A0.78171.28461.12730.065*
H8B0.89991.35001.08290.065*
C90.8317 (2)1.11268 (18)0.99706 (16)0.0393 (6)
C100.8975 (2)1.06072 (19)0.90376 (17)0.0386 (6)
C110.8356 (3)1.1177 (2)0.81204 (18)0.0526 (7)
H11A0.88111.09900.75090.063*
H11B0.83421.19950.81990.063*
C120.7000 (3)1.0694 (2)0.80945 (18)0.0545 (7)
H12A0.68381.02960.74690.065*
H12B0.63731.12890.81770.065*
C130.8356 (2)0.93875 (18)0.89830 (16)0.0352 (5)
C140.6987 (2)0.9872 (2)0.89958 (17)0.0420 (6)
H140.63190.92950.89670.050*
C151.0411 (2)1.0690 (2)0.9064 (2)0.0567 (7)
H15C1.07571.03430.84720.085*
H15A1.07261.03070.96500.085*
H15B1.06571.14740.90870.085*
C160.8700 (3)0.8742 (2)0.80203 (17)0.0474 (6)
H16B0.95950.85910.80130.071*
H16C0.84780.91920.74450.071*
H16A0.82420.80390.80000.071*
C170.8764 (2)0.86578 (17)0.98851 (17)0.0353 (5)
H17B0.88970.91721.04440.042*
H17A0.95870.83400.97190.042*
C180.6982 (2)1.0590 (2)0.99592 (17)0.0440 (6)
H18B0.68471.01211.05490.053*
H18A0.63291.11680.99330.053*
O10.65482 (17)0.79178 (14)1.05340 (14)0.0596 (5)
O20.8532 (2)0.70566 (14)1.11702 (12)0.0606 (5)
O30.83048 (18)1.23328 (13)0.99050 (12)0.0545 (5)
O40.89416 (16)1.08703 (13)1.08999 (11)0.0438 (4)
S10.78162 (6)0.75224 (5)1.03435 (4)0.04187 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0658 (19)0.0410 (14)0.0590 (17)0.0034 (14)0.0122 (16)0.0026 (13)
C20.077 (2)0.0501 (16)0.0452 (15)0.0175 (16)0.0103 (15)0.0074 (12)
C30.0596 (18)0.0666 (18)0.0417 (14)0.0257 (17)0.0051 (13)0.0071 (13)
C40.0445 (15)0.0467 (14)0.0468 (15)0.0053 (12)0.0025 (12)0.0061 (11)
C50.0384 (13)0.0340 (12)0.0375 (12)0.0076 (11)0.0056 (11)0.0016 (9)
C60.0477 (16)0.0437 (13)0.0461 (15)0.0036 (13)0.0010 (12)0.0001 (11)
C70.0631 (18)0.0451 (14)0.0476 (15)0.0054 (14)0.0085 (13)0.0096 (13)
C80.0682 (18)0.0419 (15)0.0529 (15)0.0028 (13)0.0070 (14)0.0101 (11)
C90.0514 (15)0.0297 (11)0.0368 (12)0.0014 (11)0.0056 (11)0.0007 (9)
C100.0434 (14)0.0358 (12)0.0366 (13)0.0043 (11)0.0009 (11)0.0030 (10)
C110.080 (2)0.0418 (14)0.0361 (13)0.0009 (15)0.0051 (13)0.0042 (11)
C120.067 (2)0.0502 (15)0.0459 (15)0.0102 (14)0.0169 (14)0.0006 (12)
C130.0398 (13)0.0350 (11)0.0307 (11)0.0037 (10)0.0021 (10)0.0001 (10)
C140.0392 (14)0.0460 (13)0.0407 (13)0.0013 (11)0.0061 (11)0.0040 (11)
C150.0490 (16)0.0571 (17)0.0639 (18)0.0137 (13)0.0117 (14)0.0007 (15)
C160.0586 (17)0.0426 (14)0.0411 (14)0.0023 (13)0.0081 (12)0.0013 (11)
C170.0338 (12)0.0321 (11)0.0400 (13)0.0032 (10)0.0017 (10)0.0028 (9)
C180.0429 (15)0.0452 (13)0.0439 (13)0.0074 (12)0.0008 (11)0.0031 (11)
O10.0523 (11)0.0550 (10)0.0717 (12)0.0074 (9)0.0261 (10)0.0081 (9)
O20.0968 (15)0.0496 (10)0.0354 (9)0.0141 (10)0.0086 (10)0.0099 (8)
O30.0854 (13)0.0322 (9)0.0459 (9)0.0029 (9)0.0093 (9)0.0005 (7)
O40.0614 (11)0.0349 (9)0.0351 (9)0.0056 (8)0.0094 (8)0.0003 (7)
S10.0523 (4)0.0367 (3)0.0367 (3)0.0066 (3)0.0075 (3)0.0005 (3)
Geometric parameters (Å, º) top
C1—C21.375 (4)C10—C131.581 (3)
C1—C61.383 (3)C11—C121.540 (4)
C1—H10.9300C11—H11A0.9700
C2—C31.368 (4)C11—H11B0.9700
C2—H20.9300C12—C141.542 (3)
C3—C41.394 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.375 (3)C13—C161.533 (3)
C4—H40.9300C13—C171.538 (3)
C5—C61.377 (3)C13—C141.553 (3)
C5—S11.771 (2)C14—C181.536 (3)
C6—H60.9300C14—H140.9800
C7—O41.422 (3)C15—H15C0.9600
C7—C81.496 (3)C15—H15A0.9600
C7—H7A0.9700C15—H15B0.9600
C7—H7B0.9700C16—H16B0.9600
C8—O31.417 (3)C16—H16C0.9600
C8—H8A0.9700C16—H16A0.9600
C8—H8B0.9700C17—S11.779 (2)
C9—O31.425 (3)C17—H17B0.9700
C9—O41.433 (3)C17—H17A0.9700
C9—C181.543 (3)C18—H18B0.9700
C9—C101.548 (3)C18—H18A0.9700
C10—C151.517 (3)O1—S11.4383 (18)
C10—C111.538 (3)O2—S11.4422 (18)
C2—C1—C6119.9 (3)C11—C12—H12A111.2
C2—C1—H1120.1C14—C12—H12A111.2
C6—C1—H1120.1C11—C12—H12B111.2
C3—C2—C1120.0 (2)C14—C12—H12B111.2
C3—C2—H2120.0H12A—C12—H12B109.1
C1—C2—H2120.0C16—C13—C17107.93 (18)
C2—C3—C4120.9 (3)C16—C13—C14114.30 (19)
C2—C3—H3119.5C17—C13—C14117.21 (19)
C4—C3—H3119.5C16—C13—C10113.13 (18)
C5—C4—C3118.3 (2)C17—C13—C10110.99 (18)
C5—C4—H4120.8C14—C13—C1092.75 (17)
C3—C4—H4120.8C18—C14—C12107.56 (18)
C4—C5—C6121.1 (2)C18—C14—C13102.43 (18)
C4—C5—S1119.86 (18)C12—C14—C13102.4 (2)
C6—C5—S1118.91 (18)C18—C14—H14114.4
C5—C6—C1119.7 (3)C12—C14—H14114.4
C5—C6—H6120.2C13—C14—H14114.4
C1—C6—H6120.2C10—C15—H15C109.5
O4—C7—C8102.25 (19)C10—C15—H15A109.5
O4—C7—H7A111.3H15C—C15—H15A109.5
C8—C7—H7A111.3C10—C15—H15B109.5
O4—C7—H7B111.3H15C—C15—H15B109.5
C8—C7—H7B111.3H15A—C15—H15B109.5
H7A—C7—H7B109.2C13—C16—H16B109.5
O3—C8—C7102.85 (19)C13—C16—H16C109.5
O3—C8—H8A111.2H16B—C16—H16C109.5
C7—C8—H8A111.2C13—C16—H16A109.5
O3—C8—H8B111.2H16B—C16—H16A109.5
C7—C8—H8B111.2H16C—C16—H16A109.5
H8A—C8—H8B109.1C13—C17—S1122.12 (16)
O3—C9—O4105.53 (17)C13—C17—H17B106.8
O3—C9—C18113.6 (2)S1—C17—H17B106.8
O4—C9—C18109.93 (18)C13—C17—H17A106.8
O3—C9—C10110.50 (18)S1—C17—H17A106.8
O4—C9—C10113.71 (18)H17B—C17—H17A106.6
C18—C9—C10103.77 (18)C14—C18—C9103.38 (19)
C15—C10—C11114.4 (2)C14—C18—H18B111.1
C15—C10—C9113.7 (2)C9—C18—H18B111.1
C11—C10—C9105.84 (19)C14—C18—H18A111.1
C15—C10—C13118.1 (2)C9—C18—H18A111.1
C11—C10—C13100.76 (18)H18B—C18—H18A109.1
C9—C10—C13102.27 (17)C8—O3—C9107.78 (17)
C10—C11—C12104.44 (19)C7—O4—C9108.65 (17)
C10—C11—H11A110.9O1—S1—O2118.38 (12)
C12—C11—H11A110.9O1—S1—C5107.19 (11)
C10—C11—H11B110.9O2—S1—C5107.22 (10)
C12—C11—H11B110.9O1—S1—C17109.78 (11)
H11A—C11—H11B108.9O2—S1—C17104.73 (11)
C11—C12—C14102.9 (2)C5—S1—C17109.29 (10)
C6—C1—C2—C30.0 (4)C11—C12—C14—C1335.5 (2)
C1—C2—C3—C40.4 (4)C16—C13—C14—C18172.69 (19)
C2—C3—C4—C50.1 (4)C17—C13—C14—C1859.6 (2)
C3—C4—C5—C61.2 (3)C10—C13—C14—C1855.74 (19)
C3—C4—C5—S1174.85 (17)C16—C13—C14—C1261.3 (2)
C4—C5—C6—C11.7 (4)C17—C13—C14—C12170.99 (18)
S1—C5—C6—C1174.40 (19)C10—C13—C14—C1255.66 (19)
C2—C1—C6—C51.1 (4)C16—C13—C17—S181.5 (2)
O4—C7—C8—O335.5 (3)C14—C13—C17—S149.2 (3)
O3—C9—C10—C1576.8 (2)C10—C13—C17—S1153.97 (16)
O4—C9—C10—C1541.6 (3)C12—C14—C18—C969.3 (2)
C18—C9—C10—C15161.0 (2)C13—C14—C18—C938.2 (2)
O3—C9—C10—C1149.6 (2)O3—C9—C18—C14117.2 (2)
O4—C9—C10—C11168.02 (19)O4—C9—C18—C14124.85 (18)
C18—C9—C10—C1172.6 (2)C10—C9—C18—C142.9 (2)
O3—C9—C10—C13154.66 (19)C7—C8—O3—C931.9 (3)
O4—C9—C10—C1386.9 (2)O4—C9—O3—C815.7 (3)
C18—C9—C10—C1332.5 (2)C18—C9—O3—C8104.8 (2)
C15—C10—C11—C12164.0 (2)C10—C9—O3—C8139.0 (2)
C9—C10—C11—C1269.9 (2)C8—C7—O4—C926.9 (3)
C13—C10—C11—C1236.2 (2)O3—C9—O4—C78.1 (2)
C10—C11—C12—C141.0 (3)C18—C9—O4—C7131.0 (2)
C15—C10—C13—C1662.9 (3)C10—C9—O4—C7113.2 (2)
C11—C10—C13—C1662.4 (2)C4—C5—S1—O121.5 (2)
C9—C10—C13—C16171.40 (19)C6—C5—S1—O1154.61 (18)
C15—C10—C13—C1758.6 (3)C4—C5—S1—O2149.62 (19)
C11—C10—C13—C17176.12 (19)C6—C5—S1—O226.5 (2)
C9—C10—C13—C1767.1 (2)C4—C5—S1—C1797.4 (2)
C15—C10—C13—C14179.1 (2)C6—C5—S1—C1786.5 (2)
C11—C10—C13—C1455.55 (19)C13—C17—S1—O152.6 (2)
C9—C10—C13—C1453.46 (19)C13—C17—S1—O2179.28 (18)
C11—C12—C14—C1872.0 (2)C13—C17—S1—C564.7 (2)

Experimental details

Crystal data
Chemical formulaC18H24O4S
Mr336.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)10.5420 (2), 11.7946 (2), 13.2997 (3)
V3)1653.67 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.22 × 0.20 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8969, 3080, 2595
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.01
No. of reflections3080
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 1307 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

We acknowledge financial support from the Research Fund for the New Faculty at the State Key Laboratory of Applied Organic Chemstry.

References

First citationAntczak, K., Kingston, J. F. & Fallis, A. G. (1987). Can. J. Chem. 65, 114–123.  CrossRef CAS Web of Science Google Scholar
First citationBear, C. A. & Trotter, J. (1975). Acta Cryst. B31, 903–904.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2000). SAINT (Version 6.12), SMART (Version 5.050), and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCullen, W. R., Rettig, S. J., Trotter, J. & Wickenheisher, E. B. (1988). Can. J. Chem. 66, 2007–2013.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcía Martínez, A., Teso Vilar, E., García Fraile, A., de la Moya Cerero, S., Diaz Morillo, C. & Pérez Morillo, R. (2004). J. Org. Chem. 69, 7348–7351.  Web of Science PubMed Google Scholar
First citationGorichko, M. V., Grygorenko, O. O. & Komarov, I. V. (2002). Tetrahedron Lett. 43, 9411–9412.  Web of Science CrossRef CAS Google Scholar
First citationKomarov, I. V., Gorichko, M. V. & Komilov, M. Y. (1997). Tetrahedron Asymmetry, 8, 435–445.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuo, D. L. & Money, T. (1988). Can. J. Chem. 66, 1794–1804.  CrossRef CAS Web of Science Google Scholar
First citationMoney, T. (1985). Nat. Prod. Rep. 2, 253–289.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTakasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. (2000). J. Org. Chem. 65, 4112–4119.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTanyeli, C., Akhmedov, I. M. & Işık, M. (2004). Tetrahedron Lett. 45, 5799–5801.  Web of Science CrossRef CAS Google Scholar
First citationTrost, B. M., Bernstein, P. R. & Funfschilling, P. C. (1979). J. Am. Chem. Soc. 101, 4378–4980.  CrossRef CAS Web of Science Google Scholar
First citationVaillancourt, V. & Albizati, K. F. (1993). J. Am. Chem. Soc. 115, 3499–1502.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds