Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C14H24ClNO, the bond lengths and angles are within normal ranges and comparable to those of related compounds. The geometry of the two cyclo­hexyl groups is the normal chair conformation. The crystal packing is stabilized by C—H...C short-contact inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053366/hg2321sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053366/hg2321Isup2.hkl
Contains datablock I

CCDC reference: 672815

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.095
  • Data-to-parameter ratio = 21.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT410_ALERT_2_C Short Intra H...H Contact H7 .. H14A .. 1.95 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.86 From the CIF: _reflns_number_total 3363 Count of symmetry unique reflns 1927 Completeness (_total/calc) 174.52% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1436 Fraction of Friedel pairs measured 0.745 Are heavy atom types Z>Si present yes PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

N-Substituted-2-chloroacetamides are important intermediates in organic synthesis. They can be used in the synthesis of many derivatives such as (quinolin-8-yl-oxy)acetamide (Zhang, Xu et al., 2006), 2,5-piperazinedione (Wen, Zhang et al., 2006) and 2,2-(1,3,4- thiadiazolyl-2,5-dithio)diacetamide (Wen et al., 2005). Here, we have synthesized and carried out the structure determination of the title compound, (I) (Fig. 1), a new N,N-disubstituted-2- chloroacetamide.

In the molecule of (I), the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987), and comparable to those of the related compounds, 2-chloro-N-(4-nitrophenyl)acetamide (Wen, Li et al., 2006), and 2-chloro-N-(4-ethoxyphenyl)acetamide (Zhang, Wen et al., 2006). The C1/C7/C13/N1 andN1/C1/C14/O1 units are planar, with the dihedral angle between them 4.12 (2)°. The geometries of two cyclohexyl groups are the normal chair conformations. The crystal packing is stabilized by C9—H9···Cl short-contact interactions (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Wen et al. (2005); Wen, Li et al. (2006); Wen, Zhang et al. (2006); Zhang, Wen et al. (2006); Zhang, Xu et al. (2006).

Experimental top

Chloroacetyl chloride (5.65 g, 0.05 mol) was added to a solution of N,N-dicyclohexylamine (9.05 g, 0.05 mol) and triethylamine (5.1 g, 0.05 mol) in benzene (60 ml) over a period of 40 min, with cooling in an ice bath, and then the mixture was stirred at room remperature for 5 h. After separation of the triethylamine hydrochloride by filtration, the organic phase was washed three times with water. The benzene layer was removed and evaporated. The title compound was obtained after drying the colorless powder at room temperature for 48 h. Colourless single cystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 8 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the a axis, showing the short-contact interactions (dashed lines).
2-Chloro-N,N-dicyclohexylacetamide top
Crystal data top
C14H24ClNOF(000) = 560
Mr = 257.79Dx = 1.213 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3915 reflections
a = 10.339 (2) Åθ = 2.5–27.9°
b = 11.051 (2) ŵ = 0.26 mm1
c = 12.358 (3) ÅT = 113 K
V = 1412.1 (5) Å3Column, colourless
Z = 40.08 × 0.06 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.980, Tmax = 0.990k = 1414
17892 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3363 reflectionsΔρmax = 0.18 e Å3
154 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1436 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C14H24ClNOV = 1412.1 (5) Å3
Mr = 257.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.339 (2) ŵ = 0.26 mm1
b = 11.051 (2) ÅT = 113 K
c = 12.358 (3) Å0.08 × 0.06 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3079 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.047
17892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.28 e Å3
3363 reflectionsAbsolute structure: Flack (1983), with 1436 Friedel pairs
154 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05746 (5)0.20328 (5)0.33226 (4)0.03999 (15)
O10.10518 (11)0.25868 (10)0.57080 (11)0.0253 (3)
N10.03499 (12)0.10126 (12)0.59095 (10)0.0172 (3)
C10.04307 (15)0.04407 (14)0.67755 (12)0.0173 (3)
H10.00690.02610.70210.021*
C20.17229 (16)0.00591 (15)0.63806 (13)0.0194 (3)
H2A0.15810.05840.57630.023*
H2B0.22760.06030.61530.023*
C30.23877 (16)0.07731 (15)0.72882 (14)0.0219 (4)
H3A0.32310.10420.70430.026*
H3B0.18770.14840.74590.026*
C40.25466 (17)0.00027 (16)0.83032 (15)0.0244 (4)
H4A0.31420.06560.81560.029*
H4B0.29120.04930.88780.029*
C50.12543 (17)0.05114 (16)0.86687 (14)0.0245 (4)
H5A0.06890.01470.88830.029*
H5B0.13880.10260.92940.029*
C60.06063 (17)0.12441 (15)0.77701 (13)0.0219 (4)
H6A0.11380.19380.75870.026*
H6B0.02280.15370.80150.026*
C70.14973 (16)0.03393 (14)0.55313 (14)0.0185 (3)
H70.18660.08040.49300.022*
C80.25475 (16)0.02467 (16)0.63952 (15)0.0235 (4)
H8A0.22240.02040.70120.028*
H8B0.27870.10500.66400.028*
C90.37321 (17)0.03934 (16)0.59224 (17)0.0281 (4)
H9A0.40930.00960.53450.034*
H9B0.43860.04780.64800.034*
C100.33861 (18)0.16382 (16)0.54811 (16)0.0301 (4)
H10A0.41480.20070.51630.036*
H10B0.30930.21520.60680.036*
C110.23278 (19)0.15410 (17)0.46302 (15)0.0298 (4)
H11A0.20920.23450.43860.036*
H11B0.26520.10930.40120.036*
C120.11336 (17)0.09055 (15)0.50785 (14)0.0228 (4)
H12A0.07530.13950.56470.027*
H12B0.04970.08110.45080.027*
C130.00411 (15)0.20666 (15)0.54622 (13)0.0187 (3)
C140.08384 (16)0.26703 (14)0.46292 (14)0.0217 (4)
H14A0.17350.25590.48370.026*
H14B0.06630.35320.46080.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (3)0.0581 (3)0.0220 (2)0.0139 (2)0.0001 (2)0.0024 (2)
O10.0185 (6)0.0240 (6)0.0336 (7)0.0053 (5)0.0043 (5)0.0066 (5)
N10.0148 (7)0.0173 (7)0.0196 (6)0.0019 (5)0.0044 (6)0.0026 (5)
C10.0172 (8)0.0171 (8)0.0175 (7)0.0006 (6)0.0015 (7)0.0026 (6)
C20.0187 (8)0.0229 (8)0.0166 (8)0.0003 (6)0.0002 (7)0.0010 (7)
C30.0214 (9)0.0230 (9)0.0215 (8)0.0039 (7)0.0037 (7)0.0001 (7)
C40.0245 (9)0.0275 (9)0.0211 (8)0.0037 (7)0.0073 (8)0.0006 (8)
C50.0290 (10)0.0278 (9)0.0165 (8)0.0002 (7)0.0020 (7)0.0017 (7)
C60.0208 (8)0.0257 (9)0.0191 (7)0.0024 (7)0.0004 (7)0.0035 (7)
C70.0168 (8)0.0174 (8)0.0214 (8)0.0015 (6)0.0038 (7)0.0005 (7)
C80.0159 (8)0.0227 (9)0.0320 (10)0.0004 (6)0.0003 (7)0.0005 (7)
C90.0183 (9)0.0251 (9)0.0408 (11)0.0041 (7)0.0035 (8)0.0068 (8)
C100.0278 (10)0.0243 (9)0.0381 (11)0.0083 (8)0.0114 (9)0.0065 (8)
C110.0410 (11)0.0219 (9)0.0264 (10)0.0066 (8)0.0119 (9)0.0019 (7)
C120.0253 (9)0.0211 (8)0.0221 (8)0.0003 (7)0.0012 (7)0.0017 (7)
C130.0159 (8)0.0195 (8)0.0206 (8)0.0006 (6)0.0007 (6)0.0018 (7)
C140.0218 (9)0.0182 (8)0.0250 (9)0.0004 (6)0.0017 (7)0.0033 (7)
Geometric parameters (Å, º) top
Cl1—C141.7827 (18)C6—H6B0.9700
O1—C131.2308 (19)C7—C81.526 (2)
N1—C131.351 (2)C7—C121.532 (2)
N1—C71.476 (2)C7—H70.9800
N1—C11.4819 (19)C8—C91.530 (2)
C1—C21.526 (2)C8—H8A0.9700
C1—C61.527 (2)C8—H8B0.9700
C1—H10.9800C9—C101.522 (3)
C2—C31.534 (2)C9—H9A0.9700
C2—H2A0.9700C9—H9B0.9700
C2—H2B0.9700C10—C111.521 (3)
C3—C41.525 (2)C10—H10A0.9700
C3—H3A0.9700C10—H10B0.9700
C3—H3B0.9700C11—C121.525 (3)
C4—C51.521 (2)C11—H11A0.9700
C4—H4A0.9700C11—H11B0.9700
C4—H4B0.9700C12—H12A0.9700
C5—C61.529 (2)C12—H12B0.9700
C5—H5A0.9700C13—C141.527 (2)
C5—H5B0.9700C14—H14A0.9700
C6—H6A0.9700C14—H14B0.9700
C13—N1—C7123.05 (13)N1—C7—H7106.8
C13—N1—C1120.01 (13)C8—C7—H7106.8
C7—N1—C1116.83 (13)C12—C7—H7106.8
N1—C1—C2113.59 (13)C7—C8—C9109.47 (15)
N1—C1—C6113.46 (13)C7—C8—H8A109.8
C2—C1—C6111.34 (13)C9—C8—H8A109.8
N1—C1—H1105.9C7—C8—H8B109.8
C2—C1—H1105.9C9—C8—H8B109.8
C6—C1—H1105.9H8A—C8—H8B108.2
C1—C2—C3110.16 (13)C10—C9—C8111.50 (15)
C1—C2—H2A109.6C10—C9—H9A109.3
C3—C2—H2A109.6C8—C9—H9A109.3
C1—C2—H2B109.6C10—C9—H9B109.3
C3—C2—H2B109.6C8—C9—H9B109.3
H2A—C2—H2B108.1H9A—C9—H9B108.0
C4—C3—C2111.26 (14)C11—C10—C9110.66 (15)
C4—C3—H3A109.4C11—C10—H10A109.5
C2—C3—H3A109.4C9—C10—H10A109.5
C4—C3—H3B109.4C11—C10—H10B109.5
C2—C3—H3B109.4C9—C10—H10B109.5
H3A—C3—H3B108.0H10A—C10—H10B108.1
C5—C4—C3111.00 (14)C10—C11—C12111.34 (15)
C5—C4—H4A109.4C10—C11—H11A109.4
C3—C4—H4A109.4C12—C11—H11A109.4
C5—C4—H4B109.4C10—C11—H11B109.4
C3—C4—H4B109.4C12—C11—H11B109.4
H4A—C4—H4B108.0H11A—C11—H11B108.0
C4—C5—C6111.54 (14)C11—C12—C7110.34 (15)
C4—C5—H5A109.3C11—C12—H12A109.6
C6—C5—H5A109.3C7—C12—H12A109.6
C4—C5—H5B109.3C11—C12—H12B109.6
C6—C5—H5B109.3C7—C12—H12B109.6
H5A—C5—H5B108.0H12A—C12—H12B108.1
C1—C6—C5109.20 (13)O1—C13—N1123.76 (15)
C1—C6—H6A109.8O1—C13—C14117.90 (15)
C5—C6—H6A109.8N1—C13—C14118.31 (14)
C1—C6—H6B109.8C13—C14—Cl1110.29 (12)
C5—C6—H6B109.8C13—C14—H14A109.6
H6A—C6—H6B108.3Cl1—C14—H14A109.6
N1—C7—C8112.58 (13)C13—C14—H14B109.6
N1—C7—C12111.78 (13)Cl1—C14—H14B109.6
C8—C7—C12111.71 (14)H14A—C14—H14B108.1
C13—N1—C1—C269.27 (18)C1—N1—C7—C1259.52 (18)
C7—N1—C1—C2107.01 (15)N1—C7—C8—C9176.61 (13)
C13—N1—C1—C659.22 (19)C12—C7—C8—C956.66 (18)
C7—N1—C1—C6124.51 (15)C7—C8—C9—C1056.9 (2)
N1—C1—C2—C3172.81 (13)C8—C9—C10—C1157.0 (2)
C6—C1—C2—C357.63 (18)C9—C10—C11—C1256.2 (2)
C1—C2—C3—C455.47 (19)C10—C11—C12—C755.71 (19)
C2—C3—C4—C555.04 (19)N1—C7—C12—C11176.38 (14)
C3—C4—C5—C656.40 (19)C8—C7—C12—C1156.45 (18)
N1—C1—C6—C5172.10 (12)C7—N1—C13—O1173.80 (15)
C2—C1—C6—C558.27 (18)C1—N1—C13—O12.2 (2)
C4—C5—C6—C157.46 (19)C7—N1—C13—C148.2 (2)
C13—N1—C7—C8116.68 (17)C1—N1—C13—C14175.78 (14)
C1—N1—C7—C867.17 (17)O1—C13—C14—Cl198.04 (16)
C13—N1—C7—C12116.62 (16)N1—C13—C14—Cl183.83 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.393.255 (2)148
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H24ClNO
Mr257.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)10.339 (2), 11.051 (2), 12.358 (3)
V3)1412.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
17892, 3363, 3079
Rint0.047
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.02
No. of reflections3363
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28
Absolute structureFlack (1983), with 1436 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker 2001), SAINT (Bruker 2001), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
Cl1—C141.7827 (18)N1—C71.476 (2)
O1—C131.2308 (19)C13—C141.527 (2)
N1—C131.351 (2)
C13—N1—C7123.05 (13)N1—C1—C2113.59 (13)
C13—N1—C1120.01 (13)N1—C1—C6113.46 (13)
C7—N1—C1116.83 (13)C2—C1—C6111.34 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.393.255 (2)148.1
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds