Download citation
Download citation
link to html
Phase identification and structure characterization are important in synthetic and materials science. It is difficult to characterize the individual phases from multiphase crystalline powder samples, especially if some of the phases are unknown. This problem can be solved by combining rotation electron diffraction (RED) and powder X-ray diffraction (PXRD). Four phases were identified on the same transmission electron microscopy grid from a multiphase sample in the Ni-Se-O-Cl system, and their structures were solved from the RED data. Phase 1 (NiSeO3) was found in the Inorganic Crystal Structure Database using the information from RED. Phase 2 (Ni3Se4O10Cl2) is an unknown compound, but it is isostructural to Co3Se4O10Cl2, which was recently solved by single-crystal X-ray diffraction. Phase 3 (Ni5Se6O16Cl4H2) and Phase 4 (Ni5Se4O12Cl2) are new compounds. The fact that there are at least four different compounds in the as-synthesized material explains why the phase identification and structure determination could not be done by PXRD alone. The RED method makes phase identification from such multiphase powder samples much easier than would be the case using powder X-ray diffraction. The RED method also makes structure determination of submicrometre-sized crystals from multiphase samples possible.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576714023875/he5665sup1.cif
Contains datablocks global, Phase_1_NiSeO3, Phase_2_Ni3Se4O10Cl2, Phase_3_Ni5Se6O16Cl4H2, Phase_4_Ni5Se4O12Cl2, Phase_1_PXRD, Phase_4_PXRD

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_1_NiSeO3sup2.hkl
Contains datablock Phase_1_NiSeO3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_2_Ni3Se4O10Cl2sup3.hkl
Contains datablock Phase_2_Ni3Se4O10Cl2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_3_Ni5Se6O16Cl4H2sup4.hkl
Contains datablock Phase_3_Ni5Se6O16Cl4H2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_4_Ni5Se4O12Cl2sup5.hkl
Contains datablock Phase_4_Ni5Se4O12Cl2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_1_PXRDsup6.hkl
Contains datablock Phase_1_NiSeO3

txt

Text file https://doi.org/10.1107/S1600576714023875/he5665sup7.txt
Powder diffraction data

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576714023875/he5665Phase_4_PXRDsup8.hkl
Contains datablock Phase_4_Ni5Se4O12Cl2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576714023875/he5665sup9.pdf
EDS results; detailed description of structure solution of Phase 1, 3, and 4 from RED data; Rietveld refinement

CCDC references: 1031643; 1031644; 1031645; 1031646; 1031647; 1031648

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for Phase_1_NiSeO3, Phase_2_Ni3Se4O10Cl2, Phase_3_Ni5Se6O16Cl4H2, Phase_4_Ni5Se4O12Cl2. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for Phase_1_NiSeO3, Phase_2_Ni3Se4O10Cl2, Phase_3_Ni5Se6O16Cl4H2, Phase_4_Ni5Se4O12Cl2.

(Phase_1_NiSeO3) top
Crystal data top
NiO3SeV = 2158.95 Å3
Mr = 185.65Z = 32
Monoclinic, C2/cF(000) = 631
a = 15.58 ÅDx = 4.569 Mg m3
b = 9.96 ÅElectrons radiation, λ = 0.02510 Å
c = 14.82 ŵ = 0.00 mm1
β = 110.2° × × mm
Data collection top
TEM
diffractometer
Rint = 0.296
Radiation source: 200 kV accerelating voltageθmax = 0.8°, θmin = 0.1°
Rotation electron diffraction scansh = 1515
3389 measured reflectionsk = 1010
1142 independent reflectionsl = 1515
662 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.250 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.551(Δ/σ)max = 0.188
S = 1.75Δρmax = 0.85 e Å3
1142 reflectionsΔρmin = 0.49 e Å3
82 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 2861 (156)
Crystal data top
NiO3Seβ = 110.2°
Mr = 185.65V = 2158.95 Å3
Monoclinic, C2/cZ = 32
a = 15.58 ÅElectrons radiation, λ = 0.02510 Å
b = 9.96 ŵ = 0.00 mm1
c = 14.82 Å × × mm
Data collection top
TEM
diffractometer
662 reflections with I > 2σ(I)
3389 measured reflectionsRint = 0.296
1142 independent reflectionsθmax = 0.8°
Refinement top
R[F2 > 2σ(F2)] = 0.2500 restraints
wR(F2) = 0.551(Δ/σ)max = 0.188
S = 1.75Δρmax = 0.85 e Å3
1142 reflectionsΔρmin = 0.49 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.3804 (9)0.1333 (10)0.1052 (8)0.043 (3)*
Se20.0845 (9)0.1140 (10)0.3643 (8)0.041 (3)*
Se30.3844 (9)0.3192 (10)0.3504 (8)0.041 (3)*
Se40.0958 (9)0.3817 (9)0.1810 (8)0.040 (3)*
Ni10.0672 (10)0.1155 (11)0.0344 (9)0.043 (3)*
Ni20.2608 (10)0.3629 (11)0.0876 (9)0.041 (3)*
Ni30.2322 (10)0.3567 (12)0.4157 (9)0.042 (3)*
Ni40.2232 (10)0.0928 (11)0.2413 (9)0.041 (3)*
O10.349 (3)0.266 (3)0.025 (2)0.052 (9)*
O20.315 (3)0.018 (3)0.027 (2)0.050 (8)*
O30.310 (2)0.182 (3)0.168 (2)0.041 (7)*
O40.167 (2)0.196 (2)0.454 (2)0.032 (6)*
O50.030 (2)0.013 (3)0.419 (2)0.038 (7)*
O60.144 (2)0.006 (3)0.324 (2)0.045 (8)*
O70.467 (2)0.261 (3)0.453 (2)0.046 (8)*
O80.292 (3)0.229 (3)0.344 (2)0.045 (8)*
O90.339 (2)0.473 (3)0.384 (2)0.043 (8)*
O100.119 (2)0.394 (2)0.301 (2)0.034 (7)*
O110.111 (3)0.213 (3)0.166 (2)0.047 (8)*
O120.203 (3)0.442 (3)0.183 (3)0.052 (8)*
Geometric parameters (Å, º) top
Se1—O21.70 (3)Ni2—Se1i2.943 (18)
Se1—O11.73 (3)Ni3—O2vi2.07 (3)
Se1—O31.74 (3)Ni3—O82.07 (3)
Se1—Ni2i2.943 (18)Ni3—O42.08 (3)
Se2—O41.71 (3)Ni3—O4vii2.09 (3)
Se2—O51.70 (3)Ni3—O102.02 (4)
Se2—O61.66 (3)Ni3—O92.21 (4)
Se3—O91.82 (3)Ni4—O12v1.98 (4)
Se3—O81.67 (4)Ni4—O32.19 (3)
Se3—O71.72 (4)Ni4—O112.09 (4)
Se3—Ni32.877 (19)Ni4—O82.05 (3)
Se4—O101.69 (3)Ni4—O62.19 (3)
Se4—O121.77 (4)Ni4—O9v2.14 (3)
Se4—O111.72 (3)O1—Ni1i2.16 (4)
Ni1—O7ii2.02 (4)O1—Ni2i2.32 (4)
Ni1—O1i2.16 (4)O2—Ni2i2.07 (4)
Ni1—O5iii2.05 (3)O2—Ni3v2.07 (3)
Ni1—O112.07 (3)O4—Ni3vii2.09 (3)
Ni1—O5iv2.12 (3)O5—Ni1viii2.05 (3)
Ni1—O9v2.10 (3)O5—Ni1iv2.12 (3)
Ni2—O6vi2.15 (3)O6—Ni2v2.15 (3)
Ni2—O2i2.07 (4)O7—Ni1ix2.02 (4)
Ni2—O122.08 (4)O9—Ni4vi2.14 (3)
Ni2—O1i2.32 (4)O9—Ni1vi2.10 (3)
Ni2—O32.15 (3)O12—Ni4vi1.98 (4)
Ni2—O12.14 (4)
O2—Se1—O194.9 (16)O2vi—Ni3—O994.7 (13)
O2—Se1—O3102.4 (18)O8—Ni3—O973.1 (13)
O1—Se1—O394.2 (17)O4—Ni3—O9159.7 (14)
O2—Se1—Ni2i43.5 (11)O4vii—Ni3—O986.9 (13)
O1—Se1—Ni2i51.9 (13)O10—Ni3—O9103.1 (13)
O3—Se1—Ni2i96.8 (13)O2vi—Ni3—Se3133.7 (11)
O4—Se2—O5106.0 (15)O8—Ni3—Se335.0 (10)
O4—Se2—O6103.1 (17)O4—Ni3—Se3122.0 (10)
O5—Se2—O6103.2 (15)O4vii—Ni3—Se380.4 (10)
O9—Se3—O893.5 (17)O10—Ni3—Se3108.7 (11)
O9—Se3—O7106.7 (15)O9—Ni3—Se339.4 (8)
O8—Se3—O7103.6 (17)O12v—Ni4—O3104.7 (15)
O9—Se3—Ni350.1 (11)O12v—Ni4—O11161.4 (16)
O8—Se3—Ni345.2 (11)O3—Ni4—O1192.4 (13)
O7—Se3—Ni3101.7 (13)O12v—Ni4—O891.6 (15)
O10—Se4—O1295.6 (17)O3—Ni4—O881.2 (13)
O10—Se4—O11103.0 (14)O11—Ni4—O898.4 (14)
O12—Se4—O1199.0 (17)O12v—Ni4—O673.3 (14)
O7ii—Ni1—O1i82.7 (14)O3—Ni4—O6176.0 (15)
O7ii—Ni1—O5iii86.7 (13)O11—Ni4—O690.1 (14)
O1i—Ni1—O5iii92.3 (13)O8—Ni4—O695.4 (14)
O7ii—Ni1—O11102.3 (14)O12v—Ni4—O9v93.8 (14)
O1i—Ni1—O1194.1 (14)O3—Ni4—O9v88.3 (12)
O5iii—Ni1—O11169.4 (13)O11—Ni4—O9v79.1 (13)
O7ii—Ni1—O5iv90.0 (14)O8—Ni4—O9v169.1 (14)
O1i—Ni1—O5iv172.7 (14)O6—Ni4—O9v95.2 (13)
O5iii—Ni1—O5iv86.6 (13)Se1—O1—Ni1i129 (2)
O11—Ni1—O5iv88.0 (14)Se1—O1—Ni2i92.0 (15)
O7ii—Ni1—O9v174.4 (14)Ni1i—O1—Ni2i114.2 (14)
O1i—Ni1—O9v101.8 (15)Se1—O1—Ni296.7 (16)
O5iii—Ni1—O9v89.9 (13)Ni1i—O1—Ni2120.1 (15)
O11—Ni1—O9v80.6 (14)Ni2i—O1—Ni298.1 (16)
O5iv—Ni1—O9v85.3 (13)Se1—O2—Ni2i102.1 (15)
O6vi—Ni2—O2i101.3 (13)Se1—O2—Ni3v117.3 (18)
O6vi—Ni2—O1272.3 (15)Ni2i—O2—Ni3v126.8 (19)
O2i—Ni2—O1294.8 (15)Se1—O3—Ni4139.7 (16)
O6vi—Ni2—O1i171.4 (13)Se1—O3—Ni296.1 (14)
O2i—Ni2—O1i70.1 (13)Ni4—O3—Ni2117.0 (16)
O12—Ni2—O1i108.6 (15)Se2—O4—Ni3117.4 (15)
O6vi—Ni2—O3100.4 (13)Se2—O4—Ni3vii136.4 (14)
O2i—Ni2—O3158.0 (14)Ni3—O4—Ni3vii99.5 (14)
O12—Ni2—O395.4 (13)Se2—O5—Ni1viii136 (2)
O1i—Ni2—O388.1 (12)Se2—O5—Ni1iv113.7 (14)
O6vi—Ni2—O199.0 (14)Ni1viii—O5—Ni1iv93.4 (13)
O2i—Ni2—O199.8 (15)Se2—O6—Ni2v124.1 (17)
O12—Ni2—O1164.3 (16)Se2—O6—Ni4116.1 (16)
O1i—Ni2—O181.9 (16)Ni2v—O6—Ni4101.7 (15)
O3—Ni2—O172.9 (12)Se3—O7—Ni1ix120.8 (17)
O6vi—Ni2—Se1i135.3 (10)Se3—O8—Ni399.8 (15)
O2i—Ni2—Se1i34.4 (9)Se3—O8—Ni4128 (2)
O12—Ni2—Se1i107.8 (12)Ni3—O8—Ni4125 (2)
O1i—Ni2—Se1i36.1 (8)Se3—O9—Ni4vi109.6 (15)
O3—Ni2—Se1i123.6 (10)Se3—O9—Ni1vi117.9 (19)
O1—Ni2—Se1i87.6 (11)Ni4vi—O9—Ni1vi98.0 (13)
O2vi—Ni3—O8167.1 (15)Se3—O9—Ni390.5 (13)
O2vi—Ni3—O4102.0 (13)Ni4vi—O9—Ni3109.2 (16)
O8—Ni3—O490.8 (12)Ni1vi—O9—Ni3131.2 (16)
O2vi—Ni3—O4vii94.3 (13)Se4—O10—Ni3133 (2)
O8—Ni3—O4vii89.3 (13)Se4—O11—Ni4128 (2)
O4—Ni3—O4vii80.5 (14)Se4—O11—Ni1124.6 (18)
O2vi—Ni3—O1082.7 (13)Ni4—O11—Ni1100.3 (14)
O8—Ni3—O1095.7 (14)Se4—O12—Ni4vi128.8 (19)
O4—Ni3—O1090.5 (13)Se4—O12—Ni2119.0 (19)
O4vii—Ni3—O10169.7 (15)Ni4vi—O12—Ni2112.0 (18)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z1/2; (iv) x, y, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x, y, z+1/2; (ix) x+1/2, y+1/2, z+1/2.
(Phase_2_Ni3Se4O10Cl2) top
Crystal data top
Cl2Ni3O10Se4γ = 90°
Mr = 722.81V = 529.3 Å3
?, C2/mZ = 2
a = 7.17 ÅF(000) = 156
b = 13.70 ÅDx = 4.535 Mg m3
c = 5.63 ÅElectrons radiation, λ = 0.02510 Å
α = 90°µ = 0.00 mm1
β = 106.8° × × mm
Data collection top
TEM
diffractometer
Rint = 0.283
Radiation source: 200 kV accerelating voltageθmax = 0.7°, θmin = 0.1°
Rotation electron diffraction scansh = 66
751 measured reflectionsk = 1414
248 independent reflectionsl = 55
194 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.207 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.521(Δ/σ)max = 0.299
S = 1.96Δρmax = 0.32 e Å3
248 reflectionsΔρmin = 0.55 e Å3
22 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 3284 (159)
Crystal data top
Cl2Ni3O10Se4β = 106.8°
Mr = 722.81γ = 90°
?, C2/mV = 529.3 Å3
a = 7.17 ÅZ = 2
b = 13.70 ÅElectrons radiation, λ = 0.02510 Å
c = 5.63 ŵ = 0.00 mm1
α = 90° × × mm
Data collection top
TEM
diffractometer
194 reflections with I > 2σ(I)
751 measured reflectionsRint = 0.283
248 independent reflectionsθmax = 0.7°
Refinement top
R[F2 > 2σ(F2)] = 0.2070 restraints
wR(F2) = 0.521(Δ/σ)max = 0.299
S = 1.96Δρmax = 0.32 e Å3
248 reflectionsΔρmin = 0.55 e Å3
22 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.023 (6)*
Ni20.00000.3741 (11)0.50000.029 (5)*
Se10.3473 (19)0.3367 (7)0.224 (2)0.029 (4)*
Cl10.210 (4)0.50000.252 (4)0.035 (7)*
O10.309 (6)0.223 (3)0.284 (6)0.051 (10)*
O20.141 (5)0.3891 (18)0.235 (5)0.022 (7)*
O30.50000.394 (4)0.50000.071 (18)*
Geometric parameters (Å, º) top
Ni1—O2i2.07 (3)Ni2—Cl12.44 (2)
Ni1—O2ii2.07 (3)Ni2—Cl1vii2.44 (2)
Ni1—O2iii2.07 (3)Se1—O11.64 (4)
Ni1—O22.07 (3)Se1—O21.66 (3)
Ni1—Cl12.35 (2)Se1—O31.80 (3)
Ni1—Cl1iii2.35 (2)Cl1—Ni2vii2.44 (2)
Ni2—O1iv2.04 (4)O1—Ni2v2.04 (4)
Ni2—O1v2.04 (4)O2—Ni2viii2.04 (3)
Ni2—O2ii2.04 (3)O3—Se1ix1.80 (3)
Ni2—O2vi2.04 (3)
O2i—Ni1—O2ii180.000 (2)O1iv—Ni2—Cl1175.5 (14)
O2i—Ni1—O2iii85.8 (16)O1v—Ni2—Cl185.5 (13)
O2ii—Ni1—O2iii94.2 (16)O2ii—Ni2—Cl182.2 (10)
O2i—Ni1—O294.2 (16)O2vi—Ni2—Cl189.6 (10)
O2ii—Ni1—O285.8 (16)O1iv—Ni2—Cl1vii85.5 (13)
O2iii—Ni1—O2180.0 (9)O1v—Ni2—Cl1vii175.5 (14)
O2i—Ni1—Cl196.1 (9)O2ii—Ni2—Cl1vii89.6 (10)
O2ii—Ni1—Cl183.9 (8)O2vi—Ni2—Cl1vii82.2 (10)
O2iii—Ni1—Cl183.9 (8)Cl1—Ni2—Cl1vii90.3 (11)
O2—Ni1—Cl196.1 (8)O1—Se1—O2101.5 (17)
O2i—Ni1—Cl1iii83.9 (8)O1—Se1—O3110 (2)
O2ii—Ni1—Cl1iii96.1 (8)O2—Se1—O396.1 (15)
O2iii—Ni1—Cl1iii96.1 (8)Ni1—Cl1—Ni287.0 (8)
O2—Ni1—Cl1iii83.9 (8)Ni1—Cl1—Ni2vii87.0 (8)
Cl1—Ni1—Cl1iii180.000 (3)Ni2—Cl1—Ni2vii89.7 (10)
O1iv—Ni2—O1v99 (2)Se1—O1—Ni2v128 (3)
O1iv—Ni2—O2ii96.4 (12)Se1—O2—Ni2viii128.1 (16)
O1v—Ni2—O2ii91.1 (12)Se1—O2—Ni1124.6 (15)
O1iv—Ni2—O2vi91.1 (12)Ni2viii—O2—Ni1106.7 (14)
O1v—Ni2—O2vi96.4 (12)Se1—O3—Se1ix128 (4)
O2ii—Ni2—O2vi168.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1; (v) x+1/2, y+1/2, z; (vi) x, y, z1; (vii) x, y+1, z1; (viii) x, y, z+1; (ix) x+1, y, z+1.
(Phase_3_Ni5Se6O16Cl4H2) top
Crystal data top
H2Cl4Ni5O16Se6γ = 90°
Mr = 1167.03V = 2058.3 Å3
?, C2/cZ = 4
a = 21.94 ÅF(000) = 512
b = 8.38 ÅDx = 3.766 Mg m3
c = 12.68 ÅElectrons radiation, λ = 0.02510 Å
α = 90°µ = 0.00 mm1
β = 118.1° × × mm
Data collection top
TEM
diffractometer
Rint = 0.210
Radiation source: 200 kV accerelating voltageθmax = 0.5°, θmin = 0.1°
Rotation electron diffraction scansh = 1616
1205 measured reflectionsk = 66
351 independent reflectionsl = 99
245 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.239H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.556 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.27(Δ/σ)max = 0.006
351 reflectionsΔρmax = 0.46 e Å3
64 parametersΔρmin = 0.56 e Å3
8 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1100 (270)
Crystal data top
H2Cl4Ni5O16Se6β = 118.1°
Mr = 1167.03γ = 90°
?, C2/cV = 2058.3 Å3
a = 21.94 ÅZ = 4
b = 8.38 ÅElectrons radiation, λ = 0.02510 Å
c = 12.68 ŵ = 0.00 mm1
α = 90° × × mm
Data collection top
TEM
diffractometer
245 reflections with I > 2σ(I)
1205 measured reflectionsRint = 0.210
351 independent reflectionsθmax = 0.5°
Refinement top
R[F2 > 2σ(F2)] = 0.2398 restraints
wR(F2) = 0.556H atoms treated by a mixture of independent and constrained refinement
S = 2.27Δρmax = 0.46 e Å3
351 reflectionsΔρmin = 0.56 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.3213 (14)0.057 (3)0.213 (2)0.114 (12)*
Se20.6143 (17)0.212 (3)0.595 (2)0.129 (12)*
Se30.4030 (16)0.304 (3)0.595 (2)0.137 (13)*
Ni10.3349 (15)0.416 (3)0.307 (3)0.119 (13)*
Ni20.2412 (16)0.189 (3)0.374 (2)0.105 (12)*
Ni30.50000.50000.50000.128 (16)*
Cl10.4402 (17)0.375 (5)0.299 (3)0.137 (16)*
Cl20.256 (2)0.409 (3)0.087 (3)0.113 (14)*
O10.323 (4)0.181 (8)0.320 (6)0.12 (2)*
O20.530 (2)0.262 (9)0.544 (5)0.13 (3)*
O30.404 (3)0.431 (5)0.492 (4)0.08 (2)*
O40.256 (3)0.077 (7)0.170 (6)0.12 (2)*
O50.336 (4)0.656 (9)0.296 (6)0.17 (3)*
O60.383 (5)0.080 (11)0.303 (8)0.16 (3)*
O70.179 (2)0.259 (7)0.449 (5)0.11 (2)*
O80.438 (5)0.131 (6)0.579 (9)0.15 (3)*
H80.47620.14940.58430.232*
Geometric parameters (Å, º) top
Se1—O41.70 (2)Ni2—O4iv2.05 (6)
Se1—O61.73 (10)Ni2—O72.09 (6)
Se1—O11.70 (6)Ni2—Cl2v2.390 (19)
Se2—O6i1.68 (8)Ni3—O2ii2.09 (7)
Se2—O21.69 (2)Ni3—O22.09 (7)
Se2—O5ii1.71 (2)Ni3—O32.14 (6)
Se3—O7iii1.69 (2)Ni3—O3ii2.14 (6)
Se3—O81.70 (2)Ni3—Cl1ii2.48 (4)
Se3—O31.70 (2)Ni3—Cl12.48 (4)
Ni1—O12.00 (7)Cl2—Ni2iv2.390 (19)
Ni1—O52.02 (8)O4—Ni2v2.05 (6)
Ni1—O32.12 (6)O4—Ni1v2.15 (6)
Ni1—O4iv2.15 (6)O5—Se2ii1.71 (2)
Ni1—Cl12.39 (2)O5—Ni2iv2.03 (8)
Ni1—Cl22.50 (5)O6—Se2i1.68 (8)
Ni2—O12.20 (8)O7—Se3iii1.69 (2)
Ni2—O7iii2.15 (6)O7—Ni2iii2.15 (6)
Ni2—O5v2.03 (8)
O4—Se1—O693 (4)O4iv—Ni2—Cl2v174 (2)
O4—Se1—O1111 (4)O7—Ni2—Cl2v98 (2)
O6—Se1—O199 (4)O2ii—Ni3—O2180.000 (11)
O6i—Se2—O296 (4)O2ii—Ni3—O393.7 (18)
O6i—Se2—O5ii92 (4)O2—Ni3—O386.3 (19)
O2—Se2—O5ii108 (4)O2ii—Ni3—O3ii86.3 (19)
O7iii—Se3—O899 (4)O2—Ni3—O3ii93.7 (18)
O7iii—Se3—O3110 (3)O3—Ni3—O3ii180.000 (5)
O8—Se3—O3106 (4)O2ii—Ni3—Cl1ii79.5 (19)
O1—Ni1—O5173 (3)O2—Ni3—Cl1ii100.5 (19)
O1—Ni1—O391 (3)O3—Ni3—Cl1ii101.2 (15)
O5—Ni1—O390 (2)O3ii—Ni3—Cl1ii78.8 (15)
O1—Ni1—O4iv81 (3)O2ii—Ni3—Cl1100.5 (19)
O5—Ni1—O4iv91 (3)O2—Ni3—Cl179.5 (19)
O3—Ni1—O4iv94 (3)O3—Ni3—Cl178.8 (15)
O1—Ni1—Cl192 (3)O3ii—Ni3—Cl1101.2 (15)
O5—Ni1—Cl196 (3)Cl1ii—Ni3—Cl1180.000 (2)
O3—Ni1—Cl181 (2)Ni1—Cl1—Ni387.1 (13)
O4iv—Ni1—Cl1172 (2)Ni2iv—Cl2—Ni179.1 (13)
O1—Ni1—Cl291 (2)Se1—O1—Ni1119 (3)
O5—Ni1—Cl288 (2)Se1—O1—Ni2124 (4)
O3—Ni1—Cl2177.0 (19)Ni1—O1—Ni299 (3)
O4iv—Ni1—Cl288 (2)Se2—O2—Ni3120 (4)
Cl1—Ni1—Cl296.9 (16)Se3—O3—Ni1124 (3)
O1—Ni2—O7iii87 (3)Se3—O3—Ni3121 (3)
O1—Ni2—O5v93 (3)Ni1—O3—Ni3104.2 (17)
O7iii—Ni2—O5v176 (3)Se1—O4—Ni2v126 (4)
O1—Ni2—O4iv79 (2)Se1—O4—Ni1v132 (4)
O7iii—Ni2—O4iv89 (3)Ni2v—O4—Ni1v99.0 (18)
O5v—Ni2—O4iv88 (3)Se2ii—O5—Ni1128 (5)
O1—Ni2—O7163 (3)Se2ii—O5—Ni2iv132 (5)
O7iii—Ni2—O781.9 (19)Ni1—O5—Ni2iv100.4 (19)
O5v—Ni2—O797 (3)Se2i—O6—Se1133 (6)
O4iv—Ni2—O788 (2)Se3iii—O7—Ni2iii129 (3)
O1—Ni2—Cl2v95 (2)Se3iii—O7—Ni2125 (3)
O7iii—Ni2—Cl2v93 (2)Ni2iii—O7—Ni298.1 (19)
O5v—Ni2—Cl2v91 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
(Phase_4_Ni5Se4O12Cl2) top
Crystal data top
Cl2Ni5O12Se4γ = 101.6°
Mr = 872.19V = 684.2 Å3
?, P1Z = 2
a = 9.44 ÅF(000) = 190
b = 9.44 ÅDx = 4.234 Mg m3
c = 8.14 ÅElectrons radiation, λ = 0.02510 Å
α = 105.1°µ = 0.00 mm1
β = 91.6° × × mm
Data collection top
TEM
diffractometer
Rint = 0.228
Radiation source: 200 kV accerelating voltageθmax = 0.8°, θmin = 0.1°
Rotation electron diffraction scansh = 1010
2888 measured reflectionsk = 1010
1464 independent reflectionsl = 99
425 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.330 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.660(Δ/σ)max = 0.431
S = 1.47Δρmax = 0.97 e Å3
1464 reflectionsΔρmin = 0.68 e Å3
94 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
19 restraintsExtinction coefficient: 6040 (146)
Crystal data top
Cl2Ni5O12Se4β = 91.6°
Mr = 872.19γ = 101.6°
?, P1V = 684.2 Å3
a = 9.44 ÅZ = 2
b = 9.44 ÅElectrons radiation, λ = 0.02510 Å
c = 8.14 ŵ = 0.00 mm1
α = 105.1° × × mm
Data collection top
TEM
diffractometer
425 reflections with I > 2σ(I)
2888 measured reflectionsRint = 0.228
1464 independent reflectionsθmax = 0.8°
Refinement top
R[F2 > 2σ(F2)] = 0.33019 restraints
wR(F2) = 0.660(Δ/σ)max = 0.431
S = 1.47Δρmax = 0.97 e Å3
1464 reflectionsΔρmin = 0.68 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.230 (3)0.094 (2)0.178 (2)0.030 (6)*
Se20.680 (3)0.882 (2)1.286 (2)0.023 (5)*
Se30.621 (2)0.323 (2)0.442 (2)0.027 (5)*
Se40.894 (3)0.572 (2)0.840 (2)0.025 (5)*
Ni10.254 (2)0.277 (3)0.417 (3)0.037 (7)*
Ni20.806 (3)0.563 (2)0.238 (3)0.029 (6)*
Ni30.512 (3)0.180 (2)0.104 (2)0.032 (6)*
Ni40.893 (4)0.869 (3)1.019 (3)0.059 (9)*
Ni51.102 (2)0.801 (2)0.745 (2)0.019 (5)*
Cl10.621 (4)0.392 (4)0.013 (4)0.029 (8)*
Cl20.981 (3)0.725 (4)0.464 (3)0.046 (10)*
O10.852 (6)0.976 (5)1.290 (5)0.007 (10)*
O20.421 (7)0.036 (3)0.093 (6)0.035 (15)*
O30.456 (3)0.299 (4)0.331 (3)0.011 (11)*
O40.683 (7)0.837 (6)1.053 (6)0.020 (13)*
O50.274 (8)0.500 (7)0.564 (7)0.029 (14)*
O60.907 (8)0.661 (7)0.056 (7)0.031 (15)*
O70.246 (7)0.058 (6)0.335 (6)0.020 (12)*
O80.111 (3)0.268 (3)0.220 (4)0.16 (6)*
O90.297 (8)0.273 (5)0.658 (4)0.07 (2)*
O100.922 (9)0.399 (7)0.195 (7)0.036 (16)*
O110.688 (3)0.218 (6)0.272 (4)0.043 (18)*
O120.108 (4)0.075 (4)0.008 (7)0.040 (17)*
Geometric parameters (Å, º) top
Se1—O71.63 (5)Ni3—O32.044 (19)
Se1—O21.98 (5)Ni3—Cl12.38 (4)
Se1—O121.85 (5)Ni4—O12ii2.01 (2)
Se2—O9i1.695 (19)Ni4—O12vi2.00 (2)
Se2—O41.84 (5)Ni4—O12.25 (5)
Se2—O11.68 (6)Ni4—O8ii2.03 (2)
Se2—Ni43.00 (4)Ni4—O6iv2.09 (7)
Se3—O31.718 (19)Ni4—O41.98 (7)
Se3—O111.700 (19)Ni5—O1vii2.16 (5)
Se3—O5ii1.77 (6)Ni5—O11iii2.037 (19)
Se4—O10iii1.75 (8)Ni5—O10iii2.04 (7)
Se4—O8ii1.71 (2)Ni5—O12vi2.16 (6)
Se4—O6iv1.73 (6)Ni5—Cl22.39 (3)
Se4—Ni42.81 (3)O1—Ni5vii2.16 (5)
Ni1—O71.99 (6)O2—Ni3v2.02 (2)
Ni1—O82.045 (19)O4—Ni3ii2.17 (7)
Ni1—O52.10 (6)O5—Se3ii1.77 (6)
Ni1—O92.01 (2)O5—Ni2ii1.97 (6)
Ni1—O32.042 (19)O6—Se4viii1.73 (6)
Ni1—Ni2ii2.95 (3)O6—Ni4viii2.09 (7)
Ni2—O62.10 (7)O8—Se4ii1.71 (2)
Ni2—O9ii2.01 (2)O8—Ni4ii2.03 (2)
Ni2—O5ii1.97 (6)O9—Se2i1.695 (19)
Ni2—O102.03 (8)O9—Ni2ii2.01 (2)
Ni2—Cl12.48 (4)O10—Se4iii1.75 (8)
Ni2—Cl22.406 (19)O10—Ni5iii2.04 (7)
Ni2—Ni1ii2.95 (3)O11—Ni5iii2.037 (19)
Ni3—O4ii2.17 (7)O12—Ni4ii2.01 (2)
Ni3—O22.02 (2)O12—Ni4ix2.00 (2)
Ni3—O2v2.02 (2)O12—Ni5ix2.16 (6)
Ni3—O112.035 (19)
O7—Se1—O296 (3)O12vi—Ni4—O8ii86 (2)
O7—Se1—O12106 (3)O1—Ni4—O8ii166 (2)
O2—Se1—O12101 (2)O12ii—Ni4—O6iv176 (4)
O9i—Se2—O4106 (2)O12vi—Ni4—O6iv92 (3)
O9i—Se2—O1102 (3)O1—Ni4—O6iv96 (2)
O4—Se2—O185 (3)O8ii—Ni4—O6iv74.9 (18)
O9i—Se2—Ni497 (2)O12ii—Ni4—O490 (3)
O4—Se2—Ni440 (2)O12vi—Ni4—O4173 (3)
O1—Se2—Ni447.9 (16)O1—Ni4—O468 (2)
O3—Se3—O1193.0 (14)O8ii—Ni4—O4101 (2)
O3—Se3—O5ii107 (3)O6iv—Ni4—O493 (3)
O11—Se3—O5ii97 (3)O12ii—Ni4—Se295 (2)
O10iii—Se4—O8ii88 (3)O12vi—Ni4—Se2138 (2)
O10iii—Se4—O6iv100 (3)O1—Ni4—Se233.6 (16)
O8ii—Se4—O6iv94 (2)O8ii—Ni4—Se2132.9 (18)
O10iii—Se4—Ni497 (2)O6iv—Ni4—Se286 (2)
O8ii—Se4—Ni445.9 (10)O4—Ni4—Se236.6 (15)
O6iv—Se4—Ni448 (2)O12ii—Ni4—Se4144 (2)
O7—Ni1—O892 (2)O12vi—Ni4—Se489.7 (19)
O7—Ni1—O5165 (2)O1—Ni4—Se4132.7 (17)
O8—Ni1—O5101 (2)O8ii—Ni4—Se437.1 (8)
O7—Ni1—O991 (2)O6iv—Ni4—Se437.8 (15)
O8—Ni1—O9151 (2)O4—Ni4—Se497 (2)
O5—Ni1—O974.9 (19)Se2—Ni4—Se4111.8 (12)
O7—Ni1—O385 (2)O1vii—Ni5—O11iii93 (2)
O8—Ni1—O3107.5 (14)O1vii—Ni5—O10iii172 (3)
O5—Ni1—O398 (2)O11iii—Ni5—O10iii83 (3)
O9—Ni1—O3102 (2)O1vii—Ni5—O12vi81.8 (15)
O7—Ni1—Ni2ii125.5 (18)O11iii—Ni5—O12vi101.0 (16)
O8—Ni1—Ni2ii116.4 (13)O10iii—Ni5—O12vi93 (2)
O5—Ni1—Ni2ii41.9 (17)O1vii—Ni5—Cl285.6 (17)
O9—Ni1—Ni2ii42.7 (8)O11iii—Ni5—Cl2109.1 (13)
O3—Ni1—Ni2ii123.6 (12)O10iii—Ni5—Cl2102 (2)
O6—Ni2—O9ii97 (2)O12vi—Ni5—Cl2147.8 (16)
O6—Ni2—O5ii171 (3)Ni2—Cl1—Ni3109.5 (14)
O9ii—Ni2—O5ii78 (2)Ni5—Cl2—Ni2154.1 (18)
O6—Ni2—O1093 (3)Se2—O1—Ni5vii121 (3)
O9ii—Ni2—O10166 (2)Se2—O1—Ni498 (2)
O5ii—Ni2—O1091 (3)Ni5vii—O1—Ni492.9 (19)
O6—Ni2—Cl190 (2)Se1—O2—Ni3122 (2)
O9ii—Ni2—Cl1102 (2)Se1—O2—Ni3v120 (2)
O5ii—Ni2—Cl198 (2)Ni3—O2—Ni3v111 (2)
O10—Ni2—Cl188 (2)Se3—O3—Ni1129.0 (19)
O6—Ni2—Cl292 (2)Se3—O3—Ni395.6 (13)
O9ii—Ni2—Cl278 (2)Ni1—O3—Ni3126.3 (17)
O5ii—Ni2—Cl280 (2)Se2—O4—Ni3ii120 (3)
O10—Ni2—Cl292 (2)Se2—O4—Ni4103 (3)
Cl1—Ni2—Cl2178.1 (16)Ni3ii—O4—Ni4135 (3)
O6—Ni2—Ni1ii126.4 (18)Se3ii—O5—Ni1135 (3)
O9ii—Ni2—Ni1ii42.7 (8)Se3ii—O5—Ni2ii129 (3)
O5ii—Ni2—Ni1ii45.3 (18)Ni1—O5—Ni2ii93 (3)
O10—Ni2—Ni1ii123 (2)Se4viii—O6—Ni2124 (3)
Cl1—Ni2—Ni1ii125.4 (14)Se4viii—O6—Ni4viii94 (3)
Cl2—Ni2—Ni1ii53.0 (6)Ni2—O6—Ni4viii127 (3)
O4ii—Ni3—O283 (3)Se1—O7—Ni1150 (3)
O4ii—Ni3—O2v90 (3)Se4ii—O8—Ni1119.6 (18)
O2—Ni3—O2v69 (2)Se4ii—O8—Ni4ii97.0 (16)
O4ii—Ni3—O11173 (2)Ni1—O8—Ni4ii123.0 (19)
O2—Ni3—O11101 (3)Se2i—O9—Ni1124 (2)
O2v—Ni3—O1197 (2)Se2i—O9—Ni2ii133 (3)
O4ii—Ni3—O398.5 (19)Ni1—O9—Ni2ii94.6 (14)
O2—Ni3—O3104.0 (19)Se4iii—O10—Ni5iii99 (3)
O2v—Ni3—O3169 (3)Se4iii—O10—Ni2124 (4)
O11—Ni3—O374.8 (11)Ni5iii—O10—Ni2133 (4)
O4ii—Ni3—Cl188.5 (19)Se3—O11—Ni5iii125.8 (19)
O2—Ni3—Cl1159.5 (17)Se3—O11—Ni396.4 (13)
O2v—Ni3—Cl192.6 (16)Ni5iii—O11—Ni3135.9 (18)
O11—Ni3—Cl190 (2)Se1—O12—Ni4ii120 (3)
O3—Ni3—Cl195.8 (16)Se1—O12—Ni4ix119 (3)
O12ii—Ni4—O12vi85 (3)Ni4ii—O12—Ni4ix95 (3)
O12ii—Ni4—O183 (2)Se1—O12—Ni5ix123 (2)
O12vi—Ni4—O1106 (3)Ni4ii—O12—Ni5ix100 (2)
O12ii—Ni4—O8ii106 (2)Ni4ix—O12—Ni5ix94 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y+2, z+2; (viii) x, y, z1; (ix) x1, y1, z1.
(Phase_1_PXRD) top
Crystal data top
Ni4Se4O12V = 2091.14 Å3
Mr = 742.6Z = 1
Monoclinic, C2/cDx = 0.122 Mg m3
Hall symbol: -C 2ycCu Kα radiation, λ = 1.5418 Å
a = 15.4691 ŵ = 0.66 mm1
b = 9.8078 ÅT = 0 K
c = 14.7312 Å × × mm
β = 110.6685°
Data collection top
X-Pert
diffractometer
k = ??
Radiation source: X-ray tubel = ??
h = ??
Refinement top
Crystal data top
Ni4Se4O12V = 2091.14 Å3
Mr = 742.6Z = 1
Monoclinic, C2/cCu Kα radiation
a = 15.4691 ŵ = 0.66 mm1
b = 9.8078 ÅT = 0 K
c = 14.7312 Å × × mm
β = 110.6685°
Data collection top
X-Pert
diffractometer
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se110.377860.136420.106060.0066*
Se210.085730.115770.36840.0066*
Se310.388460.312640.353760.0066*
Se410.09490.382710.18310.0066*
Ni110.06840.117640.034420.0066*
Ni210.259190.366570.086860.0066*
Ni310.237770.356990.41540.0066*
Ni410.224620.092670.242730.0066*
O110.342220.264550.018360.0091*
O210.320790.010530.022840.0091*
O310.305720.19220.167490.0091*
O410.168410.199310.449510.0091*
O510.035240.018860.42580.0091*
O610.153260.008110.332080.0091*
O710.470460.248750.451760.0091*
O810.300990.204730.36110.0091*
O910.345630.466880.382370.0091*
O1010.111630.40850.299240.0091*
O1110.107290.212510.172510.0091*
O1210.199610.431410.186370.0091*
Bond lengths (Å) top
Se11—O111.7463Ni21—O112.141
Se11—O211.7444Ni21—O11i2.1911
Se11—O311.754Ni21—O21i2.0454
Se21—O411.6297Ni21—O312.0616
Se21—O511.6415Ni21—O61vi2.0114
Se21—O611.6991Ni21—O1212.0872
Se31—O711.6713Ni31—O21vi2.1208
Se31—O811.751Ni31—O412.0435
Se31—O911.7613Ni31—O41vii2.0815
Se41—O1011.657Ni31—O812.0925
Se41—O1111.6937Ni31—O912.1807
Se41—O1211.673Ni31—O1012.1526
Ni11—O11i2.1471Ni41—O312.1764
Ni11—O51ii2.125Ni41—O612.1597
Ni11—O51iii2.0091Ni41—O812.0469
Ni11—O71iv2.0477Ni41—O91v2.1646
Ni11—O91v2.0753Ni41—O1112.1025
Ni11—O1112.1218Ni41—O121v2.0253
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2; (iii) x, y, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1.
(Phase_4_PXRD) top
Crystal data top
Cl2Ni5O12Se4γ = 101.948°
Mr = 872.2V = 659.13 Å3
Triclinic, P1Z = 1
Hall symbol: -P 1Dx = 0.476 Mg m3
a = 9.2823 ÅCu Kα radiation, λ = 1.5418 Å
b = 9.3756 ŵ = 2.18 mm1
c = 8.0733 ÅT = 0 K
α = 105.6114° × × mm
β = 91.8441°
Data collection top
X-Pert
diffractometer
k = ??
Radiation source: X-ray tubel = ??
h = ??
Refinement top
Crystal data top
Cl2Ni5O12Se4γ = 101.948°
Mr = 872.2V = 659.13 Å3
Triclinic, P1Z = 1
a = 9.2823 ÅCu Kα radiation
b = 9.3756 ŵ = 2.18 mm1
c = 8.0733 ÅT = 0 K
α = 105.6114° × × mm
β = 91.8441°
Data collection top
X-Pert
diffractometer
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se140.237380.097430.182990.0068*
Se240.68440.891031.290690.0068*
Se340.615720.330590.450870.0068*
Se440.897410.569410.848240.0068*
Ni140.248670.27520.429190.0068*
Ni240.805050.560710.236070.0068*
Ni340.513550.177380.099040.0068*
Ni440.888740.864751.031520.0068*
Ni541.121210.806450.750910.0068*
Cl140.628440.397840.02240.0101*
Cl241.01220.71910.45860.0101*
O140.875690.982611.295050.0106*
O240.390970.039450.085910.0106*
O340.446940.289110.332250.0106*
O440.661270.820651.071020.0106*
O540.294910.489850.550520.0106*
O640.919030.666450.07320.0106*
O740.214390.045150.347180.0106*
O840.105210.273560.215340.0106*
O940.322070.281430.689450.0106*
O1040.917890.389880.175940.0106*
O1140.669240.192090.301720.0106*
O1240.128130.076040.011750.0106*
Bond lengths (Å) top
Se14—O241.7096Ni24—O642.0465
Se14—O741.665Ni24—O94ii2.0577
Se14—O1241.7672Ni24—O1042.0511
Se24—O141.7999Ni34—Cl142.3687
Se24—O441.7069Ni34—O242.0874
Se24—O94i1.6564Ni34—O24v2.0513
Se34—O341.7244Ni34—O342.0751
Se34—O54ii1.719Ni34—O44ii2.0979
Se34—O1141.6873Ni34—O1142.1045
Se44—O64iii1.7827Ni44—O142.1375
Se44—O84ii1.6889Ni44—O442.1175
Se44—O104iv1.707Ni44—O64iii2.0484
Ni14—Cl24ii2.6184Ni44—O84ii2.0744
Ni14—O342.0161Ni44—O124vi2.198
Ni14—O541.936Ni44—O124ii2.1373
Ni14—O742.0311Ni54—Cl242.3931
Ni14—O842.1409Ni54—O14vii2.1028
Ni14—O942.1697Ni54—O84ii2.1326
Ni24—Cl142.3149Ni54—O104iv2.0472
Ni24—Cl242.5079Ni54—O114iv2.0024
Ni24—O54ii2.1011Ni54—O124vi2.0894
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y+2, z+2.

Experimental details

(Phase_1_NiSeO3)(Phase_2_Ni3Se4O10Cl2)(Phase_3_Ni5Se6O16Cl4H2)(Phase_4_Ni5Se4O12Cl2)
Crystal data
Chemical formulaNiO3SeCl2Ni3O10Se4H2Cl4Ni5O16Se6Cl2Ni5O12Se4
Mr185.65722.811167.03872.19
Crystal system, space groupMonoclinic, C2/c?, C2/m?, C2/c?, P1
Temperature (K)????
a, b, c (Å)15.58, 9.96, 14.827.17, 13.70, 5.6321.94, 8.38, 12.689.44, 9.44, 8.14
α, β, γ (°)90, 110.2, 9090, 106.8, 9090, 118.1, 90105.1, 91.6, 101.6
V3)2158.95529.32058.3684.2
Z32242
Radiation typeElectrons, λ = 0.02510 ÅElectrons, λ = 0.02510 ÅElectrons, λ = 0.02510 ÅElectrons, λ = 0.02510 Å
µ (mm1)0.000.000.000.00
Crystal size (mm) × × × × × × × ×
Data collection
DiffractometerTEM
diffractometer
TEM
diffractometer
TEM
diffractometer
TEM
diffractometer
Absorption correction
No. of measured, independent and
observed reflections
3389, 1142, 662 [I > 2σ(I)]751, 248, 194 [I > 2σ(I)]1205, 351, 245 [I > 2σ(I)]2888, 1464, 425 [I > 2σ(I)]
Rint0.2960.2830.2100.228
θmax (°)0.80.70.50.8
(sin θ/λ)max1)0.5280.5150.3690.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.250, 0.551, 1.75 0.207, 0.521, 1.96 0.239, 0.556, 2.27 0.330, 0.660, 1.47
No. of reflections11422483511464
No. of parameters82226494
No. of restraints00819
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
(Δ/σ)max0.1880.2990.0060.431
Δρmax, Δρmin (e Å3)0.85, 0.490.32, 0.550.46, 0.560.97, 0.68


(Phase_1_PXRD)(Phase_4_PXRD)
Crystal data
Chemical formulaNi4Se4O12Cl2Ni5O12Se4
Mr742.6872.2
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)00
a, b, c (Å)15.4691, 9.8078, 14.73129.2823, 9.3756, 8.0733
α, β, γ (°)90, 110.6685, 90105.6114, 91.8441, 101.948
V3)2091.14659.13
Z11
Radiation typeCu KαCu Kα
µ (mm1)0.662.18
Crystal size (mm) × × × ×
Data collection
DiffractometerX-Pert
diffractometer
X-Pert
diffractometer
Absorption correction
No. of measured, independent and
observed reflections
?, ?, ? (?)?, ?, ? (?)
Rint??
θmax (°)??
(sin θ/λ)max1)
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ?
No. of reflections??
No. of parameters??
No. of restraints??
H-atom treatment
(Δ/σ)max??
Δρmax, Δρmin (e Å3)?, ??, ?

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds