Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The white-beam Laue diffraction experiment is an attractive alternative to the more conventional monochromatic one for single-crystal structure analysis, because it takes full advantage of the X-ray energy spectrum of a synchrotron source and requires no rotation of the crystal in the beam. Therefore, it could be used for structural characterizations under in situ or operando conditions. The potential of Laue diffraction was recognized and exploited by the protein community many years ago, and the methodology, which involved positioning and rotating the crystal in the beam, has been successfully applied to the determination of both protein and small-molecule crystal structures. Here, it is proposed that the specificities of Laue diffraction are exploited to study randomly oriented stationary microcrystals of inorganic materials. In order to determine the best strategy for collecting a reasonable quantity of data from stationary crystals, a series of simulations on four model structures for three experimental setups have been performed. It is shown that the structures of the four samples can be solved with the dual-space method in SHELX, even though the data sets are highly incomplete and much of the low-resolution part is missing. The experimental setup and data collection strategy for measuring such microcrystals have been developed on BL12.3.2 at the Advanced Light Source in Berkeley. The intensities of reflections with one and two harmonics can be extracted reliably by exploiting the tunable low-energy threshold of a Pilatus detector. In this way, the number of usable reflections can be increased from 75 to 95%. Such Laue microdiffraction data have been measured and used successfully to refine the structures of the model samples.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889813026307/he5624sup1.pdf
Supplementary tables with complete statistical, structure solution and refinement results


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds