Download citation
Download citation
link to html
In recent years, microsource sealed tubes in combination with multilayer optics have been adopted in many crystallography laboratories for very low power X-ray generation, monochromatization and high-brilliance microfocusing. All these factors allow high-performance experiments on a laboratory scale. However, a fundamental defect of this technology has been discovered, namely a significant contamination of the characteristic radiation by low-energy photons. Some simple experiments are reported, showing that the contamination can significantly reduce the accuracy of the measured intensities, especially when Mo Kα radiation is used. A simple and economic solution to the problem is proposed: an aluminium filter approximately 100 µm thick, which efficiently removes the low-energy contaminant photons.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0021889811016232/he5530sup1.cif
Contains datablocks global, IA, IB, IC, ID, IE, IIA, IIB, IIC

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IAsup2.hkl
Contains datablock IA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IBsup3.hkl
Contains datablock IB

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530ICsup4.hkl
Contains datablock IC

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IDsup5.hkl
Contains datablock ID

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IEsup6.hkl
Contains datablock IE

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IIAsup7.hkl
Contains datablock IIA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IIBsup8.hkl
Contains datablock IIB

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IIB1sup9.hkl
Contains datablock IIB1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0021889811016232/he5530IICsup10.hkl
Contains datablock IIC

CCDC references: 842184; 842188; 842189; 842190; 842191; 842192; 842193; 842194

Computing details top

Data collection: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) for (IIA); CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) for (IIC). Cell refinement: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) for (IIA); CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) for (IIC). Data reduction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) for (IIA); CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) for (IIC). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (IA), (IB), (IC), (ID), (IE); Volkov et al., (2006) for (IIA), (IIB), (IIC). Molecular graphics: Volkov et al., (2006) for (IIA), (IIB), (IIC). Software used to prepare material for publication: Volkov et al., (2006) for (IIA), (IIB), (IIC).

(IA) top
Crystal data top
C6H24N8NiO6V = 773.07 (5) Å3
Mr = 363.04Z = 2
?, ?F(000) = 384
a = 8.8647 (3) ÅDx = 1.56 Mg m3
b = 8.8647 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.3595 (4) ŵ = 1.30 mm1
α = 90°T = 293 K
β = 90°0.18 × 0.13 × 0.05 mm
γ = 120°
Data collection top
Graphite monochromatorRint = 0.049
Absorption correction: multi-scan
?
θmax = 32.8°, θmin = 3.2°
Tmin = 0.588, Tmax = 1.000h = 1313
16785 measured reflectionsk = 1312
934 independent reflectionsl = 1716
819 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.040(Δ/σ)max < 0.001
S = 2.31Δρmax = 0.22 e Å3
934 reflectionsΔρmin = 0.17 e Å3
34 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.039 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
C6H24N8NiO6γ = 120°
Mr = 363.04V = 773.07 (5) Å3
?, ?Z = 2
a = 8.8647 (3) ÅMo Kα radiation
b = 8.8647 (3) ŵ = 1.30 mm1
c = 11.3595 (4) ÅT = 293 K
α = 90°0.18 × 0.13 × 0.05 mm
β = 90°
Data collection top
Absorption correction: multi-scan
?
934 independent reflections
Tmin = 0.588, Tmax = 1.000819 reflections with I > 2σ(I)
16785 measured reflectionsRint = 0.049
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.040Δρmax = 0.22 e Å3
S = 2.31Δρmin = 0.17 e Å3
934 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
34 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.33330.66670.750.03255 (12)
N10.54300 (13)0.85974 (13)0.64801 (10)0.0435 (3)
H1A0.52390.83320.5710.052*
H1B0.55230.96450.65930.052*
C10.70356 (15)0.8641 (2)0.68573 (12)0.0562 (4)
H1C0.80340.97510.66410.067*
H1D0.71360.77290.64570.067*
N20.33330.66670.38941 (14)0.0469 (4)
O10.48346 (13)0.69236 (13)0.39179 (10)0.0762 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02339 (13)0.02339 (13)0.0509 (2)0.01169 (6)00
N10.0334 (7)0.0331 (6)0.0599 (7)0.0135 (5)0.0014 (6)0.0037 (5)
C10.0292 (6)0.0438 (10)0.0900 (9)0.0141 (9)0.0103 (6)0.0098 (10)
N20.0473 (6)0.0473 (6)0.0461 (9)0.0236 (3)00
O10.0451 (6)0.0791 (9)0.1083 (9)0.0339 (6)0.0006 (6)0.0054 (7)
Geometric parameters (Å, º) top
Ni1—N1i2.1319 (10)N1—H1B0.9
Ni1—N1ii2.1319 (10)C1—C1iv1.476 (3)
Ni1—N1iii2.1319 (10)C1—H1C0.97
Ni1—N12.1319 (10)C1—H1D0.97
Ni1—N1iv2.1319 (10)N2—O1ii1.2331 (10)
Ni1—N1v2.1319 (10)N2—O1v1.2331 (10)
N1—C11.4682 (15)N2—O11.2331 (10)
N1—H1A0.9
N1i—Ni1—N1ii81.95 (6)C1—N1—Ni1107.88 (8)
N1i—Ni1—N1iii93.27 (4)C1—N1—H1A110.1
N1ii—Ni1—N1iii91.91 (6)Ni1—N1—H1A110.1
N1i—Ni1—N191.91 (6)C1—N1—H1B110.1
N1ii—Ni1—N193.27 (4)Ni1—N1—H1B110.1
N1iii—Ni1—N1173.15 (6)H1A—N1—H1B108.4
N1i—Ni1—N1iv93.27 (4)N1—C1—C1iv110.89 (10)
N1ii—Ni1—N1iv173.15 (6)N1—C1—H1C109.5
N1iii—Ni1—N1iv93.27 (4)C1iv—C1—H1C109.5
N1—Ni1—N1iv81.95 (6)N1—C1—H1D109.5
N1i—Ni1—N1v173.15 (6)C1iv—C1—H1D109.5
N1ii—Ni1—N1v93.27 (4)H1C—C1—H1D108
N1iii—Ni1—N1v81.95 (6)O1ii—N2—O1v119.952 (8)
N1—Ni1—N1v93.27 (4)O1ii—N2—O1119.952 (8)
N1iv—Ni1—N1v91.91 (6)O1v—N2—O1119.952 (8)
N1i—Ni1—N1—C1106.18 (10)N1iv—Ni1—N1—C113.15 (8)
N1ii—Ni1—N1—C1171.78 (9)N1v—Ni1—N1—C178.32 (11)
N1iii—Ni1—N1—C132.83 (9)Ni1—N1—C1—C1iv37.9 (2)
Symmetry codes: (i) x+y, y, z+3/2; (ii) y+1, xy+1, z; (iii) y+1, x+1, z+3/2; (iv) x, xy+1, z+3/2; (v) x+y, x+1, z.
(IB) top
Crystal data top
C6H24N8NiO6V = 773.07 (5) Å3
Mr = 363.04Z = 2
?, ?F(000) = 336
a = 8.8647 (3) ÅDx = 1.456 Mg m3
b = 8.8647 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.3595 (4) ŵ = 1.29 mm1
α = 90°T = 293 K
β = 90°0.18 × 0.13 × 0.05 mm
γ = 120°
Data collection top
Graphite monochromatorRint = 0.045
Absorption correction: multi-scan
?
θmax = 32.8°, θmin = 3.2°
Tmin = 0.853, Tmax = 1.000h = 1313
16770 measured reflectionsk = 1313
935 independent reflectionsl = 1617
838 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.03 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.005
S = 1.02Δρmax = 0.23 e Å3
935 reflectionsΔρmin = 0.19 e Å3
34 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.060 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (5)
Crystal data top
C6H24N8NiO6γ = 120°
Mr = 363.04V = 773.07 (5) Å3
?, ?Z = 2
a = 8.8647 (3) ÅMo Kα radiation
b = 8.8647 (3) ŵ = 1.29 mm1
c = 11.3595 (4) ÅT = 293 K
α = 90°0.18 × 0.13 × 0.05 mm
β = 90°
Data collection top
Absorption correction: multi-scan
?
935 independent reflections
Tmin = 0.853, Tmax = 1.000838 reflections with I > 2σ(I)
16770 measured reflectionsRint = 0.045
Refinement top
R[F2 > 2σ(F2)] = 0.03H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.19 e Å3
935 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
34 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.33330.66670.750.0326 (2)
N10.5430 (2)0.8602 (2)0.64807 (19)0.0453 (4)
H1A0.52310.8350.57090.054*
H1B0.55360.96540.66060.054*
C10.7040 (3)0.8618 (5)0.6848 (2)0.0547 (6)
H1C0.80510.97050.66110.066*
H1D0.71020.7670.64680.066*
N20.33330.66670.3897 (3)0.0472 (7)
O10.4833 (3)0.6930 (3)0.3927 (3)0.0764 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0237 (2)0.0237 (2)0.0504 (3)0.01183 (11)00
N10.0329 (9)0.0320 (8)0.0656 (10)0.0121 (7)0.0050 (8)0.0058 (8)
C10.0293 (8)0.0431 (12)0.0876 (15)0.0149 (10)0.0105 (9)0.0060 (15)
N20.0471 (10)0.0471 (10)0.0475 (13)0.0235 (5)00
O10.0477 (10)0.0746 (15)0.1079 (16)0.0314 (9)0.0032 (11)0.0014 (11)
Geometric parameters (Å, º) top
Ni1—N1i2.1332 (19)N1—H1B0.9
Ni1—N1ii2.1332 (19)C1—C1v1.491 (5)
Ni1—N12.1332 (19)C1—H1C0.97
Ni1—N1iii2.1332 (19)C1—H1D0.97
Ni1—N1iv2.1332 (19)N2—O1i1.230 (2)
Ni1—N1v2.1332 (19)N2—O1iv1.230 (2)
N1—C11.481 (3)N2—O11.230 (2)
N1—H1A0.9
N1i—Ni1—N1ii82.02 (11)C1—N1—Ni1107.61 (15)
N1i—Ni1—N193.33 (8)C1—N1—H1A110.2
N1ii—Ni1—N191.68 (11)Ni1—N1—H1A110.2
N1i—Ni1—N1iii91.68 (11)C1—N1—H1B110.2
N1ii—Ni1—N1iii93.33 (8)Ni1—N1—H1B110.2
N1—Ni1—N1iii173.36 (10)H1A—N1—H1B108.5
N1i—Ni1—N1iv93.33 (8)N1—C1—C1v109.57 (19)
N1ii—Ni1—N1iv173.36 (10)N1—C1—H1C109.8
N1—Ni1—N1iv93.33 (8)C1v—C1—H1C109.8
N1iii—Ni1—N1iv82.02 (11)N1—C1—H1D109.8
N1i—Ni1—N1v173.36 (10)C1v—C1—H1D109.8
N1ii—Ni1—N1v93.33 (8)H1C—C1—H1D108.2
N1—Ni1—N1v82.02 (11)O1i—N2—O1iv119.92 (2)
N1iii—Ni1—N1v93.33 (8)O1i—N2—O1119.92 (2)
N1iv—Ni1—N1v91.68 (11)O1iv—N2—O1119.92 (2)
N1i—Ni1—N1—C1170.64 (17)N1iv—Ni1—N1—C177.1 (2)
N1ii—Ni1—N1—C1107.25 (19)N1v—Ni1—N1—C114.13 (14)
N1iii—Ni1—N1—C131.73 (17)Ni1—N1—C1—C1v40.5 (4)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, y, z+3/2; (iii) y+1, x+1, z+3/2; (iv) x+y, x+1, z; (v) x, xy+1, z+3/2.
(IC) top
Crystal data top
C6H24N8NiO6V = 2226.0 (18) Å3
Mr = 363.04Z = 6
?, ?F(000) = 1152
a = 8.806 (5) ÅDx = 1.625 Mg m3
b = 8.806 (5) ÅMo Kα radiation, λ = 0.71069 Å
c = 33.147 (5) ŵ = 1.35 mm1
α = 90.000 (5)°T = 100 K
β = 90.000 (5)°0.18 × 0.13 × 0.05 mm
γ = 120.000 (5)°
Data collection top
Graphite monochromatorRint = 0.031
Absorption correction: multi-scan
?
θmax = 28.9°, θmin = 2.9°
Tmin = 0.818, Tmax = 1.000h = 1011
10049 measured reflectionsk = 1011
1810 independent reflectionsl = 4444
1730 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.16
1810 reflectionsΔρmax = 0.32 e Å3
144 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C6H24N8NiO6γ = 120.000 (5)°
Mr = 363.04V = 2226.0 (18) Å3
?, ?Z = 6
a = 8.806 (5) ÅMo Kα radiation
b = 8.806 (5) ŵ = 1.35 mm1
c = 33.147 (5) ÅT = 100 K
α = 90.000 (5)°0.18 × 0.13 × 0.05 mm
β = 90.000 (5)°
Data collection top
Absorption correction: multi-scan
?
1810 independent reflections
Tmin = 0.818, Tmax = 1.0001730 reflections with I > 2σ(I)
10049 measured reflectionsRint = 0.031
Refinement top
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.105(Δ/σ)max = 0.16
S = 0.90Δρmax = 0.32 e Å3
1810 reflectionsΔρmin = 0.54 e Å3
144 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.35901 (2)0.71802 (5)0.250.01063 (15)
N1A0.1772 (3)0.7343 (3)0.21035 (6)0.0152 (4)
N1B0.5806 (3)0.9118 (3)0.21777 (6)0.0152 (4)
N1C0.3580 (3)0.5069 (3)0.21789 (6)0.0153 (4)
C1A0.1686 (4)0.8930 (4)0.22104 (7)0.0175 (5)
C1B0.7368 (3)0.9098 (4)0.23315 (7)0.0169 (5)
C1C0.1933 (3)0.3451 (3)0.22779 (7)0.0168 (5)
H1A0.218 (4)0.746 (4)0.1845 (9)0.027 (8)*
H2A0.074 (5)0.643 (5)0.2116 (8)0.019 (7)*
H1B0.569 (4)0.891 (4)0.1913 (9)0.025 (8)*
H2B0.585 (4)1.017 (4)0.2206 (7)0.009 (6)*
H1C0.365 (4)0.520 (4)0.1903 (8)0.016 (7)*
H2C0.454 (5)0.494 (4)0.2259 (7)0.023 (8)*
H3A0.062 (4)0.884 (4)0.2106 (7)0.008 (6)*
H4A0.268 (4)0.987 (4)0.2099 (7)0.007 (6)*
H3B0.736 (4)0.810 (5)0.2225 (8)0.017 (8)*
H4B0.853 (4)1.022 (4)0.2259 (8)0.020 (7)*
H3C0.197 (5)0.244 (5)0.2218 (9)0.035 (10)*
H4C0.098 (5)0.349 (5)0.2140 (10)0.034 (9)*
N20.6778 (3)0.3872 (2)0.29595 (6)0.0151 (4)
O1A0.8039 (3)0.5390 (2)0.29884 (5)0.0250 (4)
O1B0.7013 (3)0.2583 (3)0.29686 (5)0.0241 (4)
O1C0.5247 (2)0.3625 (3)0.29349 (5)0.0230 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.00887 (18)0.0088 (2)0.0142 (2)0.00441 (11)0.00059 (12)0
N1A0.0131 (10)0.0141 (10)0.0202 (9)0.0081 (9)0.0010 (8)0.0003 (8)
N1B0.0138 (10)0.0117 (10)0.0181 (9)0.0050 (8)0.0024 (8)0.0021 (8)
N1C0.0135 (9)0.0130 (10)0.0213 (9)0.0080 (8)0.0005 (8)0.0003 (8)
C1A0.0151 (13)0.0144 (12)0.0256 (11)0.0093 (10)0.0004 (9)0.0017 (9)
C1B0.0113 (11)0.0124 (12)0.0263 (11)0.0055 (10)0.0040 (9)0.0000 (9)
C1C0.0130 (12)0.0106 (11)0.0251 (11)0.0046 (10)0.0008 (9)0.0035 (9)
N20.0153 (10)0.0160 (9)0.0138 (9)0.0076 (8)0.0019 (6)0.0011 (6)
O1A0.0181 (10)0.0159 (9)0.0340 (9)0.0033 (8)0.0045 (7)0.0026 (7)
O1B0.0254 (11)0.0207 (10)0.0312 (9)0.0154 (9)0.0004 (7)0.0010 (7)
O1C0.0152 (9)0.0265 (10)0.0309 (9)0.0132 (8)0.0023 (7)0.0000 (8)
Geometric parameters (Å, º) top
Ni—N1Bi2.128 (2)N1C—C1C1.475 (3)
Ni—N1B2.128 (2)C1A—C1Bi1.524 (3)
Ni—N1A2.131 (2)C1B—C1Ai1.524 (3)
Ni—N1Ai2.131 (2)C1C—C1Ci1.518 (5)
Ni—N1Ci2.138 (2)N2—O1A1.243 (3)
Ni—N1C2.138 (2)N2—O1B1.251 (3)
N1A—C1A1.479 (3)N2—O1C1.256 (3)
N1B—C1B1.475 (3)
N1Bi—Ni—N1B92.07 (12)N1A—Ni—N1C94.30 (8)
N1Bi—Ni—N1A82.19 (8)N1Ai—Ni—N1C90.74 (9)
N1B—Ni—N1A93.14 (9)N1Ci—Ni—N1C82.32 (11)
N1Bi—Ni—N1Ai93.15 (9)C1A—N1A—Ni108.11 (15)
N1B—Ni—N1Ai82.19 (8)C1B—N1B—Ni107.67 (14)
N1A—Ni—N1Ai173.31 (12)C1C—N1C—Ni107.70 (15)
N1Bi—Ni—N1Ci92.90 (8)N1A—C1A—C1Bi108.6 (2)
N1B—Ni—N1Ci174.06 (9)N1B—C1B—C1Ai108.9 (2)
N1A—Ni—N1Ci90.74 (9)N1C—C1C—C1Ci109.66 (16)
N1Ai—Ni—N1Ci94.30 (8)O1A—N2—O1B120.6 (2)
N1Bi—Ni—N1C174.06 (9)O1A—N2—O1C119.7 (2)
N1B—Ni—N1C92.90 (8)O1B—N2—O1C119.6 (2)
Symmetry code: (i) x+y, y, z+1/2.
(ID) top
Crystal data top
C6H24N8NiO6V = 2226.0 (18) Å3
Mr = 363.04Z = 6
?, ?F(000) = 1152
a = 8.806 (5) ÅDx = 1.625 Mg m3
b = 8.806 (5) ÅMo Kα radiation, λ = 0.71069 Å
c = 33.147 (5) ŵ = 1.35 mm1
α = 90.000 (5)°T = 100 K
β = 90.000 (5)°0.18 × 0.13 × 0.05 mm
γ = 120.000 (5)°
Data collection top
Graphite monochromatorRint = 0.030
Absorption correction: multi-scan
?
θmax = 28.9°, θmin = 2.9°
Tmin = 0.756, Tmax = 1.000h = 1011
10038 measured reflectionsk = 1011
1808 independent reflectionsl = 4444
1739 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.189
1808 reflectionsΔρmax = 0.36 e Å3
144 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
C6H24N8NiO6γ = 120.000 (5)°
Mr = 363.04V = 2226.0 (18) Å3
?, ?Z = 6
a = 8.806 (5) ÅMo Kα radiation
b = 8.806 (5) ŵ = 1.35 mm1
c = 33.147 (5) ÅT = 100 K
α = 90.000 (5)°0.18 × 0.13 × 0.05 mm
β = 90.000 (5)°
Data collection top
Absorption correction: multi-scan
?
1808 independent reflections
Tmin = 0.756, Tmax = 1.0001739 reflections with I > 2σ(I)
10038 measured reflectionsRint = 0.030
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.117(Δ/σ)max = 0.189
S = 1.01Δρmax = 0.36 e Å3
1808 reflectionsΔρmin = 0.54 e Å3
144 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
0 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.35906 (3)0.71813 (5)0.250.01059 (17)
N1A0.1773 (3)0.7347 (3)0.21034 (7)0.0154 (4)
N1B0.5808 (3)0.9119 (3)0.21780 (7)0.0145 (5)
N1C0.3582 (3)0.5072 (3)0.21782 (7)0.0152 (4)
C1A0.1679 (4)0.8923 (4)0.22103 (8)0.0166 (5)
C1B0.7367 (4)0.9109 (4)0.23300 (8)0.0177 (6)
C1C0.1933 (4)0.3449 (4)0.22776 (8)0.0158 (5)
H1A0.213 (6)0.734 (6)0.1848 (12)0.049 (12)*
H2A0.065 (5)0.643 (6)0.2123 (9)0.022 (9)*
H1B0.572 (5)0.896 (5)0.1921 (10)0.030 (10)*
H2B0.594 (4)1.016 (4)0.2206 (8)0.003 (6)*
H1C0.368 (4)0.517 (4)0.1914 (8)0.007 (7)*
H2C0.451 (6)0.498 (6)0.2258 (10)0.038 (11)*
H3A0.062 (4)0.884 (4)0.2101 (8)0.003 (6)*
H4A0.275 (5)0.988 (5)0.2103 (9)0.015 (8)*
H3B0.727 (5)0.799 (5)0.2223 (9)0.019 (9)*
H4B0.852 (5)1.016 (5)0.2264 (9)0.024 (9)*
H3C0.202 (4)0.251 (4)0.2217 (8)0.006 (7)*
H4C0.094 (6)0.353 (6)0.2140 (11)0.034 (10)*
N20.6775 (3)0.3871 (3)0.29594 (7)0.0153 (4)
O1A0.8040 (3)0.5392 (3)0.29893 (6)0.0239 (5)
O1B0.7014 (3)0.2585 (3)0.29689 (6)0.0235 (5)
O1C0.5239 (3)0.3622 (3)0.29357 (6)0.0234 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0087 (2)0.0089 (2)0.0142 (2)0.00445 (12)0.00064 (13)0
N1A0.0143 (12)0.0145 (11)0.0195 (10)0.0088 (10)0.0011 (9)0.0006 (8)
N1B0.0135 (11)0.0114 (11)0.0173 (10)0.0052 (9)0.0023 (8)0.0015 (8)
N1C0.0140 (11)0.0107 (11)0.0211 (10)0.0065 (9)0.0025 (9)0.0001 (9)
C1A0.0160 (14)0.0114 (13)0.0260 (13)0.0095 (10)0.0017 (11)0.0010 (10)
C1B0.0138 (13)0.0131 (13)0.0249 (12)0.0057 (11)0.0028 (10)0.0005 (10)
C1C0.0128 (13)0.0107 (12)0.0249 (13)0.0067 (11)0.0000 (10)0.0030 (10)
N20.0168 (11)0.0159 (10)0.0137 (10)0.0085 (9)0.0011 (7)0.0011 (7)
O1A0.0172 (11)0.0155 (10)0.0331 (10)0.0037 (9)0.0045 (8)0.0029 (8)
O1B0.0248 (12)0.0175 (11)0.0309 (10)0.0128 (10)0.0004 (8)0.0022 (8)
O1C0.0156 (10)0.0270 (11)0.0308 (10)0.0132 (9)0.0023 (8)0.0002 (9)
Geometric parameters (Å, º) top
Ni—N1Bi2.129 (3)N1C—C1C1.478 (4)
Ni—N1B2.129 (3)C1A—C1Bi1.531 (4)
Ni—N1A2.132 (2)C1B—C1Ai1.531 (4)
Ni—N1Ai2.132 (2)C1C—C1Ci1.520 (5)
Ni—N1Ci2.138 (2)N2—O1B1.251 (3)
Ni—N1C2.138 (2)N2—O1A1.246 (3)
N1A—C1A1.474 (3)N2—O1C1.260 (3)
N1B—C1B1.466 (4)
N1Bi—Ni—N1B92.06 (13)N1A—Ni—N1C94.31 (9)
N1Bi—Ni—N1A82.10 (9)N1Ai—Ni—N1C90.81 (10)
N1B—Ni—N1A93.15 (10)N1Ci—Ni—N1C82.45 (13)
N1Bi—Ni—N1Ai93.15 (10)C1A—N1A—Ni108.29 (16)
N1B—Ni—N1Ai82.11 (9)C1B—N1B—Ni108.00 (16)
N1A—Ni—N1Ai173.20 (13)C1C—N1C—Ni107.68 (16)
N1Bi—Ni—N1Ci92.85 (9)N1A—C1A—C1Bi108.9 (2)
N1B—Ni—N1Ci174.07 (10)N1B—C1B—C1Ai109.0 (2)
N1A—Ni—N1Ci90.81 (10)N1C—C1C—C1Ci109.68 (18)
N1Ai—Ni—N1Ci94.31 (9)O1B—N2—O1A120.4 (2)
N1Bi—Ni—N1C174.07 (10)O1B—N2—O1C119.7 (2)
N1B—Ni—N1C92.85 (9)O1A—N2—O1C119.8 (2)
Symmetry code: (i) x+y, y, z+1/2.
(IE) top
Crystal data top
C6H24N8NiO6V = 773.07 (5) Å3
Mr = 363.04Z = 2
?, ?F(000) = 384
a = 8.8647 (3) ÅDx = 1.56 Mg m3
b = 8.8647 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 11.3595 (4) ŵ = 1.30 mm1
α = 90°T = 293 K
β = 90°0.18 × 0.13 × 0.05 mm
γ = 120°
Data collection top
Graphite monochromatorRint = 0.069
Absorption correction: multi-scan
?
θmax = 32.5°, θmin = 2.7°
Tmin = 0.831, Tmax = 1.000h = 1313
16710 measured reflectionsk = 1313
940 independent reflectionsl = 1716
738 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 2.26Δρmax = 0.61 e Å3
940 reflectionsΔρmin = 0.45 e Å3
34 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0338 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (4)
Crystal data top
C6H24N8NiO6γ = 120°
Mr = 363.04V = 773.07 (5) Å3
?, ?Z = 2
a = 8.8647 (3) ÅMo Kα radiation
b = 8.8647 (3) ŵ = 1.30 mm1
c = 11.3595 (4) ÅT = 293 K
α = 90°0.18 × 0.13 × 0.05 mm
β = 90°
Data collection top
Absorption correction: multi-scan
?
940 independent reflections
Tmin = 0.831, Tmax = 1.000738 reflections with I > 2σ(I)
16710 measured reflectionsRint = 0.069
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.61 e Å3
S = 2.26Δρmin = 0.45 e Å3
940 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
34 parametersAbsolute structure parameter: 0.05 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.33330.66670.750.03467 (19)
N10.5431 (2)0.8599 (2)0.64814 (16)0.0453 (5)
H1A0.52420.83340.57110.054*
H1B0.55230.96460.65940.054*
C10.7038 (2)0.8644 (4)0.68596 (18)0.0580 (6)
H1C0.71410.77340.64580.07*
H1D0.80350.97560.66450.07*
N20.33330.66670.3894 (2)0.0480 (7)
O10.4835 (2)0.6923 (2)0.39163 (16)0.0788 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0251 (2)0.0251 (2)0.0538 (4)0.01254 (11)00
N10.0354 (11)0.0349 (11)0.0619 (11)0.0148 (9)0.0007 (9)0.0040 (9)
C10.0300 (11)0.0475 (17)0.0913 (16)0.0154 (15)0.0114 (10)0.0139 (17)
N20.0493 (11)0.0493 (11)0.0454 (16)0.0246 (5)00
O10.0473 (11)0.0826 (14)0.1115 (15)0.0362 (10)0.0007 (10)0.0057 (11)
Geometric parameters (Å, º) top
Ni1—N1i2.1321 (16)N1—H1B0.9
Ni1—N1ii2.1321 (16)C1—C1iv1.472 (4)
Ni1—N1iii2.1321 (16)C1—H1C0.97
Ni1—N12.1321 (16)C1—H1D0.97
Ni1—N1iv2.1321 (16)N2—O1ii1.2333 (15)
Ni1—N1v2.1321 (16)N2—O1v1.2333 (15)
N1—C11.468 (2)N2—O11.2333 (15)
N1—H1A0.9
N1i—Ni1—N1ii81.87 (10)C1—N1—Ni1107.92 (13)
N1i—Ni1—N1iii93.34 (7)C1—N1—H1A110.1
N1ii—Ni1—N1iii91.84 (10)Ni1—N1—H1A110.1
N1i—Ni1—N191.84 (10)C1—N1—H1B110.1
N1ii—Ni1—N193.34 (7)Ni1—N1—H1B110.1
N1iii—Ni1—N1173.14 (10)H1A—N1—H1B108.4
N1i—Ni1—N1iv93.34 (7)C1iv—C1—N1110.99 (16)
N1ii—Ni1—N1iv173.14 (10)C1iv—C1—H1C109.4
N1iii—Ni1—N1iv93.34 (7)N1—C1—H1C109.4
N1—Ni1—N1iv81.87 (10)C1iv—C1—H1D109.4
N1i—Ni1—N1v173.14 (10)N1—C1—H1D109.4
N1ii—Ni1—N1v93.34 (7)H1C—C1—H1D108
N1iii—Ni1—N1v81.87 (10)O1ii—N2—O1v119.957 (13)
N1—Ni1—N1v93.34 (7)O1ii—N2—O1119.957 (13)
N1iv—Ni1—N1v91.84 (10)O1v—N2—O1119.957 (12)
N1i—Ni1—N1—C1106.17 (17)N1v—Ni1—N1—C178.33 (19)
N1ii—Ni1—N1—C1171.87 (15)Ni1—N1—C1—C1iv37.8 (3)
N1iv—Ni1—N1—C113.06 (13)
Symmetry codes: (i) x+y, y, z+3/2; (ii) y+1, xy+1, z; (iii) y+1, x+1, z+3/2; (iv) x, xy+1, z+3/2; (v) x+y, x+1, z.
(IIA) top
Crystal data top
C4H7NO4F(000) = 560
Mr = 133.11Dx = 1.712 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.805 (9) ÅCell parameters from 7916 reflections
b = 5.6535 (18) Åθ = 3.5–52.7°
c = 12.126 (9) ŵ = 0.16 mm1
β = 107.55 (4)°T = 100 K
V = 1033.1 (10) Å30.36 × 0.34 × 0.10 mm
Z = 8
Data collection top
SuperNova, Single source at offset), Eos
diffractometer
2964 independent reflections
Graphite monochromator2481 reflections with I > 2σ(I)
Detector resolution: 16.0965 pixels mm-1Rint = 0.017
ω and π scansθmax = 53.0°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 2624
Tmin = 0.877, Tmax = 1k = 88
7082 measured reflectionsl = 1126
Refinement top
Refinement on F89 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.03 w1 = 1/[s2(Fo)]
wR(F2) = 0.036(Δ/σ)max = 0.00006
S = 2.96Δρmax = 0.36 e Å3
3673 reflectionsΔρmin = 0.44 e Å3
Crystal data top
C4H7NO4V = 1033.1 (10) Å3
Mr = 133.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.805 (9) ŵ = 0.16 mm1
b = 5.6535 (18) ÅT = 100 K
c = 12.126 (9) Å0.36 × 0.34 × 0.10 mm
β = 107.55 (4)°
Data collection top
SuperNova, Single source at offset), Eos
diffractometer
2964 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2481 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 1Rint = 0.017
7082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0389 parameters
wR(F2) = 0.0360 restraints
S = 2.96Δρmax = 0.36 e Å3
3673 reflectionsΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.24415 (3)0.89994 (7)0.38196 (3)0.01
O(2)0.31280 (3)1.32896 (7)0.42008 (3)0.009
O(3)0.18011 (3)1.48928 (7)0.33356 (3)0.009
O(4)0.11015 (3)1.05174 (8)0.28987 (4)0.014
N(1)0.07154 (3)1.48320 (8)0.10484 (3)0.009
C(1)0.23245 (3)1.31820 (9)0.36888 (4)0.007
C(2)0.18827 (3)1.07220 (9)0.34244 (4)0.008
C(3)0.04222 (4)1.27354 (10)0.02931 (4)0.01
C(4)0.00326 (4)1.64935 (10)0.09557 (4)0.009
H(7)0.2143420.730480.3650330.025 (3)*
H(1)0.0068381.1851050.0616270.037 (3)*
H(2)0.0228131.80140.1506030.031 (3)*
H(3)0.0534511.5559220.123710.023 (2)*
H(4)0.1208951.5784020.0830760.025 (3)*
H(5)0.0994181.1581860.0401510.028 (3)*
H(6)0.097421.428350.1907660.020 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00763 (17)0.00611 (17)0.01363 (13)0.00015 (12)0.00131 (12)0.00036 (11)
O(2)0.00689 (17)0.00720 (17)0.01231 (13)0.00051 (12)0.00098 (12)0.00070 (11)
O(3)0.00919 (17)0.00691 (16)0.01020 (12)0.00124 (12)0.00141 (12)0.00086 (11)
O(4)0.00749 (18)0.00967 (19)0.02067 (17)0.00089 (13)0.00196 (14)0.00175 (14)
N(1)0.00638 (18)0.00945 (19)0.00816 (13)0.00015 (13)0.00012 (12)0.00029 (12)
C(1)0.0069 (2)0.00530 (19)0.00804 (13)0.00018 (14)0.00116 (13)0.00002 (12)
C(2)0.0070 (2)0.0066 (2)0.00911 (14)0.00022 (14)0.00115 (14)0.00043 (13)
C(3)0.0093 (2)0.0075 (2)0.01185 (16)0.00132 (15)0.00069 (15)0.00033 (14)
C(4)0.0088 (2)0.0098 (2)0.00930 (15)0.00011 (16)0.00202 (15)0.00193 (14)
Geometric parameters (Å, º) top
O1—C21.3049 (12)C1—C21.5458 (14)
O2—C11.2355 (11)C2—O41.2122 (13)
O3—C11.2608 (11)N1—C41.4874 (13)
O2—C1—O3127.01 (3)O4—C2—C1121.31 (2)
O2—C1—C2118.69 (3)O1—C2—C1112.45 (3)
O3—C1—C2114.25 (2)C4—N1—C3111.36 (3)
O4—C2—O1126.24 (3)
(IIB) top
Crystal data top
C8H14N2O8V = 1037.66 (1) Å3
Mr = 266.21Z = 4
?, ?F(000) = 560
a = 15.82050 (11) ÅDx = 1.702 Mg m3
b = 5.68202 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.09246 (8) ŵ = 0.15 mm1
α = 90°T = 100 K
β = 107.3327 (8)°0.35 × 0.13 × 0.12 mm
γ = 90°
Data collection top
SuperNova, Single source at offset), Eos
diffractometer
4099 independent reflections
Graphite monochromator3811 reflections with I > 2σ(I)
Detector resolution: 16.0965 pixels mm-1Rint = 0.018
ω and π scansθmax = 44.4°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3130
Tmin = 0.898, Tmax = 1k = 1111
26193 measured reflectionsl = 2323
Refinement top
Refinement on F356 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.015 w1 = 1/[s2(Fo)]
wR(F2) = 0.01(Δ/σ)max = 0.05
S = 1.45Δρmax = 0.11 e Å3
4044 reflectionsΔρmin = 0.12 e Å3
Crystal data top
C8H14N2O8γ = 90°
Mr = 266.21V = 1037.66 (1) Å3
?, ?Z = 4
a = 15.82050 (11) ÅMo Kα radiation
b = 5.68202 (3) ŵ = 0.15 mm1
c = 12.09246 (8) ÅT = 100 K
α = 90°0.35 × 0.13 × 0.12 mm
β = 107.3327 (8)°
Data collection top
SuperNova, Single source at offset), Eos
diffractometer
4099 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
3811 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1Rint = 0.018
26193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015356 parameters
wR(F2) = 0.010 restraints
S = 1.45Δρmax = 0.11 e Å3
4044 reflectionsΔρmin = 0.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.244150 (12)0.89978 (3)0.381879 (16)0.009
O(2)0.312812 (12)1.32898 (3)0.420132 (16)0.009
O(3)0.180065 (12)1.48920 (3)0.333568 (16)0.009
O(4)0.110209 (13)1.05177 (3)0.289919 (18)0.014
N(1)0.071508 (14)1.48316 (4)0.104899 (18)0.008
C(1)0.232422 (16)1.31823 (4)0.368854 (19)0.007
C(2)0.188278 (16)1.07222 (4)0.34252 (2)0.008
C(3)0.042131 (17)1.27361 (4)0.02931 (2)0.01
C(4)0.003279 (16)1.64920 (4)0.09561 (2)0.009
H(7)0.2144530.7311080.3650960.0258 (14)*
H(1)0.0068761.1850350.0616520.0271 (12)*
H(2)0.0227161.8008390.15040.0253 (12)*
H(3)0.0534741.5558790.1237230.0238 (12)*
H(4)0.1208091.5782370.0831140.0223 (14)*
H(5)0.0991831.1586610.0401060.0288 (13)*
H(6)0.0974491.4282880.1908620.0257 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00756 (7)0.00614 (6)0.01286 (8)0.00006 (5)0.00126 (6)0.00038 (5)
O(2)0.00636 (7)0.00734 (7)0.01207 (7)0.00058 (5)0.00083 (6)0.00069 (5)
O(3)0.00881 (7)0.00665 (6)0.00995 (7)0.00126 (5)0.00120 (6)0.00079 (5)
O(4)0.00751 (8)0.00975 (7)0.01988 (9)0.00092 (6)0.00241 (7)0.00165 (6)
N(1)0.00614 (8)0.00935 (8)0.00790 (7)0.00020 (6)0.00015 (6)0.00026 (6)
C(1)0.00637 (9)0.00579 (7)0.00736 (8)0.00007 (6)0.00109 (7)0.00000 (6)
C(2)0.00645 (9)0.00638 (8)0.00891 (8)0.00044 (6)0.00077 (7)0.00053 (6)
C(3)0.00880 (10)0.00756 (8)0.01147 (9)0.00126 (7)0.00038 (8)0.00028 (7)
C(4)0.00823 (9)0.00997 (9)0.00923 (9)0.00006 (7)0.00179 (7)0.00190 (7)
Geometric parameters (Å, º) top
O1—C21.3104 (3)C2—O41.2147 (3)
O2—C11.2393 (3)N1—C41.4911 (3)
O3—C11.2654 (2)N1—C31.4887 (3)
C1—C21.5526 (3)C3—C4i1.5160 (3)
O2—C1—O3127.01 (3)O1—C2—C1112.65 (3)
O2—C1—C2118.61 (3)C4—N1—C3111.36 (3)
O3—C1—C2114.39 (2)N1—C3—C4i109.90 (3)
O4—C2—O1126.11 (3)N1—C4—C3i109.59 (3)
O4—C2—C1121.24 (2)
Symmetry code: (i) x, y+3, z.
(IIC) top
Crystal data top
C4H7NO4F(000) = 560
Mr = 133.11Dx = 1.704 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.82035 (12) ÅCell parameters from 20347 reflections
b = 5.68088 (3) Åθ = 3.5–45.3°
c = 12.09343 (8) ŵ = 0.15 mm1
β = 107.3321 (8)°T = 100 K
V = 1037.53 (1) Å30.32 × 0.13 × 0.11 mm
Z = 8
Data collection top
Xcalibur, Eos, Gemini ultra
diffractometer
4172 independent reflections
Graphite monochromator3729 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.016
ω scansθmax = 45.4°, θmin = 3.5°
Absorption correction: gaussian
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Numerical absorption correction based on gaussian integration over a multifaceted crystal model
h = 2631
Tmin = 0.967, Tmax = 1.034k = 1111
15647 measured reflectionsl = 2424
Refinement top
Refinement on F89 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.021 w1 = 1/[s2(Fo)]
wR(F2) = 0.013(Δ/σ)max = 0.001
S = 2.03Δρmax = 0.24 e Å3
4302 reflectionsΔρmin = 0.21 e Å3
Crystal data top
C4H7NO4V = 1037.53 (1) Å3
Mr = 133.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.82035 (12) ŵ = 0.15 mm1
b = 5.68088 (3) ÅT = 100 K
c = 12.09343 (8) Å0.32 × 0.13 × 0.11 mm
β = 107.3321 (8)°
Data collection top
Xcalibur, Eos, Gemini ultra
diffractometer
4172 independent reflections
Absorption correction: gaussian
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Numerical absorption correction based on gaussian integration over a multifaceted crystal model
3729 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.034Rint = 0.016
15647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02189 parameters
wR(F2) = 0.0130 restraints
S = 2.03Δρmax = 0.24 e Å3
4302 reflectionsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.244129 (10)0.89974 (2)0.381860 (13)0.009
O(2)0.312828 (10)1.32903 (2)0.420149 (13)0.009
O(3)0.180055 (10)1.48923 (2)0.333537 (12)0.009
O(4)0.110226 (10)1.05181 (3)0.289882 (15)0.014
N(1)0.071514 (11)1.48316 (3)0.104907 (14)0.008
C(1)0.232417 (13)1.31823 (3)0.368837 (16)0.007
C(2)0.188277 (13)1.07225 (3)0.342521 (16)0.008
C(3)0.042171 (14)1.27368 (3)0.029316 (17)0.01
C(4)0.003287 (13)1.64922 (3)0.095632 (17)0.009
H(7)0.214440.731030.3650880.0276 (12)*
H(1)0.0068491.1850850.0616340.0281 (10)*
H(2)0.0227231.8008760.1504140.0264 (10)*
H(3)0.0534831.5558620.1237280.0264 (9)*
H(4)0.1208131.5782440.0831120.0266 (12)*
H(5)0.09921.1586250.0401090.0301 (10)*
H(6)0.097451.4282860.1908650.0268 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.00737 (6)0.00621 (5)0.01285 (6)0.00004 (4)0.00095 (5)0.00038 (4)
O(2)0.00611 (6)0.00743 (5)0.01214 (6)0.00066 (4)0.00049 (5)0.00073 (4)
O(3)0.00857 (6)0.00671 (5)0.01009 (6)0.00135 (4)0.00096 (5)0.00083 (4)
O(4)0.00727 (7)0.00982 (6)0.02005 (7)0.00095 (5)0.00287 (6)0.00165 (5)
N(1)0.00589 (7)0.00946 (6)0.00786 (6)0.00014 (5)0.00064 (5)0.00027 (5)
C(1)0.00614 (7)0.00585 (6)0.00735 (6)0.00014 (5)0.00082 (6)0.00004 (5)
C(2)0.00617 (8)0.00639 (6)0.00903 (7)0.00045 (5)0.00046 (6)0.00045 (5)
C(3)0.00865 (8)0.00761 (6)0.01146 (7)0.00130 (6)0.00001 (6)0.00032 (5)
C(4)0.00798 (8)0.01005 (7)0.00923 (7)0.00004 (6)0.00138 (6)0.00197 (5)
Geometric parameters (Å, º) top
O1—C21.3104 (3)C2—O41.2147 (3)
O2—C11.2393 (3)N1—C41.4911 (3)
O3—C11.2654 (2)N1—C31.4881 (3)
C1—C21.5526 (3)
O2—C1—O3127.01 (3)O4—C2—C1121.24 (2)
O2—C1—C2118.61 (3)O1—C2—C1112.65 (3)
O3—C1—C2114.39 (2)C4—N1—C3111.36 (3)
O4—C2—O1126.11 (3)

Experimental details

(IA)(IB)(IC)(ID)
Crystal data
Chemical formulaC6H24N8NiO6C6H24N8NiO6C6H24N8NiO6C6H24N8NiO6
Mr363.04363.04363.04363.04
Crystal system, space group?, ??, ??, ??, ?
Temperature (K)293293100100
a, b, c (Å)8.8647 (3), 8.8647 (3), 11.3595 (4)8.8647 (3), 8.8647 (3), 11.3595 (4)8.806 (5), 8.806 (5), 33.147 (5)8.806 (5), 8.806 (5), 33.147 (5)
α, β, γ (°)90, 90, 12090, 90, 12090.000 (5), 90.000 (5), 120.000 (5)90.000 (5), 90.000 (5), 120.000 (5)
V3)773.07 (5)773.07 (5)2226.0 (18)2226.0 (18)
Z2266
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.301.291.351.35
Crystal size (mm)0.18 × 0.13 × 0.050.18 × 0.13 × 0.050.18 × 0.13 × 0.050.18 × 0.13 × 0.05
Data collection
Diffractometer????
Absorption correctionMulti-scanMulti-scanMulti-scanMulti-scan
Tmin, Tmax0.588, 1.0000.853, 1.0000.818, 1.0000.756, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16785, 934, 819 16770, 935, 838 10049, 1810, 1730 10038, 1808, 1739
Rint0.0490.0450.0310.030
(sin θ/λ)max1)0.7610.7610.6790.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.040, 2.31 0.03, 0.125, 1.02 0.028, 0.105, 0.90 0.031, 0.117, 1.01
No. of reflections93493518101808
No. of parameters3434144144
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedAll H-atom parameters refinedH-atom parameters constrained
(Δ/σ)max< 0.0010.0050.160.189
Δρmax, Δρmin (e Å3)0.22, 0.170.23, 0.190.32, 0.540.36, 0.54
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.01 (2)0.02 (5)0.00 (2)0.02 (2)


(IE)(IIA)(IIB)(IIC)
Crystal data
Chemical formulaC6H24N8NiO6C4H7NO4C8H14N2O8C4H7NO4
Mr363.04133.11266.21133.11
Crystal system, space group?, ?Monoclinic, C2/c?, ?Monoclinic, C2/c
Temperature (K)293100100100
a, b, c (Å)8.8647 (3), 8.8647 (3), 11.3595 (4)15.805 (9), 5.6535 (18), 12.126 (9)15.82050 (11), 5.68202 (3), 12.09246 (8)15.82035 (12), 5.68088 (3), 12.09343 (8)
α, β, γ (°)90, 90, 12090, 107.55 (4), 9090, 107.3327 (8), 9090, 107.3321 (8), 90
V3)773.07 (5)1033.1 (10)1037.66 (1)1037.53 (1)
Z2848
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.300.160.150.15
Crystal size (mm)0.18 × 0.13 × 0.050.36 × 0.34 × 0.100.35 × 0.13 × 0.120.32 × 0.13 × 0.11
Data collection
Diffractometer?SuperNova, Single source at offset), Eos
diffractometer
SuperNova, Single source at offset), Eos
diffractometer
Xcalibur, Eos, Gemini ultra
diffractometer
Absorption correctionMulti-scanMulti-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Gaussian
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38) Numerical absorption correction based on gaussian integration over a multifaceted crystal model
Tmin, Tmax0.831, 1.0000.877, 10.898, 10.967, 1.034
No. of measured, independent and
observed [I > 2σ(I)] reflections
16710, 940, 738 7082, 2964, 2481 26193, 4099, 3811 15647, 4172, 3729
Rint0.0690.0170.0180.016
(sin θ/λ)max1)0.7571.1240.9851.001
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.057, 2.26 0.03, 0.036, 2.96 0.015, 0.01, 1.45 0.021, 0.013, 2.03
No. of reflections940367340444302
No. of parameters348935689
H-atom treatmentH-atom parameters constrained???
(Δ/σ)max< 0.0010.000060.050.001
Δρmax, Δρmin (e Å3)0.61, 0.450.36, 0.440.11, 0.120.24, 0.21
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881???
Absolute structure parameter0.05 (4)???

Computer programs: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58), CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.41 (release 13-09-2010 CrysAlis171 .NET) (compiled Sep 13 2010,14:28:38), SHELXL97 (Sheldrick, 1997), Volkov et al., (2006).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds