Download citation
Download citation
link to html
The title complex, [Cu(C7H2N2O7)(C4H8N2O2)(H2O)], is a mononuclear copper(II) compound. The CuII ion is five-coordinated in a distorted pyramidal geometry by two N atoms from one dimethyl­glyoxime mol­ecule, two O atoms from one 3,5-dinitro-2-oxidobenzoate ligand and one O atom from a water mol­ecule. Strong hydrogen bonds connect adjacent mol­ecules into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054244/hg2336sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054244/hg2336Isup2.hkl
Contains datablock I

CCDC reference: 1176497

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.076
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O6 .. 5.23 su PLAT417_ALERT_2_C Short Inter D-H..H-D H9 .. H10D .. 2.10 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.31 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As shown in Fig. 1, (I) crystallizes as discrete molecular species. Each copper(II) ion is five-coordinated in a distorted pyramidal geometry by two N atoms from one dimethylglyoxime molecule, two O atoms from one 2-hydroxy-3,5-dinitrobenzoic acid molecule and one O atom from a water molecule. Atoms O6, O7, N3 and N4 located at the base of the pyramid are approximately coplanar with the central Cu1 ion, the maximum deviation from the least-squares plane through all five atoms being 0.081 Å for Cu1, O10 locating at the apex of the pyramid shows a slightly longer bond to Cu1 than O7 and O8. Strong hydrogen bonds are found between adjacent molecules, which including: O(9)—H(9)···O(10)1 (symmetry code 1: -x,-y + 1,-z); O(10)—H(10E)···O(5)2 (symmetry code 2:x,y - 1,z) and O(10)—H(10D)···O(6)1.

Related literature top

[At least one reference must be provided here to put the work in context]

Experimental top

A mixture of dimethylglyoxime (0.116 g, 0.001 mol), 2-hydroxy-3,5-dinitrobenzoic acid (0.228 g, 0.001 mol) and CuSO4.5H2O (0.250 g, 0.001 mol) in the mole ratio of 1:1:1 was added to 15 ml me thanol, The mixture was heated at 408 K for two days in a closed steel chamber with liner. Crystals of (I) were obtained after reaction mixture cooled to room temperature, untouched in the air.

Refinement top

The H atoms bonding to C atoms and O atoms of hydroxyl group were located at calculated positions and refined as riding on their parent atoms with the bond length fixed to 0.93 Å for C—H and 0.82 Å for O—H, Uiso(H) being 1.2 times Ueq(C) and Uiso(H) being 1.5 times Ueq(O); The H atoms bonding to O atoms of water molecules are found in electron density map and refined with bond lengths fixed to 0.82 Å and with Uiso(H) = 1.5 times Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis. Hydrogen bonds are shown as dash lines.
Aqua(dimethylglyoxime-κ2N,N')(3,5-dinitro-2-oxidobenzoato- κ2O1,O2)copper(II) top
Crystal data top
[Cu(C7H2N2O7)(C4H8N2O2)(H2O)]F(000) = 860.0
Mr = 423.80Dx = 1.825 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7646 reflections
a = 12.476 (2) Åθ = 1.0–28.3°
b = 7.0786 (14) ŵ = 1.48 mm1
c = 17.929 (4) ÅT = 293 K
β = 103.014 (3)°Block, green
V = 1542.7 (5) Å30.30 × 0.28 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2426 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ϕ and ω scansh = 1415
9276 measured reflectionsk = 88
2824 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.7936P]
where P = (Fo2 + 2Fc2)/3
2824 reflections(Δ/σ)max = 0.009
245 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C7H2N2O7)(C4H8N2O2)(H2O)]V = 1542.7 (5) Å3
Mr = 423.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.476 (2) ŵ = 1.48 mm1
b = 7.0786 (14) ÅT = 293 K
c = 17.929 (4) Å0.30 × 0.28 × 0.23 mm
β = 103.014 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2426 reflections with I > 2σ(I)
9276 measured reflectionsRint = 0.019
2824 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
2824 reflectionsΔρmin = 0.37 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38551 (19)0.8248 (3)0.15661 (11)0.0404 (5)
C20.29055 (18)0.8483 (3)0.12966 (12)0.0401 (5)
H20.24930.95820.14120.048*
C30.25689 (17)0.7102 (3)0.08585 (12)0.0363 (4)
C40.31727 (17)0.5362 (3)0.07025 (11)0.0350 (4)
C50.41421 (17)0.5223 (3)0.09927 (11)0.0353 (4)
C60.44863 (18)0.6661 (3)0.14088 (11)0.0384 (5)
H60.51360.65460.15780.046*
C70.15805 (18)0.7568 (3)0.05472 (13)0.0411 (5)
C80.2461 (2)0.0793 (4)0.17133 (16)0.0591 (7)
H8A0.29240.14350.14340.089*
H8B0.17930.14960.16770.089*
H8C0.28380.06850.22410.089*
C90.21941 (18)0.1124 (3)0.13856 (13)0.0410 (5)
C100.1053 (2)0.2011 (4)0.23823 (15)0.0652 (7)
H10A0.08800.31720.26060.098*
H10B0.16170.13560.27420.098*
H10C0.04070.12360.22540.098*
C110.14519 (18)0.2433 (3)0.16737 (13)0.0433 (5)
Cu10.19075 (2)0.41715 (4)0.035805 (15)0.04118 (11)
H10D0.0046 (14)0.236 (4)0.0242 (14)0.062*
N10.41829 (19)0.9717 (3)0.20416 (11)0.0530 (5)
N20.48523 (15)0.3558 (3)0.08565 (10)0.0426 (4)
N30.25563 (15)0.1820 (3)0.08278 (10)0.0407 (4)
N40.11864 (16)0.3920 (3)0.12651 (11)0.0427 (4)
O10.50885 (18)0.9593 (3)0.21873 (12)0.0732 (6)
O20.35331 (19)1.0994 (3)0.22715 (13)0.0824 (7)
O30.57503 (15)0.3662 (3)0.10244 (12)0.0686 (5)
O40.45639 (15)0.2139 (2)0.05650 (11)0.0628 (5)
O50.10172 (14)0.8950 (2)0.08023 (11)0.0537 (4)
O60.13474 (13)0.6566 (2)0.00051 (10)0.0496 (4)
O70.28662 (14)0.3991 (2)0.03241 (10)0.0486 (4)
O80.32359 (15)0.0709 (2)0.05102 (10)0.0514 (4)
H80.34010.12730.01520.077*
O90.05087 (16)0.5146 (3)0.15476 (10)0.0601 (5)
H90.02420.59170.12160.090*
O100.04730 (13)0.2463 (2)0.04495 (10)0.0461 (4)
H10E0.067 (2)0.1386 (16)0.0517 (17)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (13)0.0408 (12)0.0330 (10)0.0073 (10)0.0130 (9)0.0008 (9)
C20.0439 (13)0.0342 (11)0.0425 (11)0.0011 (9)0.0102 (10)0.0015 (9)
C30.0377 (11)0.0316 (10)0.0413 (11)0.0015 (8)0.0127 (9)0.0009 (8)
C40.0385 (12)0.0318 (10)0.0371 (10)0.0007 (8)0.0132 (9)0.0024 (8)
C50.0369 (11)0.0362 (11)0.0336 (10)0.0015 (9)0.0099 (9)0.0050 (8)
C60.0385 (12)0.0461 (12)0.0337 (10)0.0043 (9)0.0146 (9)0.0061 (9)
C70.0422 (12)0.0291 (10)0.0549 (13)0.0027 (9)0.0173 (10)0.0021 (9)
C80.0606 (17)0.0538 (16)0.0655 (16)0.0111 (12)0.0195 (13)0.0209 (12)
C90.0358 (12)0.0430 (12)0.0433 (12)0.0000 (9)0.0072 (9)0.0055 (9)
C100.0740 (19)0.0716 (19)0.0599 (16)0.0073 (15)0.0355 (14)0.0187 (14)
C110.0404 (12)0.0474 (13)0.0449 (12)0.0006 (10)0.0157 (10)0.0055 (10)
Cu10.04485 (19)0.03550 (16)0.04994 (18)0.00842 (11)0.02486 (13)0.00724 (11)
N10.0602 (14)0.0563 (13)0.0437 (11)0.0084 (11)0.0142 (10)0.0097 (10)
N20.0414 (11)0.0446 (10)0.0451 (10)0.0068 (8)0.0167 (8)0.0052 (8)
N30.0374 (10)0.0410 (10)0.0463 (10)0.0078 (8)0.0144 (8)0.0034 (8)
N40.0437 (11)0.0441 (11)0.0459 (10)0.0050 (8)0.0217 (8)0.0015 (8)
O10.0728 (13)0.0851 (15)0.0731 (13)0.0076 (11)0.0406 (11)0.0216 (11)
O20.0788 (15)0.0783 (15)0.0921 (15)0.0053 (12)0.0232 (12)0.0472 (12)
O30.0457 (11)0.0734 (13)0.0959 (15)0.0171 (9)0.0354 (10)0.0108 (11)
O40.0661 (12)0.0438 (10)0.0892 (13)0.0153 (9)0.0395 (10)0.0101 (9)
O50.0490 (10)0.0368 (9)0.0795 (12)0.0138 (7)0.0231 (9)0.0081 (8)
O60.0509 (10)0.0398 (8)0.0691 (10)0.0115 (7)0.0363 (8)0.0090 (8)
O70.0551 (10)0.0344 (8)0.0677 (11)0.0114 (7)0.0378 (9)0.0112 (7)
O80.0528 (10)0.0488 (10)0.0588 (10)0.0178 (8)0.0256 (8)0.0069 (7)
O90.0734 (13)0.0563 (11)0.0623 (11)0.0224 (9)0.0396 (10)0.0081 (9)
O100.0425 (9)0.0378 (8)0.0638 (10)0.0084 (7)0.0239 (8)0.0006 (8)
Geometric parameters (Å, º) top
C1—C61.364 (3)C10—C111.495 (3)
C1—C21.387 (3)C10—H10A0.9600
C1—N11.461 (3)C10—H10B0.9600
C2—C31.378 (3)C10—H10C0.9600
C2—H20.9300C11—N41.282 (3)
C3—C41.438 (3)Cu1—O61.8922 (16)
C3—C71.500 (3)Cu1—O71.8978 (16)
C4—O71.290 (3)Cu1—N31.9566 (18)
C4—C51.424 (3)Cu1—N42.0359 (19)
C5—C61.386 (3)Cu1—O102.3652 (18)
C5—N21.461 (3)N1—O11.219 (3)
C6—H60.9300N1—O21.222 (3)
C7—O51.231 (3)N2—O41.223 (3)
C7—O61.288 (3)N2—O31.226 (3)
C8—C91.486 (3)N3—O81.370 (2)
C8—H8A0.9600N4—O91.385 (2)
C8—H8B0.9600O8—H80.8200
C8—H8C0.9600O9—H90.8200
C9—N31.285 (3)O10—H10D0.82 (2)
C9—C111.483 (3)O10—H10E0.818 (14)
C6—C1—C2121.7 (2)H10A—C10—H10C109.5
C6—C1—N1118.9 (2)H10B—C10—H10C109.5
C2—C1—N1119.4 (2)N4—C11—C9114.51 (19)
C1—C2—C3120.5 (2)N4—C11—C10123.9 (2)
C1—C2—H2119.8C9—C11—C10121.6 (2)
C3—C2—H2119.8O6—Cu1—O794.35 (6)
C2—C3—C4120.4 (2)O6—Cu1—N3174.35 (8)
C2—C3—C7115.96 (19)O7—Cu1—N387.74 (7)
C4—C3—C7123.67 (18)O6—Cu1—N499.09 (7)
O7—C4—C5121.14 (19)O7—Cu1—N4164.78 (7)
O7—C4—C3122.82 (19)N3—Cu1—N478.23 (7)
C5—C4—C3116.04 (19)O6—Cu1—O1094.44 (7)
C6—C5—C4122.52 (19)O7—Cu1—O1094.07 (7)
C6—C5—N2115.62 (19)N3—Cu1—O1090.64 (7)
C4—C5—N2121.85 (19)N4—Cu1—O1091.98 (7)
C1—C6—C5118.8 (2)O1—N1—O2123.9 (2)
C1—C6—H6120.6O1—N1—C1117.9 (2)
C5—C6—H6120.6O2—N1—C1118.2 (2)
O5—C7—O6120.7 (2)O4—N2—O3121.8 (2)
O5—C7—C3119.0 (2)O4—N2—C5120.52 (18)
O6—C7—C3120.26 (19)O3—N2—C5117.6 (2)
C9—C8—H8A109.5C9—N3—O8117.55 (18)
C9—C8—H8B109.5C9—N3—Cu1118.50 (15)
H8A—C8—H8B109.5O8—N3—Cu1122.95 (13)
C9—C8—H8C109.5C11—N4—O9113.93 (18)
H8A—C8—H8C109.5C11—N4—Cu1115.12 (15)
H8B—C8—H8C109.5O9—N4—Cu1130.79 (14)
N3—C9—C11112.86 (19)C7—O6—Cu1128.62 (14)
N3—C9—C8124.8 (2)C4—O7—Cu1126.36 (13)
C11—C9—C8122.3 (2)N3—O8—H8109.5
C11—C10—H10A109.5N4—O9—H9109.5
C11—C10—H10B109.5Cu1—O10—H10D109.4 (19)
H10A—C10—H10B109.5Cu1—O10—H10E111 (2)
C11—C10—H10C109.5H10D—O10—H10E106 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10i0.821.862.675 (2)175
O8—H8···O70.822.152.745 (2)130
O8—H8···O40.822.232.987 (2)154
O10—H10E···O5ii0.82 (1)1.88 (2)2.691 (2)173 (3)
O10—H10D···O6i0.82 (2)1.93 (1)2.670 (2)149 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H2N2O7)(C4H8N2O2)(H2O)]
Mr423.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.476 (2), 7.0786 (14), 17.929 (4)
β (°) 103.014 (3)
V3)1542.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.30 × 0.28 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9276, 2824, 2426
Rint0.019
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.01
No. of reflections2824
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.37

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10i0.821.862.675 (2)174.9
O8—H8···O70.822.152.745 (2)129.5
O8—H8···O40.822.232.987 (2)153.5
O10—H10E···O5ii0.818 (14)1.877 (15)2.691 (2)173 (3)
O10—H10D···O6i0.82 (2)1.932 (14)2.670 (2)149 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds