Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, {[Cu2(N3)4(C6H16N2)2][Cu(N3)2(C6H16N2)]}n, consists of an end-on azide-bridged dinuclear copper(II) complex and an end-to-end azide-bridged polynuclear copper(II) complex. Each Cu atom is five-coordinated by two N atoms of N,N-diethyl­ethane-1,2-diamine and by three N atoms from three azide ligands, forming a slightly distorted square-pyramidal coordination environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807061041/hg2329sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807061041/hg2329Isup2.hkl
Contains datablock I

CCDC reference: 672750

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.034
  • wR factor = 0.084
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N20 - N21 .. 11.29 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N5 PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N14 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N15
Alert level C PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.96 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.04 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for N21 - N22 .. 5.82 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - N9 .. 9.67 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N9 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N7 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N18 PLAT480_ALERT_4_C Long H...A H-Bond Reported H24A .. N18 .. 2.67 Ang.
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The azide anion is a versatile ligand that is able to link metal ions with different coordination modes, generating interesting polynuclear complexes (Colacio et al., 2005; Meyer et al., 2005; Sarkar et al., 2004). In this paper, a new azido-bridged copper(II) complex is reported.

The title complex consists of an end-on azido-bridged dinuclear copper(II) molecule (unit 1, Fig. 1) and an end-to-end azido-bridged polynuclear copper(II) molecule (unit 2, Fig. 2). Each Cu atom in unit 1 is in a square pyramidal coordination environment and is five-coordinated by two N atoms of N,N-diethylethane-1,2-diamine, one N atom of a terminal azido ligand, and one N atom of an end-on azido bridge, defining the basal plane, and by one N atom of another end-on azido bridge occupying the apical position. Each Cu atom in unit 2 is in a square pyramidal coordination environment and is five-coordinated by two N atoms of N,N-diethylethane-1,2-diamine, one N atom of a terminal azido ligand, and one N atom of an end-to-end azido bridge, defining the basal plane, and by one N atom of another end-to-end azido bridge occupying the apical position. The significant distortion of the square pyramids is revealed by the apical bond lengths (Cu1—N9 = 2.562 (2) Å, Cu2—N5 = 2.654 (2) Å, Cu3—N20 = 2.446 (2) Å), as well as the bond angles between the apical and basal donor atoms (Table 1).

Related literature top

For related literature, see: Colacio et al. (2005); Meyer et al. (2005); Sarkar et al. (2004).

Experimental top

N,N-Diethylethane-1,2-diamine (0.1 mmol, 11.6 mg), NaN3 (0.2 mmol, 13.0 mg), and Cu(CH3COO)2.H2O (0.1 mmol, 20.0 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 20 min to give a blue solution. The solution was kept in air for about a week, blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.96–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set to 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The structure of the dinuclear copper(II) molecule at the 30% probability level. H atoms have been omitted for clarity. Atoms labeled with the suffix A are at the symmetry position 1 - x, -y, 1 - z.
[Figure 2] Fig. 2. The structure of the polynuclear copper(II) molecule at the 30% probability level. H atoms have been omitted for clarity. Atoms labeled with the suffix B and C are at the symmetry positions x, 1/2 - y, 1/2 + z and x, 1/2 - y, -1/2 + z, respectively.
catena-Poly[{di-µ-azido-bis[azido(N,N-diethylethane-1,2-diamine)copper(II)]} [[azido(N,N-diethylethane-1,2-diamine)copper(II)]-µ-azido]] top
Crystal data top
[Cu2(N3)4(C6H16N2)2][Cu(N3)2(C6H16N2)]F(000) = 1644
Mr = 791.42Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8536 reflections
a = 22.722 (2) Åθ = 2.3–25.7°
b = 13.2010 (12) ŵ = 1.86 mm1
c = 11.6488 (10) ÅT = 298 K
β = 92.478 (2)°Block, blue
V = 3490.8 (5) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7614 independent reflections
Radiation source: fine-focus sealed tube6149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2829
Tmin = 0.768, Tmax = 0.836k = 1616
28917 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7266P]
where P = (Fo2 + 2Fc2)/3
7614 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2(N3)4(C6H16N2)2][Cu(N3)2(C6H16N2)]V = 3490.8 (5) Å3
Mr = 791.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.722 (2) ŵ = 1.86 mm1
b = 13.2010 (12) ÅT = 298 K
c = 11.6488 (10) Å0.15 × 0.12 × 0.10 mm
β = 92.478 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7614 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6149 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.836Rint = 0.031
28917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
7614 reflectionsΔρmin = 0.31 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.126741 (11)0.15809 (2)0.22935 (2)0.03596 (8)
Cu20.213868 (13)0.00077 (2)0.15330 (3)0.04405 (9)
Cu30.463891 (12)0.02522 (2)0.38321 (2)0.03575 (8)
N10.04653 (8)0.09273 (15)0.26784 (16)0.0420 (5)
N20.09839 (8)0.14681 (16)0.06679 (16)0.0421 (5)
H2C0.11420.09320.03440.051*
H2D0.10620.20480.03130.051*
N30.21109 (8)0.15964 (17)0.19209 (18)0.0470 (5)
N40.23046 (9)0.14004 (16)0.10224 (19)0.0454 (5)
N50.25194 (11)0.1210 (2)0.0168 (2)0.0762 (8)
N60.14633 (9)0.19101 (18)0.39114 (17)0.0517 (5)
N70.18555 (10)0.15046 (17)0.44386 (17)0.0480 (5)
N80.22317 (13)0.1135 (3)0.4975 (2)0.0846 (9)
N90.09411 (10)0.34205 (18)0.1973 (2)0.0583 (6)
N100.11200 (8)0.39817 (15)0.26618 (18)0.0409 (5)
N110.12909 (9)0.45634 (16)0.33842 (18)0.0459 (5)
N120.23902 (8)0.12097 (14)0.23815 (16)0.0395 (4)
H12D0.22130.12570.30740.047*
H12E0.23270.17850.20120.047*
N130.29158 (8)0.06397 (15)0.20589 (17)0.0411 (4)
N140.19881 (12)0.1125 (2)0.0533 (3)0.0941 (11)
N150.15157 (11)0.12740 (18)0.0216 (2)0.0630 (7)
N160.10672 (14)0.1438 (3)0.0117 (3)0.1171 (14)
N170.47984 (10)0.11053 (16)0.32045 (19)0.0525 (5)
N180.51569 (9)0.12911 (15)0.25446 (18)0.0446 (5)
N190.55073 (13)0.1515 (2)0.1903 (3)0.0886 (10)
N200.44968 (8)0.04691 (15)0.57341 (16)0.0394 (4)
N210.43106 (9)0.12899 (19)0.57895 (18)0.0492 (5)
N220.41048 (13)0.2094 (2)0.5856 (2)0.0776 (8)
N230.38086 (8)0.03056 (14)0.30150 (17)0.0396 (4)
N240.44157 (8)0.15731 (14)0.45227 (16)0.0389 (4)
H24A0.45670.16320.52380.047*
H24B0.45470.21030.41240.047*
C10.03390 (10)0.1352 (2)0.0643 (2)0.0472 (6)
H1A0.01950.11160.01060.057*
H1B0.01530.19950.08010.057*
C20.02024 (11)0.0589 (2)0.1552 (2)0.0493 (6)
H2A0.02210.05210.16010.059*
H2B0.03620.00660.13540.059*
C30.00902 (11)0.1712 (2)0.3218 (2)0.0560 (7)
H3A0.00640.22920.27070.067*
H3B0.02920.19350.39250.067*
C40.05267 (14)0.1405 (3)0.3494 (3)0.0835 (11)
H4A0.05150.07750.39070.125*
H4B0.07600.13240.27930.125*
H4C0.06980.19190.39570.125*
C50.05591 (14)0.0050 (2)0.3475 (3)0.0676 (8)
H5A0.06360.03070.42470.081*
H5B0.01980.03430.34780.081*
C60.10497 (17)0.0633 (3)0.3182 (3)0.0897 (11)
H6A0.14140.02630.32250.135*
H6B0.09810.08880.24160.135*
H6C0.10720.11880.37140.135*
C70.31562 (11)0.00834 (17)0.2892 (2)0.0409 (5)
H7A0.29770.00380.36500.049*
H7B0.35780.00130.29300.049*
C80.30298 (10)0.11470 (18)0.2523 (2)0.0411 (5)
H8A0.32420.13000.18030.049*
H8B0.31490.16260.31000.049*
C90.27930 (13)0.16364 (19)0.2597 (3)0.0646 (8)
H9A0.27140.21240.20010.077*
H9B0.31410.18620.29790.077*
C100.22794 (16)0.1616 (3)0.3455 (4)0.0951 (13)
H10A0.19270.14440.30710.143*
H10B0.22330.22720.38040.143*
H10C0.23490.11200.40360.143*
C110.33289 (11)0.0760 (2)0.1028 (2)0.0538 (7)
H11A0.31460.12120.04920.065*
H11B0.33720.01060.06560.065*
C120.39392 (12)0.1163 (3)0.1242 (3)0.0697 (9)
H12A0.39060.17800.16770.105*
H12B0.41450.12950.05200.105*
H12C0.41530.06710.16640.105*
C130.37677 (11)0.16183 (18)0.4497 (2)0.0450 (6)
H13A0.36370.23000.46620.054*
H13B0.36150.11630.50660.054*
C140.35535 (10)0.13047 (18)0.3304 (2)0.0448 (6)
H14A0.31270.12620.32680.054*
H14B0.36700.18080.27510.054*
C150.38632 (13)0.0202 (2)0.1756 (2)0.0585 (7)
H15A0.34920.03900.13730.070*
H15B0.39380.05030.15780.070*
C160.43467 (15)0.0842 (3)0.1286 (2)0.0776 (10)
H16A0.47200.06300.16230.116*
H16B0.42800.15400.14690.116*
H16C0.43480.07620.04670.116*
C170.34449 (11)0.05372 (19)0.3482 (2)0.0518 (6)
H17A0.34100.04260.43000.062*
H17B0.36560.11680.33920.062*
C180.28313 (13)0.0659 (2)0.2937 (3)0.0734 (9)
H18A0.28580.08950.21610.110*
H18B0.26310.00190.29360.110*
H18C0.26150.11420.33690.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03348 (15)0.04709 (17)0.02709 (14)0.00311 (12)0.00114 (10)0.00492 (11)
Cu20.03608 (16)0.04575 (17)0.05113 (19)0.00447 (12)0.01128 (13)0.01752 (14)
Cu30.03740 (16)0.03712 (15)0.03270 (15)0.01020 (11)0.00123 (11)0.00185 (11)
N10.0427 (11)0.0484 (12)0.0350 (10)0.0087 (9)0.0044 (8)0.0034 (9)
N20.0395 (11)0.0551 (12)0.0316 (10)0.0058 (9)0.0002 (8)0.0039 (9)
N30.0366 (11)0.0612 (14)0.0431 (12)0.0001 (9)0.0018 (9)0.0087 (10)
N40.0348 (11)0.0548 (13)0.0459 (13)0.0093 (9)0.0040 (9)0.0002 (10)
N50.0594 (16)0.119 (2)0.0513 (15)0.0249 (16)0.0086 (12)0.0064 (15)
N60.0507 (13)0.0723 (15)0.0314 (11)0.0111 (11)0.0075 (9)0.0107 (10)
N70.0514 (13)0.0641 (14)0.0282 (10)0.0056 (11)0.0014 (9)0.0085 (9)
N80.086 (2)0.116 (2)0.0500 (15)0.0403 (18)0.0208 (14)0.0046 (15)
N90.0524 (14)0.0558 (14)0.0659 (15)0.0081 (11)0.0072 (12)0.0100 (12)
N100.0314 (10)0.0387 (11)0.0528 (13)0.0008 (8)0.0044 (9)0.0040 (10)
N110.0385 (11)0.0464 (12)0.0532 (13)0.0030 (9)0.0073 (9)0.0085 (10)
N120.0408 (11)0.0354 (10)0.0427 (11)0.0016 (8)0.0080 (9)0.0030 (8)
N130.0401 (11)0.0372 (10)0.0463 (12)0.0032 (8)0.0064 (9)0.0057 (9)
N140.0556 (16)0.101 (2)0.128 (3)0.0149 (15)0.0306 (17)0.080 (2)
N150.0566 (15)0.0602 (15)0.0734 (17)0.0057 (12)0.0169 (13)0.0356 (13)
N160.066 (2)0.146 (3)0.141 (3)0.004 (2)0.035 (2)0.085 (3)
N170.0585 (14)0.0463 (12)0.0534 (13)0.0087 (10)0.0094 (11)0.0127 (10)
N180.0475 (12)0.0403 (11)0.0456 (12)0.0081 (9)0.0030 (10)0.0131 (9)
N190.0780 (19)0.079 (2)0.112 (2)0.0036 (15)0.0389 (18)0.0457 (17)
N200.0355 (10)0.0427 (12)0.0402 (11)0.0075 (9)0.0029 (8)0.0026 (9)
N210.0480 (13)0.0602 (15)0.0398 (12)0.0101 (11)0.0072 (9)0.0040 (11)
N220.091 (2)0.0576 (16)0.085 (2)0.0149 (15)0.0117 (16)0.0052 (14)
N230.0401 (11)0.0404 (11)0.0379 (11)0.0067 (8)0.0033 (8)0.0010 (8)
N240.0454 (11)0.0373 (10)0.0340 (10)0.0082 (8)0.0005 (8)0.0016 (8)
C10.0398 (13)0.0652 (16)0.0359 (13)0.0071 (12)0.0069 (10)0.0055 (12)
C20.0459 (14)0.0552 (16)0.0468 (14)0.0145 (12)0.0025 (11)0.0129 (12)
C30.0474 (15)0.0690 (18)0.0526 (16)0.0075 (13)0.0125 (12)0.0159 (14)
C40.061 (2)0.093 (3)0.099 (3)0.0067 (18)0.0331 (19)0.019 (2)
C50.072 (2)0.069 (2)0.063 (2)0.0116 (16)0.0071 (16)0.0169 (15)
C60.100 (3)0.069 (2)0.099 (3)0.009 (2)0.004 (2)0.027 (2)
C70.0424 (13)0.0462 (13)0.0346 (13)0.0005 (10)0.0074 (10)0.0012 (10)
C80.0419 (13)0.0407 (13)0.0413 (13)0.0080 (10)0.0075 (10)0.0002 (10)
C90.0601 (18)0.0366 (14)0.097 (2)0.0001 (13)0.0090 (17)0.0085 (14)
C100.085 (3)0.070 (2)0.129 (3)0.0171 (19)0.015 (2)0.037 (2)
C110.0515 (15)0.0625 (17)0.0477 (15)0.0146 (13)0.0056 (12)0.0122 (13)
C120.0558 (18)0.086 (2)0.067 (2)0.0210 (16)0.0010 (15)0.0128 (17)
C130.0462 (14)0.0385 (13)0.0512 (15)0.0104 (10)0.0118 (11)0.0005 (11)
C140.0394 (13)0.0401 (13)0.0544 (15)0.0080 (10)0.0037 (11)0.0058 (11)
C150.0596 (17)0.075 (2)0.0400 (15)0.0117 (15)0.0098 (13)0.0014 (13)
C160.086 (2)0.107 (3)0.0405 (16)0.004 (2)0.0072 (15)0.0144 (17)
C170.0493 (15)0.0390 (13)0.0669 (18)0.0053 (11)0.0023 (13)0.0013 (12)
C180.0550 (18)0.0513 (17)0.113 (3)0.0033 (14)0.0038 (18)0.0035 (17)
Geometric parameters (Å, º) top
Cu1—N61.9663 (19)C1—H1B0.9700
Cu1—N21.9792 (18)C2—H2A0.9700
Cu1—N31.983 (2)C2—H2B0.9700
Cu1—N12.0827 (19)C3—C41.507 (4)
Cu1—N92.562 (2)C3—H3A0.9700
Cu2—N52.654 (2)C3—H3B0.9700
Cu2—N141.936 (2)C4—H4A0.9600
Cu2—N121.9673 (18)C4—H4B0.9600
Cu2—N11i2.006 (2)C4—H4C0.9600
Cu2—N132.0779 (19)C5—C61.485 (5)
Cu3—N171.975 (2)C5—H5A0.9700
Cu3—N241.9950 (18)C5—H5B0.9700
Cu3—N20ii2.0269 (19)C6—H6A0.9600
Cu3—N232.0773 (19)C6—H6B0.9600
Cu3—N202.4458 (19)C6—H6C0.9600
N1—C21.486 (3)C7—C81.500 (3)
N1—C51.494 (3)C7—H7A0.9700
N1—C31.497 (3)C7—H7B0.9700
N2—C11.472 (3)C8—H8A0.9700
N2—H2C0.9000C8—H8B0.9700
N2—H2D0.9000C9—C101.503 (4)
N3—N41.181 (3)C9—H9A0.9700
N4—N51.155 (3)C9—H9B0.9700
N6—N71.188 (3)C10—H10A0.9600
N7—N81.146 (3)C10—H10B0.9600
N9—N101.153 (3)C10—H10C0.9600
N10—N111.192 (3)C11—C121.516 (4)
N11—Cu2iii2.006 (2)C11—H11A0.9700
N12—C81.472 (3)C11—H11B0.9700
N12—H12D0.9000C12—H12A0.9600
N12—H12E0.9000C12—H12B0.9600
N13—C91.479 (3)C12—H12C0.9600
N13—C71.482 (3)C13—C141.511 (3)
N13—C111.500 (3)C13—H13A0.9700
N14—N151.167 (3)C13—H13B0.9700
N15—N161.127 (3)C14—H14A0.9700
N17—N181.170 (3)C14—H14B0.9700
N18—N191.154 (3)C15—C161.507 (4)
N20—N211.166 (3)C15—H15A0.9700
N20—Cu3ii2.0269 (19)C15—H15B0.9700
N21—N221.164 (3)C16—H16A0.9600
N23—C151.483 (3)C16—H16B0.9600
N23—C141.485 (3)C16—H16C0.9600
N23—C171.502 (3)C17—C181.516 (4)
N24—C131.473 (3)C17—H17A0.9700
N24—H24A0.9000C17—H17B0.9700
N24—H24B0.9000C18—H18A0.9600
C1—C21.503 (4)C18—H18B0.9600
C1—H1A0.9700C18—H18C0.9600
N6—Cu1—N2169.89 (9)C3—C4—H4A109.5
N6—Cu1—N391.52 (9)C3—C4—H4B109.5
N2—Cu1—N393.96 (8)H4A—C4—H4B109.5
N6—Cu1—N192.82 (9)C3—C4—H4C109.5
N2—Cu1—N185.59 (8)H4A—C4—H4C109.5
N3—Cu1—N1156.09 (8)H4B—C4—H4C109.5
N14—Cu2—N12171.30 (12)C6—C5—N1114.6 (3)
N14—Cu2—N11i93.02 (10)C6—C5—H5A108.6
N12—Cu2—N11i92.72 (8)N1—C5—H5A108.6
N14—Cu2—N1391.96 (10)C6—C5—H5B108.6
N12—Cu2—N1385.10 (7)N1—C5—H5B108.6
N11i—Cu2—N13158.19 (9)H5A—C5—H5B107.6
N17—Cu3—N24175.07 (9)C5—C6—H6A109.5
N17—Cu3—N20ii91.67 (9)C5—C6—H6B109.5
N24—Cu3—N20ii92.09 (8)H6A—C6—H6B109.5
N17—Cu3—N2392.22 (8)C5—C6—H6C109.5
N24—Cu3—N2385.03 (8)H6A—C6—H6C109.5
N20ii—Cu3—N23163.83 (8)H6B—C6—H6C109.5
N17—Cu3—N2090.89 (8)N13—C7—C8109.56 (18)
N24—Cu3—N2085.94 (7)N13—C7—H7A109.8
N20ii—Cu3—N2089.64 (7)C8—C7—H7A109.8
N23—Cu3—N20105.99 (7)N13—C7—H7B109.8
C2—N1—C5110.9 (2)C8—C7—H7B109.8
C2—N1—C3111.3 (2)H7A—C7—H7B108.2
C5—N1—C3110.1 (2)N12—C8—C7106.67 (18)
C2—N1—Cu1104.86 (14)N12—C8—H8A110.4
C5—N1—Cu1110.64 (17)C7—C8—H8A110.4
C3—N1—Cu1108.84 (15)N12—C8—H8B110.4
C1—N2—Cu1107.99 (14)C7—C8—H8B110.4
C1—N2—H2C109.3H8A—C8—H8B108.6
Cu1—N2—H2C110.3N13—C9—C10113.1 (2)
C1—N2—H2D107.4N13—C9—H9A109.0
Cu1—N2—H2D108.4C10—C9—H9A109.0
H2C—N2—H2D113.3N13—C9—H9B109.0
N4—N3—Cu1126.31 (17)C10—C9—H9B109.0
N5—N4—N3176.9 (3)H9A—C9—H9B107.8
N7—N6—Cu1121.99 (17)C9—C10—H10A109.5
N8—N7—N6177.8 (3)C9—C10—H10B109.5
N9—N10—N11178.3 (2)H10A—C10—H10B109.5
N10—N11—Cu2iii119.92 (16)C9—C10—H10C109.5
C8—N12—Cu2108.69 (14)H10A—C10—H10C109.5
C8—N12—H12D108.3H10B—C10—H10C109.5
Cu2—N12—H12D112.5N13—C11—C12116.8 (2)
C8—N12—H12E106.4N13—C11—H11A108.1
Cu2—N12—H12E113.0C12—C11—H11A108.1
H12D—N12—H12E107.7N13—C11—H11B108.1
C9—N13—C7111.3 (2)C12—C11—H11B108.1
C9—N13—C11110.2 (2)H11A—C11—H11B107.3
C7—N13—C11110.90 (19)C11—C12—H12A109.5
C9—N13—Cu2110.11 (16)C11—C12—H12B109.5
C7—N13—Cu2105.66 (14)H12A—C12—H12B109.5
C11—N13—Cu2108.55 (14)C11—C12—H12C109.5
N15—N14—Cu2120.6 (2)H12A—C12—H12C109.5
N16—N15—N14177.8 (3)H12B—C12—H12C109.5
N18—N17—Cu3125.29 (19)N24—C13—C14106.84 (19)
N19—N18—N17177.3 (3)N24—C13—H13A110.4
N21—N20—Cu3ii117.87 (17)C14—C13—H13A110.4
N21—N20—Cu3118.31 (16)N24—C13—H13B110.4
Cu3ii—N20—Cu390.36 (7)C14—C13—H13B110.4
N22—N21—N20177.5 (3)H13A—C13—H13B108.6
C15—N23—C14110.84 (19)N23—C14—C13109.77 (18)
C15—N23—C17111.2 (2)N23—C14—H14A109.7
C14—N23—C17110.46 (19)C13—C14—H14A109.7
C15—N23—Cu3109.68 (16)N23—C14—H14B109.7
C14—N23—Cu3106.38 (14)C13—C14—H14B109.7
C17—N23—Cu3108.16 (14)H14A—C14—H14B108.2
C13—N24—Cu3107.38 (14)N23—C15—C16113.7 (2)
C13—N24—H24A111.2N23—C15—H15A108.8
Cu3—N24—H24A111.0C16—C15—H15A108.8
C13—N24—H24B108.2N23—C15—H15B108.8
Cu3—N24—H24B112.1C16—C15—H15B108.8
H24A—N24—H24B107.0H15A—C15—H15B107.7
N2—C1—C2107.0 (2)C15—C16—H16A109.5
N2—C1—H1A110.3C15—C16—H16B109.5
C2—C1—H1A110.3H16A—C16—H16B109.5
N2—C1—H1B110.3C15—C16—H16C109.5
C2—C1—H1B110.3H16A—C16—H16C109.5
H1A—C1—H1B108.6H16B—C16—H16C109.5
N1—C2—C1109.48 (19)N23—C17—C18115.9 (2)
N1—C2—H2A109.8N23—C17—H17A108.3
C1—C2—H2A109.8C18—C17—H17A108.3
N1—C2—H2B109.8N23—C17—H17B108.3
C1—C2—H2B109.8C18—C17—H17B108.3
H2A—C2—H2B108.2H17A—C17—H17B107.4
N1—C3—C4117.1 (2)C17—C18—H18A109.5
N1—C3—H3A108.0C17—C18—H18B109.5
C4—C3—H3A108.0H18A—C18—H18B109.5
N1—C3—H3B108.0C17—C18—H18C109.5
C4—C3—H3B108.0H18A—C18—H18C109.5
H3A—C3—H3B107.3H18B—C18—H18C109.5
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N11i0.892.413.095 (3)134
N2—H2D···N6i0.892.353.186 (3)156
N12—H12D···N8iv0.892.283.087 (3)151
N12—H12E···N3i0.892.513.067 (3)121
N24—H24A···N17ii0.892.373.189 (3)153
N24—H24A···N18ii0.892.673.531 (3)163
N24—H24B···N19v0.902.183.031 (3)157
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iv) x, y, z1; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(N3)4(C6H16N2)2][Cu(N3)2(C6H16N2)]
Mr791.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)22.722 (2), 13.2010 (12), 11.6488 (10)
β (°) 92.478 (2)
V3)3490.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
28917, 7614, 6149
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.02
No. of reflections7614
No. of parameters412
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Cu1—N61.9663 (19)Cu2—N11i2.006 (2)
Cu1—N21.9792 (18)Cu2—N132.0779 (19)
Cu1—N31.983 (2)Cu3—N171.975 (2)
Cu1—N12.0827 (19)Cu3—N241.9950 (18)
Cu1—N92.562 (2)Cu3—N20ii2.0269 (19)
Cu2—N52.654 (2)Cu3—N232.0773 (19)
Cu2—N141.936 (2)Cu3—N202.4458 (19)
Cu2—N121.9673 (18)
N6—Cu1—N2169.89 (9)N11i—Cu2—N13158.19 (9)
N6—Cu1—N391.52 (9)N17—Cu3—N24175.07 (9)
N2—Cu1—N393.96 (8)N17—Cu3—N20ii91.67 (9)
N6—Cu1—N192.82 (9)N24—Cu3—N20ii92.09 (8)
N2—Cu1—N185.59 (8)N17—Cu3—N2392.22 (8)
N3—Cu1—N1156.09 (8)N24—Cu3—N2385.03 (8)
N14—Cu2—N12171.30 (12)N20ii—Cu3—N23163.83 (8)
N14—Cu2—N11i93.02 (10)N17—Cu3—N2090.89 (8)
N12—Cu2—N11i92.72 (8)N24—Cu3—N2085.94 (7)
N14—Cu2—N1391.96 (10)N20ii—Cu3—N2089.64 (7)
N12—Cu2—N1385.10 (7)N23—Cu3—N20105.99 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···N11i0.892.413.095 (3)134
N2—H2D···N6i0.892.353.186 (3)156
N12—H12D···N8iii0.892.283.087 (3)151
N12—H12E···N3i0.892.513.067 (3)121
N24—H24A···N17ii0.892.373.189 (3)153
N24—H24A···N18ii0.892.673.531 (3)163
N24—H24B···N19iv0.902.183.031 (3)157
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds