Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title heteronuclear NiII–YIII complex (systematic name: {6,6′-dieth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}trinitrato-1κ6O,O′-yttrium(III)nickel(II)), [NiY(C20H22N2O4)(NO3)3], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-ethoxy­salicyl­idene)ethyl­enediamine (H2L), has been synthesized and structurally characterized. The Ni and Y atoms are doubly bridged by two phenolate O atoms provided by the Schiff base ligand. The coordination of the Ni atom is square planar, formed by two imine N atoms and two phenolate O atoms. The YIII atom has a decacoordination environment of O atoms, formed by the phenolate O atoms, two ethoxy O atoms and two O atoms each from three nitrate ligands. No classical inter­molecular hydrogen bonds are found. Some weak C—H...O and O...Ni inter­actions generate a two-dimensional zigzag sheet.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030875/hg2246sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030875/hg2246Isup2.hkl
Contains datablock I

CCDC reference: 654837

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.028
  • wR factor = 0.061
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.52 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 - N3 .. 5.07 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Y1 - O6 .. 8.83 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Y1 - O7 .. 8.71 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Y1 - O9 .. 8.09 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Y1 - O10 .. 8.54 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - O1 .. 5.41 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O7 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Y1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.22 From the CIF: _reflns_number_total 5977 Count of symmetry unique reflns 3487 Completeness (_total/calc) 171.41% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2490 Fraction of Friedel pairs measured 0.714 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Y1 (3) 3.55 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL023_ALERT_1_A There is a mismatched ^ on line 129 1\k^2^O^1^,O^1'^,O^6^,O^6'^:2\k^2^O^1^,N,N',O^1'^}trinitrato-1\k^O,O'- If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C PUBL023_ALERT_1_A There is a mismatched ^ on line 262 1\k^2^O^1^,O^1'^,O^6^,O^6'^:2\k^2^O^1^,N,N',O^1'^}trinitrato-1\k^O,O'- If you require a ^ then it should be escaped with a \, i.e. \^ Otherwise there must be a matching closing ~, e.g. ^12^C
2 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000). Recently, some 3 d-4f hetorometallic Schiff base complexes have been synthesized, such as CuII—GdIII, NiII—GdIII and ZnII—HoIII heterodinuclear complexes (Brewer et al., 2001; Mohanta et al., 2002; Wong et al., 2002), which exhibits novel magnetic and luminescent properties, As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes, we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—YIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene)ethylenediamine(H2L).

Complex (I) crystallizes in the space group P212121, with nickel and yttrium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by nickel(II), while yttrium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Ni1/O1/O2 and Y1/O1/O2 is 4.1 (2)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Ni1/O1/O2/Y1 plane being -0.0340 (3)Å for Ni, -0.0244 (2)Å for Y, 0.096 (3)Å for O1 and 0.0287 (3)Å for O2.

The yttrium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms each from the three nitrates chelate to yttrium to complete the decacoordination. The three kinds of Y—O bond distances are significantly different, the shortest being the Y—O(phenolate) and longest being the YO(ethoxy) separations.

The coordination of nickel(II) is square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0782 (2) Å, while Ni1 is 0.0423 (3)Å above this square plane.

Adjacent molecules are held together by weak interactions (O8···Ni1 = 3.146 (4) Å, C9—H9B···O4i = 3.278 (4) and C7—H7···O4ii = 3.293 (4); symmetry codes:(i)x - 1, y, z; (ii)-x, y - 1/2, 3/2 - z). these link the molecules into a two-dimensional zigzag sheet (Fig 2).

Related literature top

For related literature, see: Baggio et al. (2000); Brewer et al. (2001); Caravan et al. (1999); Edder et al. (2000); Mohanta et al. (2002); Wong et al. (2002).

Experimental top

H2L was prepared by the 2:1 condensation of 3-ethoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of nickel(II) acetate tetrahydrate (0.217 g, 1 mmol) with H2L(0.356 g, 1 mmol) in methanol solution (50 ml) under reflux for 3 h and then for another 3 h after the addition of yttrium(III) nitrate hexahydrate (0.383 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. Analysis calculated for C20H22N5NiO13Y: C 31.94, H 3.22, N 10.18, Ni 8.53, Y 12.92%; found: C 31.92, H 3.15, N 10.20, Ni 8.50, Y 12.90%. IR (KBr, cm-1): 1640 (C=N), 1384, 1491 (nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene) and 0.96 Å (methyl), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000). Recently, some 3 d-4f hetorometallic Schiff base complexes have been synthesized, such as CuII—GdIII, NiII—GdIII and ZnII—HoIII heterodinuclear complexes (Brewer et al., 2001; Mohanta et al., 2002; Wong et al., 2002), which exhibits novel magnetic and luminescent properties, As part of our investigations into the structure and applications of 3 d-4f hetorometallic Schiff base complexes, we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new NiII—YIII complex with salen-type Schiff base N,N'-bis(3-ethoxysalicylidene)ethylenediamine(H2L).

Complex (I) crystallizes in the space group P212121, with nickel and yttrium doubly bridged by two phenolate O atoms provided by a salen-type Schiff base ligand. The inner salen-type cavity is occupied by nickel(II), while yttrium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand. The dihedral angles between the mean planes of Ni1/O1/O2 and Y1/O1/O2 is 4.1 (2)° suggesting that the bridging moiety is almost planar; the deviation of atoms from the least squares Ni1/O1/O2/Y1 plane being -0.0340 (3)Å for Ni, -0.0244 (2)Å for Y, 0.096 (3)Å for O1 and 0.0287 (3)Å for O2.

The yttrium(III) center in (I) has a decacoordination environment of O atoms. In addition to the phenolate ligands, two ethoxy O atoms coordinate to this metal center, two O atoms each from the three nitrates chelate to yttrium to complete the decacoordination. The three kinds of Y—O bond distances are significantly different, the shortest being the Y—O(phenolate) and longest being the YO(ethoxy) separations.

The coordination of nickel(II) is square planar. The donor centers are alternatively above and below the mean N2O2 plane with an average deviation from the plane of 0.0782 (2) Å, while Ni1 is 0.0423 (3)Å above this square plane.

Adjacent molecules are held together by weak interactions (O8···Ni1 = 3.146 (4) Å, C9—H9B···O4i = 3.278 (4) and C7—H7···O4ii = 3.293 (4); symmetry codes:(i)x - 1, y, z; (ii)-x, y - 1/2, 3/2 - z). these link the molecules into a two-dimensional zigzag sheet (Fig 2).

For related literature, see: Baggio et al. (2000); Brewer et al. (2001); Caravan et al. (1999); Edder et al. (2000); Mohanta et al. (2002); Wong et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: APEX2; program(s) used to refine structure: APEX2; molecular graphics: APEX2; software used to prepare material for publication: APEX2.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. All the H atoms on carbon have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis; hydrogen bonds are shown as dashed lines.
{6,6'-diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,O1',O6,O6':2κ4O1,N,N',O1'}trinitrato-1κ6O,O'- yttrium(III)nickel(II) top
Crystal data top
[NiY(C20H22N2O4)(NO3)3]F(000) = 1392
Mr = 688.05Dx = 1.830 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18612 reflections
a = 8.5837 (10) Åθ = 1.8–28.2°
b = 13.7547 (16) ŵ = 3.15 mm1
c = 21.153 (2) ÅT = 293 K
V = 2497.5 (5) Å3Block, red
Z = 40.32 × 0.28 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
5977 independent reflections
Radiation source: fine-focus sealed tube4933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 28.2°, θmin = 1.8°
φ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1818
Tmin = 0.380, Tmax = 0.559l = 2827
18612 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.003
5977 reflectionsΔρmax = 0.37 e Å3
363 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (5)
Crystal data top
[NiY(C20H22N2O4)(NO3)3]V = 2497.5 (5) Å3
Mr = 688.05Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5837 (10) ŵ = 3.15 mm1
b = 13.7547 (16) ÅT = 293 K
c = 21.153 (2) Å0.32 × 0.28 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
5977 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4933 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.559Rint = 0.028
18612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.37 e Å3
S = 0.98Δρmin = 0.56 e Å3
5977 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
363 parametersAbsolute structure parameter: 0.011 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.25957 (3)1.001598 (17)0.899553 (11)0.03377 (7)
Ni10.06212 (4)0.94357 (2)0.816733 (16)0.03396 (8)
O10.0443 (2)1.05622 (12)0.84475 (8)0.0363 (4)
C100.2219 (4)1.1056 (2)0.76256 (12)0.0421 (7)
H100.29381.13130.73420.051*
C160.0176 (3)1.14513 (16)0.84431 (12)0.0326 (6)
O130.1656 (2)1.17532 (12)0.92318 (8)0.0390 (4)
C150.0455 (3)1.21262 (17)0.88636 (12)0.0342 (6)
C20.0145 (3)0.71544 (18)0.84982 (13)0.0381 (6)
C110.1426 (3)1.17201 (19)0.80476 (13)0.0373 (6)
C70.1416 (3)0.74305 (19)0.80946 (14)0.0435 (7)
H70.20640.69360.79510.052*
C10.0975 (3)0.78135 (17)0.87331 (12)0.0349 (6)
C60.2204 (3)0.74670 (17)0.90983 (12)0.0362 (6)
C170.2364 (4)1.23942 (19)0.97003 (12)0.0447 (7)
H17A0.28961.20041.00150.054*
H17B0.15511.27590.99130.054*
C40.1187 (4)0.58477 (19)0.90364 (15)0.0527 (8)
H40.12460.51940.91460.063*
C30.0007 (4)0.61647 (19)0.86702 (14)0.0487 (8)
H30.07490.57220.85290.058*
C180.3505 (4)1.3092 (2)0.94085 (16)0.0582 (9)
H18A0.29671.35150.91210.087*
H18B0.42901.27350.91840.087*
H18C0.39871.34720.97350.087*
C130.1360 (4)1.3332 (2)0.85042 (15)0.0509 (8)
H130.17561.39600.85260.061*
C120.1973 (4)1.2684 (2)0.80845 (15)0.0484 (8)
H120.27711.28830.78160.058*
C140.0143 (4)1.30548 (18)0.89000 (14)0.0442 (7)
H140.02671.34960.91890.053*
O90.2877 (3)1.00638 (16)1.01235 (9)0.0548 (5)
O50.3602 (2)1.11027 (13)0.81731 (10)0.0498 (5)
O20.0936 (2)0.87691 (12)0.86291 (9)0.0411 (5)
N10.1987 (3)1.01332 (16)0.76193 (10)0.0402 (5)
O100.0577 (3)0.97519 (16)0.97990 (10)0.0596 (6)
O120.3210 (2)0.81926 (12)0.92998 (9)0.0408 (5)
N50.1451 (3)0.99281 (18)1.02646 (12)0.0489 (6)
O30.3174 (3)0.96332 (15)0.78781 (10)0.0537 (6)
N30.3590 (3)1.0473 (2)0.77296 (12)0.0495 (6)
O60.5317 (3)0.96367 (14)0.88673 (11)0.0548 (5)
O70.4993 (3)1.09272 (18)0.94041 (11)0.0682 (7)
C190.4573 (4)0.7890 (2)0.96537 (13)0.0467 (7)
H19A0.42640.74130.99670.056*
H19B0.49970.84480.98760.056*
N20.1735 (3)0.82995 (16)0.79151 (10)0.0389 (6)
C90.2765 (4)0.9463 (2)0.71762 (13)0.0469 (7)
H9A0.20930.93330.68170.056*
H9B0.37240.97510.70220.056*
N40.5926 (3)1.0332 (2)0.91780 (13)0.0536 (7)
C50.2324 (4)0.64897 (19)0.92502 (13)0.0462 (7)
H50.31540.62660.94920.055*
C200.5803 (4)0.7464 (2)0.92445 (16)0.0607 (9)
H20A0.61880.79530.89600.091*
H20B0.53740.69350.90060.091*
H20C0.66420.72300.95030.091*
O110.0986 (3)0.99550 (19)1.08050 (11)0.0783 (8)
O80.7340 (3)1.0388 (2)0.92367 (13)0.0916 (9)
O40.3972 (3)1.0700 (2)0.71906 (11)0.0833 (9)
C80.3115 (4)0.8526 (2)0.75264 (14)0.0473 (7)
H8A0.40250.86060.77930.057*
H8B0.33140.80040.72290.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.03256 (14)0.02959 (11)0.03916 (12)0.00066 (13)0.00454 (10)0.00200 (11)
Ni10.03277 (19)0.02569 (14)0.04342 (17)0.00143 (14)0.01103 (16)0.00396 (14)
O10.0352 (10)0.0254 (8)0.0483 (10)0.0021 (8)0.0072 (8)0.0038 (8)
C100.0387 (18)0.0466 (16)0.0410 (15)0.0092 (14)0.0048 (12)0.0015 (12)
C160.0349 (16)0.0253 (12)0.0377 (13)0.0029 (10)0.0047 (11)0.0004 (10)
O130.0424 (12)0.0289 (9)0.0456 (11)0.0013 (8)0.0055 (9)0.0074 (8)
C150.0331 (15)0.0291 (12)0.0402 (14)0.0009 (11)0.0026 (12)0.0019 (10)
C20.0400 (17)0.0309 (12)0.0433 (15)0.0048 (12)0.0069 (13)0.0064 (12)
C110.0334 (16)0.0357 (13)0.0429 (16)0.0025 (12)0.0032 (12)0.0005 (12)
C70.0417 (19)0.0394 (15)0.0494 (18)0.0107 (13)0.0030 (14)0.0148 (13)
C10.0405 (17)0.0259 (12)0.0383 (14)0.0012 (11)0.0039 (12)0.0013 (10)
C60.0403 (17)0.0294 (12)0.0390 (14)0.0021 (11)0.0051 (12)0.0000 (10)
C170.055 (2)0.0381 (14)0.0409 (15)0.0038 (15)0.0079 (14)0.0088 (11)
C40.071 (2)0.0272 (13)0.0594 (19)0.0013 (13)0.0117 (17)0.0040 (13)
C30.064 (2)0.0268 (13)0.0552 (18)0.0091 (14)0.0070 (15)0.0060 (12)
C180.057 (2)0.0402 (16)0.077 (2)0.0083 (15)0.0175 (18)0.0010 (16)
C130.047 (2)0.0308 (14)0.075 (2)0.0094 (14)0.0026 (16)0.0015 (14)
C120.0432 (19)0.0398 (14)0.062 (2)0.0097 (13)0.0072 (15)0.0051 (14)
C140.0482 (19)0.0293 (13)0.0551 (17)0.0003 (12)0.0054 (14)0.0092 (12)
O90.0576 (15)0.0562 (12)0.0505 (11)0.0074 (12)0.0091 (10)0.0025 (10)
O50.0527 (14)0.0427 (10)0.0541 (12)0.0036 (9)0.0056 (11)0.0048 (11)
O20.0421 (13)0.0247 (8)0.0565 (12)0.0014 (8)0.0142 (9)0.0018 (8)
N10.0351 (13)0.0417 (13)0.0437 (13)0.0018 (11)0.0075 (9)0.0044 (11)
O100.0507 (13)0.0757 (16)0.0522 (12)0.0048 (12)0.0020 (11)0.0029 (10)
O120.0376 (12)0.0344 (10)0.0503 (12)0.0038 (8)0.0097 (9)0.0000 (8)
N50.0618 (18)0.0365 (12)0.0484 (15)0.0012 (14)0.0047 (12)0.0043 (12)
O30.0576 (15)0.0544 (13)0.0491 (12)0.0010 (11)0.0020 (10)0.0117 (10)
N30.0395 (15)0.0683 (17)0.0408 (15)0.0204 (14)0.0014 (11)0.0085 (14)
O60.0433 (13)0.0440 (11)0.0772 (14)0.0010 (10)0.0049 (11)0.0021 (10)
O70.0563 (17)0.0776 (17)0.0709 (16)0.0113 (13)0.0022 (12)0.0279 (13)
C190.0417 (18)0.0483 (16)0.0501 (17)0.0057 (15)0.0081 (14)0.0042 (13)
N20.0347 (14)0.0368 (12)0.0451 (13)0.0033 (11)0.0018 (10)0.0098 (10)
C90.0425 (18)0.0510 (15)0.0473 (15)0.0054 (15)0.0115 (13)0.0132 (13)
N40.0434 (17)0.0622 (17)0.0552 (15)0.0102 (13)0.0036 (13)0.0076 (13)
C50.054 (2)0.0352 (14)0.0495 (16)0.0057 (14)0.0043 (15)0.0059 (12)
C200.048 (2)0.055 (2)0.079 (2)0.0133 (17)0.0066 (17)0.0102 (16)
O110.112 (2)0.0727 (15)0.0500 (13)0.0111 (17)0.0180 (13)0.0028 (13)
O80.0366 (15)0.134 (2)0.1042 (19)0.0233 (16)0.0113 (13)0.0043 (18)
O40.083 (2)0.120 (2)0.0471 (13)0.0460 (18)0.0175 (12)0.0218 (14)
C80.0385 (18)0.0504 (17)0.0531 (18)0.0053 (14)0.0102 (14)0.0131 (14)
Geometric parameters (Å, º) top
Y1—O12.3073 (17)C4—C31.356 (4)
Y1—O22.3602 (18)C4—C51.392 (4)
Y1—O32.472 (2)C4—H40.9300
Y1—O52.451 (2)C3—H30.9300
Y1—O62.409 (2)C18—H18A0.9600
Y1—O72.560 (2)C18—H18B0.9600
Y1—O92.399 (2)C18—H18C0.9600
Y1—O102.454 (2)C13—C121.364 (4)
Y1—O122.6424 (17)C13—C141.392 (4)
Y1—O132.5708 (17)C13—H130.9300
Ni1—O11.8938 (17)C12—H120.9300
Ni1—O21.8927 (18)C14—H140.9300
Ni1—N11.907 (2)O9—N51.274 (3)
Ni1—N21.908 (2)O5—N31.276 (3)
O1—C161.333 (3)N1—C91.475 (3)
C10—N11.286 (3)O10—N51.262 (3)
C10—C111.447 (4)O12—C191.450 (3)
C10—H100.9300N5—O111.211 (3)
C16—C151.395 (4)O3—N31.250 (3)
C16—C111.410 (4)N3—O41.227 (3)
O13—C151.390 (3)O6—N41.272 (3)
O13—C171.459 (3)O7—N41.242 (3)
C15—C141.379 (3)C19—C201.486 (4)
C2—C11.412 (4)C19—H19A0.9700
C2—C31.414 (4)C19—H19B0.9700
C2—C71.436 (4)N2—C81.475 (4)
C11—C121.408 (4)C9—C81.517 (4)
C7—N21.284 (3)C9—H9A0.9700
C7—H70.9300C9—H9B0.9700
C1—O21.333 (3)N4—O81.223 (3)
C1—C61.392 (4)C5—H50.9300
C6—C51.386 (3)C20—H20A0.9600
C6—O121.387 (3)C20—H20B0.9600
C17—C181.504 (4)C20—H20C0.9600
C17—H17A0.9700C8—H8A0.9700
C17—H17B0.9700C8—H8B0.9700
O1—Y1—O265.69 (6)O13—C17—C18112.2 (2)
O1—Y1—O375.50 (7)O13—C17—H17A109.2
O1—Y1—O574.16 (7)C18—C17—H17A109.2
O1—Y1—O6142.25 (7)O13—C17—H17B109.2
O1—Y1—O7130.85 (8)C18—C17—H17B109.2
O1—Y1—O9124.85 (7)H17A—C17—H17B107.9
O1—Y1—O1080.25 (7)C3—C4—C5120.7 (3)
O1—Y1—O12126.25 (6)C3—C4—H4119.6
O1—Y1—O1362.86 (6)C5—C4—H4119.6
O2—Y1—O369.65 (7)C4—C3—C2121.3 (3)
O2—Y1—O5115.01 (6)C4—C3—H3119.3
O2—Y1—O6113.00 (7)C2—C3—H3119.3
O2—Y1—O7162.14 (7)C17—C18—H18A109.5
O2—Y1—O9114.04 (7)C17—C18—H18B109.5
O2—Y1—O1072.17 (7)H18A—C18—H18B109.5
O2—Y1—O1260.71 (6)C17—C18—H18C109.5
O2—Y1—O13123.36 (6)H18A—C18—H18C109.5
O3—Y1—O7105.42 (8)H18B—C18—H18C109.5
O3—Y1—O1289.47 (7)C12—C13—C14120.1 (3)
O3—Y1—O13116.54 (7)C12—C13—H13119.9
O5—Y1—O351.71 (7)C14—C13—H13119.9
O5—Y1—O769.98 (8)C13—C12—C11121.5 (3)
O5—Y1—O10146.17 (7)C13—C12—H12119.2
O5—Y1—O12132.95 (6)C11—C12—H12119.2
O5—Y1—O1371.44 (6)C15—C14—C13120.0 (3)
O6—Y1—O369.61 (8)C15—C14—H14120.0
O6—Y1—O573.16 (7)C13—C14—H14120.0
O6—Y1—O750.55 (7)N5—O9—Y197.60 (16)
O6—Y1—O10136.94 (8)N3—O5—Y196.04 (16)
O6—Y1—O1268.19 (6)C1—O2—Ni1125.48 (18)
O6—Y1—O13121.83 (7)C1—O2—Y1130.33 (17)
O7—Y1—O12102.84 (7)Ni1—O2—Y1104.11 (7)
O7—Y1—O1374.42 (7)C10—N1—C9123.6 (2)
O9—Y1—O3159.49 (8)C10—N1—Ni1125.9 (2)
O9—Y1—O5130.82 (8)C9—N1—Ni1110.50 (18)
O9—Y1—O691.16 (8)N5—O10—Y195.28 (18)
O9—Y1—O764.52 (8)C6—O12—C19117.0 (2)
O9—Y1—O1052.16 (7)C6—O12—Y1118.95 (15)
O9—Y1—O1276.33 (7)C19—O12—Y1123.98 (16)
O9—Y1—O1379.21 (7)O11—N5—O10123.1 (3)
O10—Y1—O3140.57 (8)O11—N5—O9122.2 (3)
O10—Y1—O7113.97 (7)O10—N5—O9114.6 (2)
O10—Y1—O1280.31 (7)N3—O3—Y195.79 (16)
O10—Y1—O1377.38 (7)O4—N3—O3123.0 (3)
O13—Y1—O12153.82 (7)O4—N3—O5120.6 (3)
O1—Ni1—N194.30 (8)O3—N3—O5116.4 (2)
O1—Ni1—N2177.80 (9)N4—O6—Y1100.24 (18)
O2—Ni1—O183.93 (7)N4—O7—Y193.76 (17)
O2—Ni1—N1172.48 (10)O12—C19—C20112.7 (2)
O2—Ni1—N295.83 (9)O12—C19—H19A109.1
N1—Ni1—N286.22 (10)C20—C19—H19A109.1
C16—O1—Ni1123.80 (16)O12—C19—H19B109.1
C16—O1—Y1128.40 (16)C20—C19—H19B109.1
Ni1—O1—Y1106.08 (7)H19A—C19—H19B107.8
N1—C10—C11123.8 (3)C7—N2—C8122.2 (2)
N1—C10—H10118.1C7—N2—Ni1124.9 (2)
C11—C10—H10118.1C8—N2—Ni1112.67 (17)
O1—C16—C15116.8 (2)N1—C9—C8108.1 (2)
O1—C16—C11123.2 (2)N1—C9—H9A110.1
C15—C16—C11120.0 (2)C8—C9—H9A110.1
C15—O13—C17117.79 (19)N1—C9—H9B110.1
C15—O13—Y1117.82 (13)C8—C9—H9B110.1
C17—O13—Y1124.28 (16)H9A—C9—H9B108.4
C14—C15—O13125.9 (2)O8—N4—O7124.0 (3)
C14—C15—C16120.5 (3)O8—N4—O6120.6 (3)
O13—C15—C16113.5 (2)O7—N4—O6115.4 (3)
C1—C2—C3118.1 (3)C6—C5—C4119.2 (3)
C1—C2—C7123.8 (2)C6—C5—H5120.4
C3—C2—C7118.1 (3)C4—C5—H5120.4
C12—C11—C16117.9 (2)C19—C20—H20A109.5
C12—C11—C10118.1 (3)C19—C20—H20B109.5
C16—C11—C10124.0 (2)H20A—C20—H20B109.5
N2—C7—C2125.8 (3)C19—C20—H20C109.5
N2—C7—H7117.1H20A—C20—H20C109.5
C2—C7—H7117.1H20B—C20—H20C109.5
O2—C1—C6116.6 (2)N2—C8—C9107.0 (2)
O2—C1—C2123.9 (3)N2—C8—H8A110.3
C6—C1—C2119.4 (2)C9—C8—H8A110.3
C5—C6—O12125.5 (3)N2—C8—H8B110.3
C5—C6—C1121.1 (3)C9—C8—H8B110.3
O12—C6—C1113.3 (2)H8A—C8—H8B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O60.962.443.121 (4)128
C9—H9B···O4i0.972.403.278 (4)151
C7—H7···O4ii0.932.383.293 (4)167
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[NiY(C20H22N2O4)(NO3)3]
Mr688.05
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.5837 (10), 13.7547 (16), 21.153 (2)
V3)2497.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.32 × 0.28 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.380, 0.559
No. of measured, independent and
observed [I > 2σ(I)] reflections
18612, 5977, 4933
Rint0.028
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.061, 0.98
No. of reflections5977
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.56
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.011 (5)

Computer programs: APEX2 (Bruker, 2004), APEX2.

Selected geometric parameters (Å, º) top
Y1—O12.3073 (17)Y1—O102.454 (2)
Y1—O22.3602 (18)Y1—O122.6424 (17)
Y1—O32.472 (2)Y1—O132.5708 (17)
Y1—O52.451 (2)Ni1—O11.8938 (17)
Y1—O62.409 (2)Ni1—O21.8927 (18)
Y1—O72.560 (2)Ni1—N11.907 (2)
Y1—O92.399 (2)Ni1—N21.908 (2)
O1—Y1—O265.69 (6)O6—Y1—O573.16 (7)
O1—Y1—O375.50 (7)O6—Y1—O750.55 (7)
O1—Y1—O574.16 (7)O6—Y1—O10136.94 (8)
O1—Y1—O6142.25 (7)O6—Y1—O1268.19 (6)
O1—Y1—O7130.85 (8)O6—Y1—O13121.83 (7)
O1—Y1—O9124.85 (7)O7—Y1—O12102.84 (7)
O1—Y1—O1080.25 (7)O7—Y1—O1374.42 (7)
O1—Y1—O12126.25 (6)O9—Y1—O3159.49 (8)
O1—Y1—O1362.86 (6)O9—Y1—O5130.82 (8)
O2—Y1—O369.65 (7)O9—Y1—O691.16 (8)
O2—Y1—O5115.01 (6)O9—Y1—O764.52 (8)
O2—Y1—O6113.00 (7)O9—Y1—O1052.16 (7)
O2—Y1—O7162.14 (7)O9—Y1—O1276.33 (7)
O2—Y1—O9114.04 (7)O9—Y1—O1379.21 (7)
O2—Y1—O1072.17 (7)O10—Y1—O3140.57 (8)
O2—Y1—O1260.71 (6)O10—Y1—O7113.97 (7)
O2—Y1—O13123.36 (6)O10—Y1—O1280.31 (7)
O3—Y1—O7105.42 (8)O10—Y1—O1377.38 (7)
O3—Y1—O1289.47 (7)O13—Y1—O12153.82 (7)
O3—Y1—O13116.54 (7)O1—Ni1—N194.30 (8)
O5—Y1—O351.71 (7)O1—Ni1—N2177.80 (9)
O5—Y1—O769.98 (8)O2—Ni1—O183.93 (7)
O5—Y1—O10146.17 (7)O2—Ni1—N1172.48 (10)
O5—Y1—O12132.95 (6)O2—Ni1—N295.83 (9)
O5—Y1—O1371.44 (6)N1—Ni1—N286.22 (10)
O6—Y1—O369.61 (8)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds