Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new capability designed for high-throughput (HT) structural analysis using the synchrotron powder diffraction beamline (I11) at Diamond Light Source is reported. With a high-brightness X-ray beam, multi-analyser detectors and fast data-acquisition procedures, high-quality diffraction data can be collected at a speed of ∼15–30 min per powder pattern for good crystalline materials. Fast sample changing at a rate of a few seconds per specimen is achieved with a robotic arm and pre-loaded capillary specimens on a multi-tray carousel (200-sample capacity). Additional equipment, such as an automatic powder-loading machine and a pre-alignment jig for the sample capillaries, is available to reduce preparation time. For demonstration purposes, the first results presented here are those from standard reference powders of Si, TiO2 and TiO2/Si mixtures, obtained by analysing the data using Le Bail (instrumental calibration) and Rietveld refinements (quantitative agreement within 1%). The HT hardware was then used to study the structural phase evolution of a library of 31 La4Ni3−xFexO10 heterometallic ceramic powders in less than 1 d. The powders were generated from a single heat treatment (at 1348 K in air for 12 h) of nanoceramic oxide co-precipitate precursors, made using a newly developed HT synthesis robot. Crystallographic details (symmetry and lattice parameters) were obtained as a function of Fe concentration. The results revealed that this approach was able to produce a pure Ruddlesden–Popper-type phase with an iron content of up to x = 0.5, significantly higher than has been achieved previously using more conventional synthesis routes and thus demonstrating the power of using the HT approach.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds