Download citation
Download citation
link to html
The title compound, [Ni(NCS)2(C5H6N2)4], crystallizes with two independent half-mol­ecules in the asymmetric unit; each Ni atom lies on a centre of symmetry. In both independent mol­ecules, each NiII ion displays a compressed octa­hedral coordination geometry, with six N atoms from two thio­cyanate anions and four 1-vinyl­imidazole ligands building the NiN6 chromophore. In the crystal structure, π–π stacking inter­actions [centroid-to-centroid distance = 4.685 (3) Å] link the two independent mol­ecules into a one-dimensional chain running along the a axis. Inter­molecular C—H...S hydrogen bonds further stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039888/hg2278sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039888/hg2278Isup2.hkl
Contains datablock I

CCDC reference: 660127

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.014 Å
  • R factor = 0.052
  • wR factor = 0.198
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT230_ALERT_2_C Hirshfeld Test Diff for N8 - C14 .. 5.63 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 14
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.05 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni2 (2) 2.07 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (Fig. 1). In the two independent molecules, each NiII ion, which are located on crystallographic centres of symmetry, displays a compressed octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-vinylimidazole ligands building the NiN6 chromophore. The equatorial planes in the two independent molecules are formed by four Ni—N(1-vinylimadazole) bonds with lengths ranging from 2.106 (5) to 2.118 (6) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.067 (6) and 2.065 (5) Å]. These values agree well with those observed in [Ni(NCS)2(1-methylimidazole)4] (Liu et al., 2005) and [Ni(NCS)2(1-ethylimidazole)4] (Liu et al., 2006). In the crystal, the distance of 4.685 (3)Å of Cg1···Cg1 [Cg1 is centroids of N9–N10/C18–C20; symmetry code: 1-X,-Y,1-Z] shows a presence of π···π stacking interactions which link the two independent molecules into 1-D chain running along the a axis. Intermolecular C—H···S hydrogen bonds further stabilize the crystal structure.

Related literature top

For related literature, see: Liu et al. (2005, 2006).

Experimental top

The title compound was prepared by the reaction of 1-vinylimidazole (1.88 g, 20 mmol) with NiCl2.6H2O(1.19 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in a stainless-steel reactor with Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (Fig. 1). In the two independent molecules, each NiII ion, which are located on crystallographic centres of symmetry, displays a compressed octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-vinylimidazole ligands building the NiN6 chromophore. The equatorial planes in the two independent molecules are formed by four Ni—N(1-vinylimadazole) bonds with lengths ranging from 2.106 (5) to 2.118 (6) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.067 (6) and 2.065 (5) Å]. These values agree well with those observed in [Ni(NCS)2(1-methylimidazole)4] (Liu et al., 2005) and [Ni(NCS)2(1-ethylimidazole)4] (Liu et al., 2006). In the crystal, the distance of 4.685 (3)Å of Cg1···Cg1 [Cg1 is centroids of N9–N10/C18–C20; symmetry code: 1-X,-Y,1-Z] shows a presence of π···π stacking interactions which link the two independent molecules into 1-D chain running along the a axis. Intermolecular C—H···S hydrogen bonds further stabilize the crystal structure.

For related literature, see: Liu et al. (2005, 2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis.
Bis(thiocyanato-κN)tetrakis(1-vinyl-1H-imidazole-κN3)nickel(II) top
Crystal data top
[Ni(NCS)2(C5H6N2)4]Z = 2
Mr = 551.34F(000) = 572
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6400 (19) ÅCell parameters from 3253 reflections
b = 10.242 (2) Åθ = 4–14°
c = 14.705 (3) ŵ = 0.91 mm1
α = 109.46 (3)°T = 293 K
β = 90.16 (3)°Block, blue
γ = 100.16 (3)°0.30 × 0.30 × 0.20 mm
V = 1344.5 (6) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5257 independent reflections
Radiation source: fine-focus sealed tube3080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
thin–slice ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 011
Tmin = 0.773, Tmax = 0.839k = 1212
5593 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1152P)2 + 2.8055P]
where P = (Fo2 + 2Fc2)/3
5257 reflections(Δ/σ)max = 0.032
307 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = 1.65 e Å3
Crystal data top
[Ni(NCS)2(C5H6N2)4]γ = 100.16 (3)°
Mr = 551.34V = 1344.5 (6) Å3
Triclinic, P1Z = 2
a = 9.6400 (19) ÅMo Kα radiation
b = 10.242 (2) ŵ = 0.91 mm1
c = 14.705 (3) ÅT = 293 K
α = 109.46 (3)°0.30 × 0.30 × 0.20 mm
β = 90.16 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5257 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3080 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.839Rint = 0.034
5593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.198H-atom parameters constrained
S = 1.01Δρmax = 0.66 e Å3
5257 reflectionsΔρmin = 1.65 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.0496 (4)
S10.0867 (3)0.2078 (3)0.07754 (18)0.0870 (8)
N10.3250 (7)0.0951 (7)0.0234 (4)0.0646 (17)
N30.3709 (9)0.3102 (8)0.1314 (6)0.080 (2)
N20.4058 (6)0.1414 (7)0.0687 (4)0.0597 (16)
N50.7598 (6)0.2755 (6)0.2474 (4)0.0493 (13)
N40.5948 (6)0.1415 (6)0.1351 (4)0.0530 (14)
C60.3214 (10)0.4777 (10)0.2129 (7)0.085
H6A0.24220.44010.23610.102*
H6B0.34300.55240.22930.102*
C50.4024 (15)0.4254 (13)0.1574 (9)0.122 (4)
H5A0.48150.46340.13450.147*
C30.2604 (12)0.2492 (12)0.1510 (8)0.099 (3)
H3A0.18370.27390.18410.118*
C40.2797 (9)0.1443 (11)0.1141 (7)0.086 (3)
H4A0.21780.08270.11820.104*
C20.4563 (10)0.2409 (9)0.0822 (7)0.076 (2)
H2A0.54250.26370.06070.091*
C110.9296 (9)0.4409 (8)0.3719 (6)0.068 (2)
H11A0.85780.47840.40770.082*
H11B1.02350.47670.39480.082*
C100.8991 (8)0.3395 (8)0.2904 (5)0.0562 (18)
H10A0.97400.30510.25690.067*
C80.6330 (8)0.3001 (8)0.2836 (5)0.0569 (18)
H8A0.61860.36150.34410.068*
C90.5329 (8)0.2177 (8)0.2143 (5)0.0584 (19)
H9A0.43610.21310.21940.070*
C70.7300 (8)0.1789 (8)0.1588 (5)0.0566 (18)
H7A0.79840.14240.11850.068*
C10.2269 (7)0.1420 (8)0.0464 (5)0.0520 (17)
Ni20.00000.00000.50000.0402 (3)
S20.3353 (2)0.3734 (2)0.4538 (2)0.0853 (8)
N60.1136 (6)0.1787 (6)0.4808 (5)0.0547 (15)
N80.1142 (8)0.2379 (10)0.2048 (5)0.086 (3)
N70.0582 (6)0.0859 (6)0.3503 (4)0.0514 (14)
N100.3853 (6)0.1437 (6)0.4179 (4)0.0526 (14)
N90.1789 (5)0.0955 (5)0.4706 (4)0.0459 (13)
C170.1907 (10)0.4674 (10)0.1355 (8)0.087
H17A0.19610.46930.19820.104*
H17B0.21630.55040.08310.104*
C160.1493 (15)0.3543 (14)0.1217 (11)0.145 (5)
H16A0.14240.34810.06010.174*
C140.0759 (10)0.1120 (11)0.1937 (7)0.079 (3)
H14A0.07460.09290.13610.095*
C150.0403 (8)0.0209 (9)0.2817 (5)0.065 (2)
H15A0.00740.07510.29560.077*
C130.1039 (9)0.2177 (9)0.3013 (7)0.074 (2)
H13A0.12650.28860.32810.089*
C220.5619 (9)0.0592 (11)0.3267 (7)0.087 (3)
H22A0.50620.00050.31470.104*
H22B0.65060.06150.30220.104*
C210.5170 (8)0.1359 (9)0.3762 (6)0.067 (2)
H21A0.57650.19280.38620.080*
C190.3321 (9)0.2359 (8)0.4646 (6)0.065 (2)
H19A0.37470.30590.47330.079*
C200.2070 (8)0.2054 (8)0.4953 (6)0.0607 (19)
H20A0.14780.25270.52870.073*
C180.2891 (7)0.0618 (7)0.4241 (5)0.0493 (16)
H18A0.29880.01080.39850.059*
C120.2049 (7)0.2587 (6)0.4678 (5)0.0449 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0353 (7)0.0620 (8)0.0486 (8)0.0122 (6)0.0028 (5)0.0136 (6)
S10.0682 (14)0.123 (2)0.0795 (16)0.0500 (14)0.0290 (12)0.0312 (15)
N10.054 (4)0.076 (5)0.057 (4)0.023 (3)0.006 (3)0.009 (3)
N30.090 (6)0.069 (5)0.082 (5)0.001 (4)0.009 (4)0.034 (4)
N20.052 (4)0.067 (4)0.055 (4)0.002 (3)0.005 (3)0.019 (3)
N50.048 (3)0.056 (3)0.043 (3)0.011 (3)0.006 (3)0.015 (3)
N40.045 (3)0.062 (4)0.047 (3)0.010 (3)0.003 (3)0.011 (3)
C60.0850.0850.0850.0160.0060.029
C50.046 (4)0.065 (5)0.039 (4)0.011 (4)0.001 (3)0.010 (3)
C30.083 (7)0.120 (9)0.100 (8)0.003 (7)0.003 (6)0.058 (7)
C40.064 (6)0.112 (8)0.097 (7)0.010 (5)0.018 (5)0.057 (6)
C20.069 (6)0.072 (6)0.086 (6)0.010 (5)0.002 (5)0.026 (5)
C110.072 (5)0.063 (5)0.061 (5)0.006 (4)0.004 (4)0.014 (4)
C100.055 (4)0.058 (4)0.048 (4)0.005 (3)0.003 (3)0.011 (4)
C80.062 (5)0.060 (4)0.043 (4)0.013 (4)0.006 (3)0.011 (3)
C90.052 (4)0.075 (5)0.050 (4)0.020 (4)0.006 (3)0.020 (4)
C70.049 (4)0.068 (5)0.046 (4)0.009 (3)0.004 (3)0.011 (4)
C10.046 (4)0.065 (5)0.039 (4)0.011 (4)0.001 (3)0.010 (3)
Ni20.0363 (6)0.0390 (6)0.0454 (7)0.0030 (5)0.0010 (5)0.0197 (5)
S20.0629 (13)0.0617 (13)0.134 (2)0.0008 (10)0.0420 (14)0.0422 (14)
N60.052 (3)0.047 (3)0.068 (4)0.002 (3)0.004 (3)0.029 (3)
N80.073 (4)0.103 (5)0.054 (3)0.022 (3)0.020 (3)0.012 (3)
N70.049 (3)0.053 (4)0.052 (3)0.005 (3)0.004 (3)0.019 (3)
N100.043 (3)0.054 (3)0.059 (4)0.012 (3)0.002 (3)0.017 (3)
N90.042 (3)0.046 (3)0.053 (3)0.004 (2)0.001 (3)0.022 (3)
C170.0870.0870.0870.0160.0060.029
C160.148 (3)0.067 (4)0.037 (3)0.009 (3)0.000 (2)0.010 (3)
C140.072 (6)0.101 (8)0.068 (6)0.021 (5)0.000 (5)0.032 (6)
C150.067 (5)0.080 (5)0.050 (5)0.014 (4)0.001 (4)0.025 (4)
C130.069 (5)0.067 (5)0.075 (6)0.003 (4)0.017 (4)0.016 (5)
C220.053 (5)0.124 (8)0.080 (6)0.009 (5)0.002 (4)0.033 (6)
C210.052 (5)0.076 (5)0.071 (5)0.013 (4)0.010 (4)0.020 (5)
C190.072 (5)0.055 (4)0.084 (6)0.028 (4)0.015 (4)0.035 (4)
C200.067 (5)0.052 (4)0.073 (5)0.011 (4)0.013 (4)0.034 (4)
C180.049 (4)0.054 (4)0.045 (4)0.002 (3)0.001 (3)0.022 (3)
C120.049 (4)0.039 (3)0.050 (4)0.011 (3)0.011 (3)0.017 (3)
Geometric parameters (Å, º) top
Ni1—N1i2.067 (6)Ni2—N6ii2.065 (5)
Ni1—N12.067 (6)Ni2—N62.065 (5)
Ni1—N22.111 (6)Ni2—N92.106 (5)
Ni1—N2i2.111 (6)Ni2—N9ii2.106 (5)
Ni1—N4i2.118 (6)Ni2—N72.113 (6)
Ni1—N42.118 (6)Ni2—N7ii2.113 (6)
S1—C11.615 (7)S2—C121.626 (7)
N1—C11.138 (9)N6—C121.155 (8)
N3—C31.313 (13)N8—C141.341 (12)
N3—C21.358 (11)N8—C131.366 (11)
N3—C51.434 (14)N8—C161.383 (15)
N2—C21.276 (10)N7—C131.294 (10)
N2—C41.388 (10)N7—C151.378 (9)
N5—C71.341 (9)N10—C181.340 (9)
N5—C81.366 (9)N10—C191.375 (9)
N5—C101.429 (9)N10—C211.413 (9)
N4—C71.303 (8)N9—C181.321 (8)
N4—C91.373 (9)N9—C201.361 (8)
C6—C51.308 (14)C17—C161.240 (19)
C6—H6A0.9300C17—H17A0.9300
C6—H6B0.9300C17—H17B0.9300
C5—H5A0.9300C16—H16A0.9300
C3—C41.343 (13)C14—C151.320 (11)
C3—H3A0.9300C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C2—H2A0.9300C13—H13A0.9300
C11—C101.288 (10)C22—C211.264 (12)
C11—H11A0.9300C22—H22A0.9300
C11—H11B0.9300C22—H22B0.9300
C10—H10A0.9300C21—H21A0.9300
C8—C91.348 (10)C19—C201.340 (10)
C8—H8A0.9300C19—H19A0.9300
C9—H9A0.9300C20—H20A0.9300
C7—H7A0.9300C18—H18A0.9300
N1i—Ni1—N1180.0 (3)N6ii—Ni2—N6180.00 (18)
N1i—Ni1—N290.5 (3)N6ii—Ni2—N990.4 (2)
N1—Ni1—N289.5 (3)N6—Ni2—N989.6 (2)
N1i—Ni1—N2i89.5 (3)N6ii—Ni2—N9ii89.6 (2)
N1—Ni1—N2i90.5 (3)N6—Ni2—N9ii90.4 (2)
N2—Ni1—N2i180.0 (3)N9—Ni2—N9ii180.0 (3)
N1i—Ni1—N4i89.7 (2)N6ii—Ni2—N790.2 (2)
N1—Ni1—N4i90.3 (2)N6—Ni2—N789.8 (2)
N2—Ni1—N4i90.2 (2)N9—Ni2—N787.7 (2)
N2i—Ni1—N4i89.8 (2)N9ii—Ni2—N792.3 (2)
N1i—Ni1—N490.3 (2)N6ii—Ni2—N7ii89.8 (2)
N1—Ni1—N489.7 (2)N6—Ni2—N7ii90.2 (2)
N2—Ni1—N489.8 (2)N9—Ni2—N7ii92.3 (2)
N2i—Ni1—N490.2 (2)N9ii—Ni2—N7ii87.7 (2)
N4i—Ni1—N4180.0 (2)N7—Ni2—N7ii180.000 (1)
C1—N1—Ni1171.2 (7)C12—N6—Ni2162.1 (6)
C3—N3—C2107.0 (8)C14—N8—C13107.9 (7)
C3—N3—C5128.4 (10)C14—N8—C16117.1 (9)
C2—N3—C5124.6 (10)C13—N8—C16134.9 (10)
C2—N2—C4103.6 (8)C13—N7—C15104.7 (7)
C2—N2—Ni1127.3 (6)C13—N7—Ni2126.1 (6)
C4—N2—Ni1129.0 (6)C15—N7—Ni2128.7 (5)
C7—N5—C8106.2 (6)C18—N10—C19105.5 (6)
C7—N5—C10124.8 (6)C18—N10—C21128.4 (7)
C8—N5—C10128.9 (6)C19—N10—C21126.1 (7)
C7—N4—C9104.8 (6)C18—N9—C20104.6 (6)
C7—N4—Ni1125.7 (5)C18—N9—Ni2127.7 (5)
C9—N4—Ni1129.4 (5)C20—N9—Ni2127.8 (5)
C5—C6—H6A120.0C16—C17—H17A120.0
C5—C6—H6B120.0C16—C17—H17B120.0
H6A—C6—H6B120.0H17A—C17—H17B120.0
C6—C5—N3120.9 (13)C17—C16—N8114.9 (13)
C6—C5—H5A119.6C17—C16—H16A122.5
N3—C5—H5A119.6N8—C16—H16A122.6
N3—C3—C4106.6 (9)C15—C14—N8105.5 (8)
N3—C3—H3A126.7C15—C14—H14A127.2
C4—C3—H3A126.7N8—C14—H14A127.2
C3—C4—N2109.9 (9)C14—C15—N7111.5 (8)
C3—C4—H4A125.0C14—C15—H15A124.3
N2—C4—H4A125.0N7—C15—H15A124.3
N2—C2—N3112.8 (9)N7—C13—N8110.4 (8)
N2—C2—H2A123.6N7—C13—H13A124.8
N3—C2—H2A123.6N8—C13—H13A124.8
C10—C11—H11A120.0C21—C22—H22A120.0
C10—C11—H11B120.0C21—C22—H22B120.0
H11A—C11—H11B120.0H22A—C22—H22B120.0
C11—C10—N5125.5 (7)C22—C21—N10126.4 (9)
C11—C10—H10A117.3C22—C21—H21A116.8
N5—C10—H10A117.3N10—C21—H21A116.8
C9—C8—N5106.4 (6)C20—C19—N10106.9 (6)
C9—C8—H8A126.8C20—C19—H19A126.6
N5—C8—H8A126.8N10—C19—H19A126.6
C8—C9—N4109.9 (7)C19—C20—N9110.4 (7)
C8—C9—H9A125.0C19—C20—H20A124.8
N4—C9—H9A125.0N9—C20—H20A124.8
N4—C7—N5112.7 (6)N9—C18—N10112.6 (6)
N4—C7—H7A123.7N9—C18—H18A123.7
N5—C7—H7A123.7N10—C18—H18A123.7
N1—C1—S1179.2 (7)N6—C12—S2177.9 (7)
N1i—Ni1—N2—C20.4 (7)N7ii—Ni2—N6—C1287.5 (19)
N1—Ni1—N2—C2179.6 (7)N6ii—Ni2—N7—C1319.3 (7)
N4i—Ni1—N2—C289.2 (7)N6—Ni2—N7—C13160.7 (7)
N4—Ni1—N2—C290.8 (7)N9—Ni2—N7—C1371.0 (7)
N1i—Ni1—N2—C4175.8 (7)N9ii—Ni2—N7—C13109.0 (7)
N1—Ni1—N2—C44.2 (7)N6ii—Ni2—N7—C15169.7 (6)
N4i—Ni1—N2—C494.6 (7)N6—Ni2—N7—C1510.3 (6)
N4—Ni1—N2—C485.4 (7)N9—Ni2—N7—C15100.0 (6)
N1i—Ni1—N4—C725.0 (7)N9ii—Ni2—N7—C1580.0 (6)
N1—Ni1—N4—C7155.0 (7)N6ii—Ni2—N9—C18159.1 (6)
N2—Ni1—N4—C7115.5 (6)N6—Ni2—N9—C1820.9 (6)
N2i—Ni1—N4—C764.5 (6)N7—Ni2—N9—C1869.0 (6)
N1—Ni1—N4—C922.0 (7)N7ii—Ni2—N9—C18111.0 (6)
N2—Ni1—N4—C967.5 (6)N6ii—Ni2—N9—C2021.0 (6)
N2i—Ni1—N4—C9112.5 (6)N6—Ni2—N9—C20159.0 (6)
C3—N3—C5—C64.9 (18)N7—Ni2—N9—C20111.1 (6)
C2—N3—C5—C6173.2 (10)N7ii—Ni2—N9—C2068.9 (6)
C2—N3—C3—C40.1 (11)C14—N8—C16—C17176.6 (11)
C5—N3—C3—C4178.3 (10)C13—N8—C16—C176 (2)
N3—C3—C4—N20.8 (12)C13—N8—C14—C151.6 (10)
C2—N2—C4—C31.3 (11)C16—N8—C14—C15176.5 (9)
Ni1—N2—C4—C3178.2 (6)N8—C14—C15—N71.4 (10)
C4—N2—C2—N31.2 (10)C13—N7—C15—C140.6 (9)
Ni1—N2—C2—N3178.2 (5)Ni2—N7—C15—C14173.1 (6)
C3—N3—C2—N20.8 (11)C15—N7—C13—N80.5 (9)
C5—N3—C2—N2179.3 (9)Ni2—N7—C13—N8172.3 (5)
C7—N5—C10—C11173.7 (8)C14—N8—C13—N71.4 (10)
C8—N5—C10—C114.3 (12)C16—N8—C13—N7176.3 (11)
C7—N5—C8—C90.6 (8)C18—N10—C21—C228.8 (14)
C10—N5—C8—C9177.6 (7)C19—N10—C21—C22174.1 (9)
N5—C8—C9—N40.1 (9)C18—N10—C19—C200.6 (8)
C7—N4—C9—C80.4 (9)C21—N10—C19—C20178.3 (7)
Ni1—N4—C9—C8177.1 (5)N10—C19—C20—N90.7 (9)
C9—N4—C7—N50.9 (9)C18—N9—C20—C190.4 (8)
Ni1—N4—C7—N5176.7 (5)Ni2—N9—C20—C19179.5 (5)
C8—N5—C7—N41.0 (9)C20—N9—C18—N100.0 (8)
C10—N5—C7—N4177.4 (6)Ni2—N9—C18—N10179.9 (4)
N9—Ni2—N6—C124.8 (19)C19—N10—C18—N90.4 (8)
N9ii—Ni2—N6—C12175.2 (19)C21—N10—C18—N9178.0 (6)
N7—Ni2—N6—C1292.5 (19)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1iii0.932.863.638 (8)142
C10—H10A···S1iii0.932.793.601 (8)146
C16—H16A···S1iv0.932.853.717 (18)155
Symmetry codes: (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C5H6N2)4]
Mr551.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6400 (19), 10.242 (2), 14.705 (3)
α, β, γ (°)109.46 (3), 90.16 (3), 100.16 (3)
V3)1344.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.773, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
5593, 5257, 3080
Rint0.034
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.198, 1.01
No. of reflections5257
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 1.65

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S1i0.932.863.638 (8)142
C10—H10A···S1i0.932.793.601 (8)146
C16—H16A···S1ii0.932.853.717 (18)155
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds