Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Mechanical vibration often occurs during protein crystallization; however, it is seldom considered as one of the factors influencing the crystallization process. This paper reports an investigation of the crystallization of five proteins using various crystallization conditions in a temperature-controlled chamber on the table of a mechanical vibrator. The results show that mechanical vibration can reduce the number of crystals and improve their optical perfection. During screening of the crystallization conditions it was found that mechanical vibration could help to obtain crystals in a highly supersaturated solution in which amorphous precipitates often normally appear. It is concluded that mechanical vibration can serve as a tool for growing optically perfect crystals or for obtaining more crystallization conditions during crystallization screening.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds