Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecule, C20H16Cl2F3N3O2, was obtained by the reaction of 2,4-dichloro­benzaldehyde, 1-phenyl­guanidinium hydrogen carbonate and ethyl 4,4,4-trifluoro-3-oxobutanoate catalyzed by sulfamic acid in the solid state. In the molecular structure, the pyrimidine ring adopts a twist-boat conformation and the two benzene ring are nearly perpendicular. In the crystal structure, the crystal packing is stabilized by inter­molecular hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037786/hg2273sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037786/hg2273Isup2.hkl
Contains datablock I

CCDC reference: 657434

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.092
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.52 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.04 Ratio PLAT480_ALERT_4_C Long H...A H-Bond Reported H1A .. CL1 .. 2.91 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.38 From the CIF: _reflns_number_total 4177 Count of symmetry unique reflns 2388 Completeness (_total/calc) 174.92% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1789 Fraction of Friedel pairs measured 0.749 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The derivatives of pyrimidine are reported to have various biological activities, such as antitumor (Radwan & El-Sherbiny, 2007), CB1 cannabinoid receptor modulatory (Bloxham et al., 2006) and hepatitis C virus RNA-dependent RNA polymerase inhibitory (Borchardt et al., 2005). In addition, compounds that contain fluorine have special bioactivity, for example, flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich,2004). This led us to pay attention to the synthesis and structure of these fluoro-compounds and have synthesized aseries of derivatives of dihydropyrimidines. Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between plane N1/N2/C8/C9 and phenyl plane C1—C6, is 87.90 (8)°, which shows the two planes are nearly perpendicular. The atoms C7 and C10 deviate from the plane N1/N2/C8/C9 by 0.574 (4) Å and 0.157 (4) Å in the same direction, which shows the pyrimiding ring adopts a twist boat conformation. The connection of the pyrimidine ring and phenyl ring C15—C20 can be described as the torsion angle of C15—N3—C8—N1, -173.7 (2)°. In the structure, the crystal packing is stabilized intermolecular hydrogen bonds: N3—H3A···O1, N1—H1A···O1 and intramolecular hydrogen bond: N1—H1A···Cl1 (Fig.2 & Table 2).

Related literature top

For related literature, see: Bloxham et al. (2006); Borchardt et al. (2005); Hermann et al. (2003); Radwan & El-Sherbiny (2007); Ulrich (2004).

Experimental top

The title compound was synthesized by by the reaction of 2,4-dichlorobenzaldehyde, 1-phenylguanidinium hydrogencarbonate and ethyl 4,4,4-trifluoro-3-oxobutanoate in 1:1:1 molar ratio in solid state catalyzed by sulfamic acid at 363 K. After cooling, the reaction mixture was washed with water and recrystallized from ethanol, which gave single crystals suitable for X-ray diffraction.

Refinement top

The hydrogen atoms bonded to nitrogen atom was positioned from a Fourier difference map and were refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93, 0.96, 0.97 or 0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

The derivatives of pyrimidine are reported to have various biological activities, such as antitumor (Radwan & El-Sherbiny, 2007), CB1 cannabinoid receptor modulatory (Bloxham et al., 2006) and hepatitis C virus RNA-dependent RNA polymerase inhibitory (Borchardt et al., 2005). In addition, compounds that contain fluorine have special bioactivity, for example, flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich,2004). This led us to pay attention to the synthesis and structure of these fluoro-compounds and have synthesized aseries of derivatives of dihydropyrimidines. Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between plane N1/N2/C8/C9 and phenyl plane C1—C6, is 87.90 (8)°, which shows the two planes are nearly perpendicular. The atoms C7 and C10 deviate from the plane N1/N2/C8/C9 by 0.574 (4) Å and 0.157 (4) Å in the same direction, which shows the pyrimiding ring adopts a twist boat conformation. The connection of the pyrimidine ring and phenyl ring C15—C20 can be described as the torsion angle of C15—N3—C8—N1, -173.7 (2)°. In the structure, the crystal packing is stabilized intermolecular hydrogen bonds: N3—H3A···O1, N1—H1A···O1 and intramolecular hydrogen bond: N1—H1A···Cl1 (Fig.2 & Table 2).

For related literature, see: Bloxham et al. (2006); Borchardt et al. (2005); Hermann et al. (2003); Radwan & El-Sherbiny (2007); Ulrich (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
Ethyl 2-anilino-4-(2,4-dichlorophenyl)-6-trifluoromethyl-3,4- dihydropyrimidine-5-carboxylate top
Crystal data top
C20H16Cl2F3N3O2F(000) = 936
Mr = 458.26Dx = 1.481 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4124 reflections
a = 11.0085 (15) Åθ = 2.2–25.1°
b = 11.8934 (17) ŵ = 0.37 mm1
c = 15.698 (2) ÅT = 294 K
V = 2055.4 (5) Å3Block, colourless
Z = 40.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4177 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 713
Tmin = 0.911, Tmax = 0.931k = 1414
11861 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.3148P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
4177 reflectionsΔρmin = 0.22 e Å3
281 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0261 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (6)
Crystal data top
C20H16Cl2F3N3O2V = 2055.4 (5) Å3
Mr = 458.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.0085 (15) ŵ = 0.37 mm1
b = 11.8934 (17) ÅT = 294 K
c = 15.698 (2) Å0.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3175 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.931Rint = 0.038
11861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.22 e Å3
4177 reflectionsAbsolute structure: Flack (1983)
281 parametersAbsolute structure parameter: 0.06 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72705 (8)0.14863 (7)0.12933 (5)0.0766 (3)
Cl20.37002 (8)0.42819 (9)0.22290 (5)0.0887 (3)
F10.62596 (16)0.48924 (14)0.24705 (10)0.0706 (5)
F20.80585 (16)0.45551 (14)0.29272 (9)0.0730 (5)
F30.77062 (17)0.60034 (12)0.21670 (10)0.0757 (5)
O10.56257 (18)0.19540 (17)0.14384 (13)0.0646 (5)
O20.64809 (17)0.27081 (15)0.25945 (11)0.0592 (5)
N10.86238 (17)0.32244 (16)0.00923 (13)0.0432 (5)
N20.85306 (18)0.48302 (16)0.09472 (12)0.0428 (5)
N30.9898 (2)0.47054 (18)0.01780 (15)0.0528 (5)
C10.6315 (2)0.2608 (2)0.10509 (15)0.0456 (6)
C20.5460 (2)0.2923 (3)0.16446 (15)0.0540 (7)
H20.53750.25270.21520.065*
C30.4732 (2)0.3837 (2)0.14692 (16)0.0525 (7)
C40.4828 (2)0.4401 (2)0.07171 (17)0.0521 (7)
H40.43220.50080.06010.063*
C50.5684 (2)0.4060 (2)0.01277 (16)0.0461 (6)
H50.57440.44460.03860.055*
C60.6455 (2)0.31641 (18)0.02757 (14)0.0381 (5)
C70.7429 (2)0.28239 (17)0.03625 (14)0.0393 (5)
H70.74530.20010.03880.047*
C80.89924 (19)0.42730 (19)0.03061 (16)0.0408 (6)
C90.7726 (2)0.42650 (18)0.14511 (14)0.0379 (5)
C100.7207 (2)0.32622 (17)0.12503 (14)0.0388 (5)
C110.6358 (2)0.2590 (2)0.17605 (16)0.0450 (6)
C120.5585 (3)0.2171 (3)0.3156 (2)0.0770 (10)
H12A0.54110.26630.36330.092*
H12B0.48350.20510.28450.092*
C130.6041 (3)0.1095 (3)0.3472 (2)0.0955 (12)
H13A0.68230.12030.37310.143*
H13B0.61140.05760.30060.143*
H13C0.54860.07980.38870.143*
C140.7432 (3)0.4921 (2)0.22603 (15)0.0491 (6)
C151.0562 (2)0.5710 (2)0.00892 (18)0.0513 (7)
C161.1471 (3)0.5888 (3)0.0697 (2)0.0690 (8)
H161.16200.53450.11110.083*
C171.2143 (3)0.6858 (3)0.0688 (3)0.0866 (11)
H171.27390.69710.10990.104*
C181.1946 (3)0.7664 (3)0.0077 (3)0.0902 (12)
H181.24020.83220.00740.108*
C201.0364 (3)0.6516 (2)0.05281 (19)0.0606 (7)
H200.97670.64110.09400.073*
C191.1066 (3)0.7487 (3)0.0527 (2)0.0779 (10)
H191.09370.80280.09450.093*
H1A0.897 (2)0.290 (2)0.0361 (11)0.055 (8)*
H3A1.016 (3)0.426 (2)0.0595 (13)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0825 (6)0.0701 (5)0.0772 (5)0.0141 (4)0.0005 (4)0.0343 (4)
Cl20.0660 (5)0.1399 (8)0.0603 (4)0.0033 (5)0.0208 (4)0.0215 (5)
F10.0622 (10)0.0738 (10)0.0758 (10)0.0072 (9)0.0117 (9)0.0183 (9)
F20.0878 (12)0.0810 (12)0.0503 (9)0.0055 (9)0.0245 (9)0.0008 (8)
F30.1199 (15)0.0432 (9)0.0639 (9)0.0128 (9)0.0036 (10)0.0139 (7)
O10.0591 (11)0.0644 (12)0.0704 (12)0.0280 (10)0.0031 (10)0.0053 (10)
O20.0630 (12)0.0649 (11)0.0497 (11)0.0154 (10)0.0075 (9)0.0041 (9)
N10.0335 (10)0.0393 (11)0.0568 (12)0.0029 (9)0.0029 (10)0.0072 (9)
N20.0418 (11)0.0368 (10)0.0499 (11)0.0042 (9)0.0017 (10)0.0003 (9)
N30.0450 (12)0.0474 (12)0.0660 (14)0.0032 (10)0.0115 (11)0.0005 (12)
C10.0404 (13)0.0477 (14)0.0488 (14)0.0079 (12)0.0067 (12)0.0073 (11)
C20.0519 (15)0.0739 (19)0.0362 (13)0.0195 (14)0.0008 (12)0.0049 (13)
C30.0377 (14)0.0736 (19)0.0462 (14)0.0114 (14)0.0033 (12)0.0143 (13)
C40.0422 (15)0.0557 (16)0.0585 (16)0.0053 (12)0.0050 (13)0.0061 (13)
C50.0419 (14)0.0479 (14)0.0485 (14)0.0031 (11)0.0052 (12)0.0039 (12)
C60.0339 (12)0.0358 (11)0.0447 (12)0.0077 (10)0.0001 (11)0.0020 (10)
C70.0387 (13)0.0302 (10)0.0491 (13)0.0041 (10)0.0007 (11)0.0026 (9)
C80.0320 (12)0.0362 (12)0.0543 (14)0.0048 (10)0.0052 (11)0.0048 (11)
C90.0333 (11)0.0379 (12)0.0426 (12)0.0021 (10)0.0081 (10)0.0012 (10)
C100.0344 (12)0.0368 (12)0.0452 (13)0.0008 (10)0.0050 (11)0.0017 (10)
C110.0398 (13)0.0409 (13)0.0543 (15)0.0029 (12)0.0013 (13)0.0011 (11)
C120.068 (2)0.088 (2)0.075 (2)0.0070 (18)0.0274 (17)0.0051 (18)
C130.087 (3)0.105 (3)0.094 (3)0.026 (2)0.006 (2)0.039 (2)
C140.0558 (16)0.0458 (13)0.0458 (13)0.0053 (12)0.0067 (13)0.0042 (11)
C150.0347 (13)0.0478 (15)0.0715 (17)0.0023 (11)0.0003 (12)0.0149 (14)
C160.0518 (17)0.0627 (18)0.093 (2)0.0006 (15)0.0132 (17)0.0147 (16)
C170.059 (2)0.074 (2)0.127 (3)0.0135 (19)0.013 (2)0.035 (2)
C180.065 (2)0.062 (2)0.144 (4)0.0248 (17)0.014 (2)0.030 (2)
C200.0530 (17)0.0531 (17)0.0757 (19)0.0118 (14)0.0026 (14)0.0083 (15)
C190.073 (2)0.0538 (18)0.107 (3)0.0164 (17)0.005 (2)0.0039 (18)
Geometric parameters (Å, º) top
Cl1—C11.741 (3)C5—H50.9300
Cl2—C31.730 (3)C6—C71.522 (3)
F1—C141.333 (3)C7—C101.508 (3)
F2—C141.327 (3)C7—H70.9800
F3—C141.330 (3)C9—C101.360 (3)
O1—C111.215 (3)C9—C141.526 (3)
O2—C111.324 (3)C10—C111.468 (3)
O2—C121.469 (3)C12—C131.462 (5)
N1—C81.354 (3)C12—H12A0.9700
N1—C71.462 (3)C12—H12B0.9700
N1—H1A0.897 (10)C13—H13A0.9600
N2—C81.308 (3)C13—H13B0.9600
N2—C91.365 (3)C13—H13C0.9600
N3—C81.355 (3)C15—C201.381 (4)
N3—C151.408 (3)C15—C161.399 (4)
N3—H3A0.890 (10)C16—C171.371 (4)
C1—C21.377 (4)C16—H160.9300
C1—C61.393 (3)C17—C181.373 (5)
C2—C31.379 (4)C17—H170.9300
C2—H20.9300C18—C191.373 (5)
C3—C41.362 (4)C18—H180.9300
C4—C51.382 (3)C20—C191.389 (4)
C4—H40.9300C20—H200.9300
C5—C61.381 (3)C19—H190.9300
C11—O2—C12118.6 (2)C11—C10—C7114.78 (19)
C8—N1—C7119.86 (19)O1—C11—O2123.1 (2)
C8—N1—H1A117.8 (17)O1—C11—C10122.3 (2)
C7—N1—H1A118.4 (17)O2—C11—C10114.6 (2)
C8—N2—C9116.66 (19)C13—C12—O2110.7 (3)
C8—N3—C15130.5 (2)C13—C12—H12A109.5
C8—N3—H3A115.5 (19)O2—C12—H12A109.5
C15—N3—H3A113.9 (19)C13—C12—H12B109.5
C2—C1—C6122.5 (2)O2—C12—H12B109.5
C2—C1—Cl1118.25 (19)H12A—C12—H12B108.1
C6—C1—Cl1119.21 (19)C12—C13—H13A109.5
C1—C2—C3118.5 (2)C12—C13—H13B109.5
C1—C2—H2120.8H13A—C13—H13B109.5
C3—C2—H2120.8C12—C13—H13C109.5
C4—C3—C2121.1 (2)H13A—C13—H13C109.5
C4—C3—Cl2119.9 (2)H13B—C13—H13C109.5
C2—C3—Cl2119.0 (2)F2—C14—F3106.7 (2)
C3—C4—C5119.3 (2)F2—C14—F1107.4 (2)
C3—C4—H4120.4F3—C14—F1105.8 (2)
C5—C4—H4120.4F2—C14—C9112.3 (2)
C6—C5—C4122.2 (2)F3—C14—C9110.8 (2)
C6—C5—H5118.9F1—C14—C9113.5 (2)
C4—C5—H5118.9C20—C15—C16119.1 (3)
C5—C6—C1116.4 (2)C20—C15—N3125.2 (2)
C5—C6—C7121.8 (2)C16—C15—N3115.6 (3)
C1—C6—C7121.8 (2)C17—C16—C15120.4 (3)
N1—C7—C10107.54 (18)C17—C16—H16119.8
N1—C7—C6110.87 (18)C15—C16—H16119.8
C10—C7—C6113.73 (19)C16—C17—C18120.7 (3)
N1—C7—H7108.2C16—C17—H17119.7
C10—C7—H7108.2C18—C17—H17119.7
C6—C7—H7108.2C19—C18—C17119.1 (3)
N2—C8—N1122.8 (2)C19—C18—H18120.4
N2—C8—N3121.7 (2)C17—C18—H18120.4
N1—C8—N3115.5 (2)C15—C20—C19119.3 (3)
C10—C9—N2124.8 (2)C15—C20—H20120.4
C10—C9—C14123.6 (2)C19—C20—H20120.4
N2—C9—C14111.61 (19)C18—C19—C20121.4 (3)
C9—C10—C11128.3 (2)C18—C19—H19119.3
C9—C10—C7116.7 (2)C20—C19—H19119.3
C6—C1—C2—C31.4 (4)N2—C9—C10—C77.6 (3)
Cl1—C1—C2—C3177.60 (19)C14—C9—C10—C7169.7 (2)
C1—C2—C3—C41.9 (4)N1—C7—C10—C930.7 (3)
C1—C2—C3—Cl2177.07 (19)C6—C7—C10—C992.4 (2)
C2—C3—C4—C51.1 (4)N1—C7—C10—C11154.66 (19)
Cl2—C3—C4—C5177.8 (2)C6—C7—C10—C1182.2 (2)
C3—C4—C5—C60.2 (4)C12—O2—C11—O18.8 (4)
C4—C5—C6—C10.7 (3)C12—O2—C11—C10173.1 (2)
C4—C5—C6—C7177.5 (2)C9—C10—C11—O1152.8 (3)
C2—C1—C6—C50.1 (3)C7—C10—C11—O121.1 (3)
Cl1—C1—C6—C5178.86 (18)C9—C10—C11—O229.1 (3)
C2—C1—C6—C7178.3 (2)C7—C10—C11—O2157.0 (2)
Cl1—C1—C6—C70.6 (3)C11—O2—C12—C1397.6 (3)
C8—N1—C7—C1038.3 (3)C10—C9—C14—F282.9 (3)
C8—N1—C7—C686.6 (2)N2—C9—C14—F299.5 (2)
C5—C6—C7—N1101.8 (3)C10—C9—C14—F3158.0 (2)
C1—C6—C7—N176.4 (3)N2—C9—C14—F319.6 (3)
C5—C6—C7—C1019.5 (3)C10—C9—C14—F139.2 (3)
C1—C6—C7—C10162.3 (2)N2—C9—C14—F1138.4 (2)
C9—N2—C8—N16.0 (3)C8—N3—C15—C203.2 (4)
C9—N2—C8—N3172.5 (2)C8—N3—C15—C16178.3 (3)
C7—N1—C8—N221.8 (3)C20—C15—C16—C171.0 (4)
C7—N1—C8—N3159.7 (2)N3—C15—C16—C17177.7 (3)
C15—N3—C8—N24.9 (4)C15—C16—C17—C180.7 (5)
C15—N3—C8—N1173.7 (2)C16—C17—C18—C190.2 (6)
C8—N2—C9—C1012.8 (3)C16—C15—C20—C190.4 (4)
C8—N2—C9—C14169.6 (2)N3—C15—C20—C19178.1 (3)
N2—C9—C10—C11178.6 (2)C17—C18—C19—C200.7 (5)
C14—C9—C10—C114.1 (4)C15—C20—C19—C180.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.89 (1)2.03 (1)2.907 (3)170 (3)
N1—H1A···O1i0.90 (1)2.49 (2)3.267 (3)145 (2)
N1—H1A···Cl10.90 (1)2.91 (2)3.350 (2)112 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H16Cl2F3N3O2
Mr458.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)11.0085 (15), 11.8934 (17), 15.698 (2)
V3)2055.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
11861, 4177, 3175
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.04
No. of reflections4177
No. of parameters281
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22
Absolute structureFlack (1983)
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.890 (10)2.026 (12)2.907 (3)170 (3)
N1—H1A···O1i0.897 (10)2.490 (17)3.267 (3)145 (2)
N1—H1A···Cl10.897 (10)2.91 (2)3.350 (2)111.8 (18)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds